NP Completeness

COMP 455 - 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Time Complexity (Revisited)

» A problem is a yes/no question.

» Example: The clique problem: Given a graph G and
integer k, does G contain a k-clique?

% (A k-clique is a fully-connected group of k nodes.)
» (G, k) is an instance of this problem (for some specific
graph G).

» A problem is decidable it an algorithm exists that will take
any instance of this problem and always produce the
correct yes/no answer. We will only be concerned

' ' ith decidabl bl h
» An algorithm is a TM that always halts. With decidable probiems Wieh

Jim Anderson (modified by Nathan Otterness)

discussing NP completeness.

Another Example Problem

Consider this undirected graph:

Let k = 3. We can encode an instance of the
clique problem as a string w:

» w = 3(1,2)(1,4)(2,3)(2,4)(3,4)(3,5)(4,5)

The language corresponding to the clique problem
could be stated as follows:

» L = {all strings k(i4, i3) ... (i, jm) | the
corresponding graph has a k-clique}.

» If M is a TM that solves the clique problem, then
L(M) = L.

Jim Anderson (modified by Nathan Otterness)

Additional Constraints on Encoding

Many different ways exist to encode problems. For these
problems, the choice of encoding matters!

» The standard encoding for these problems is binary or
something “polynomially related” to binary.

% For example, decimal is OK. Unary is not OK.
There are two reasons for this:

» With unary encodings, polynomial-time solutions exist to
some NP-complete problems. This is because time complexity
is measured based on input length! Using artificially long
inputs is “cheating”.

» Real computers use binary encodings.

Jim Anderson (modified by Nathan Otterness) 4

Two Basic Complexity Classes

(There are lots of other classes —we’re just focusing on these
two for now.)

» P-Time: Any language L accepted in polynomial time by
some deterministic TM.

» NP-Time: Any language L accepted in polynomial time by
some nondeterministic TM.

% Recall that the time complexity of a NDTM is based on
the smallest number of moves needed to accept a string
of a given length.

We usually abbreviate P-Time as “P” and NP-Time as “NP 2

Jim Anderson (modified by Nathan Otterness) 5

The Relationship Between P and NP

NP

» Every DIM is also a NDTM, so P is in NP.
» It's not known whether P = NP or P c NP.

Jim Anderson (modified by Nathan Otterness) 6

P vs. NP

The P = NP question is the most important open question in
theoretical computer science. Here’s why:

» Lots of interesting problems are in NP.

» Problems in P have “efficient” solutions. (Meaning
deterministic, polynomial-time solutions.)

» For many important problems in NP (e.g. yes/no
counterparts to optimization problems or graph problems)

we haven’t found “efficient” solutions despite decades of
research.

% The suggests that P # NP.

< But, it P = NP, then these problems do have “efficient”
solutions.

Jim Anderson (modified by Nathan Otterness)

Hard and Complete Problems

We want to identity the “hardest” problems in NP.

» If the “hard” problems have deterministic polynomial-
time solutions, then so do all problems in NP.

» This reduces the P=NP question to that of whether one
of these “hard” problems is in P.

Jim Anderson (modified by Nathan Otterness) 8

In other words, we

Hard and Complete Problems want a DTM that

converts instances of
one problem to
instances of another
in polynomial time.
» L is polynomially transformable to L' if there exists a
polynomial-time-bounded DTM M that can convert
each string w in the alphabet of L into a string w' in the

alphabet of L' such that w € L if and only if w’ € L.

What do we specifically mean by “hard” and
“complete”? We need some more definitions:

o

» Let C be a class of languages. L is hard for C if every
language in C is polynomially transformable to L.

» L is complete for C if L is in C and hard for C.

Jim Anderson (modified by Nathan Otterness) 9

NP-Complete Problems

Using the previous definitions, L is NP-complete if it is in
NP and NP-hard.

» Note: Showing that L is in NP is usually
straightforward: show that a NDTM can accept L by
“guessing” an answer and then verifying the guess is
correct in polynomial time.

Our goal is to first identify some NP-complete problems.

Jim Anderson (modified by Nathan Otterness) 10

NP-Complete Problems

» Given the unlikelihood of P=NP, if a language L is NP-
complete, then L is probably an intractable problem.

«Note: “NP-complete” is not (currently) synonymous
with “exponential time.”

» We can show P=NP if we're able to find a single NP-
Complete problem that’s in I>. Nobody’s been able to
do so, but it hasn’t been proven impossible yet, either.

Jim Anderson (modified by Nathan Otterness) 11

“Guess-and-Verity” Example

Let a NDTM accept strings of the form 10110 ... 10% <+
such that there is some I € {1, ..., k} for which N e

Zjel lj = ngg L. “legal” encoding (it

(This is called the partition problem.) encodes i, using a
unary # of 0s). We're

just using it here to
» The TM has three tapes, the input is on tape 1. simplify the example.

Here’s how our NDTM can work:

» The TM scans the input and copies each group of Os to
either tape 2 or tape 3, the choice being
nondeterministic.

» The TM accepts if an equal number of 0s were copied
to both tapes after scanning the entire input string.

Jim Anderson (modified by Nathan Otterness) 12

Proving a Problem is NP-Complete

There are two ways to show L is NP complete:

» Prove it from scratch (very difficult!)

» Use reduction:

I. Show that L is in NP (i.e. design a “guess-and-
verity” polynomial-time NDTM for L), and

1. Show that a known NP-complete problem can
be polynomially transformed to L.

So, if we want to use reduction, we first need a
known NP-complete problem.

Jim Anderson (modified by Nathan Otterness) 13

Cook’s Theorem

The satisfiability problem is the following: given a
Boolean expression E, is it possible to assign values
to the variables in such a way that makes E true?

Example:
» (x Vy) Az is satisfiable.
» (x Vy) AX A Y isnot satisfiable.

Cook’s Theorem: The satisfiability problem is NP-
complete.

The prootf is too long to cover in this class, so we will
need to take it on faith.

Jim Anderson (modified by Nathan Otterness) 14

Variations on Satisfiability

A conjunct is a group of
» A literal is either x or —x, where x is a Boolean EEIERORdERES R L
variable. are “and”-ed together.

» A Boolean expression is in conjunctive normal form
(CNF) if it is a conjunct of “clauses” of literals:

+Example: (aV b) A (c) A(naV bV _~c)

» k-CNF: A conjunct of clauses containing k literals. ,
A clause is a group

» k-satisfiability: Satisfiability for expressions in k- ESARSCIER IR T
CNF. “or”-d together.

Jim Anderson (modified by Nathan Otterness)

Variations on Satisfiability

We will show the following:

These are easier to
use in subsequent

reductions.

-

Jim Anderson (modified by Nathan Otterness)

Satisfiability

Satisfiability for

expressions in
CNF

3-satisifiability

We won’t cover this in
class (see Section 10.3.3

of the book for details).

We will cover this
polynomial
transformation.

3-Sat

» The satisfiability problem for CNF expressions
with exactly three literals per clause is called 3-
satisifiability (“3-Sat”).

<+ Example: Is (aVb V) A(—cVdV e) satisfiable?

Jim Anderson (modified by Nathan Otterness) 17

3-Sat

Theorem 10.15: 3-satisfiability is NP-complete.
Proof:
We must do two things:

» Show 3-Sat is in NP.

< This is easy: just nondeterministically generate an
assignment for each variable, then, in polynomial
time verify that each clause evaluates to true.

This is called a reduction
» Show 3-Sat is NIP’-hard. from CNF-Sat.

% To do this we will show that if we can solve 3-Sat
efficiently, then we can solve CNF-Sat efficiently.

Jim Anderson (modified by Nathan Otterness)

Reducing from CNF-5at to 3-Sat

» Our goal is to take a Boolean expression in CNF and, in
polynomial time, generate a new expression in 3-CINF
that is satistiable if and only if the original CNF
expression is satisfiable.

» We want to show that if a polynomial time solution to
3-CNF exists, then the following algorithm would be
possible:

1. Convert a CNF-5at problem to a 3-Sat problem in
polynomial time.

2. Use the polynomial-time 3-Sat algorithm to
determine if the converted expression is satisfiable.

Jim Anderson (modified by Nathan Otterness) 19

Reducing from CNF-5at to 3-Sat

Converting from CNF-Sat to 3-Sat:

» We can convert each clause containing n literals
X1 ... Xn t0 a conjunct of n — 2 new clauses, each of
which contain exactly three literals.

% This requires adding n — 3 new literals y; ... y,_3
per clause.

Example:
(xq VX,V Vx,) becomes:

Jim Anderson (modified by Nathan Otterness) 20

Reducing from CNF-5at to 3-Sat

» We want to show that the old expression is satisfiable

if and only if the new expression is satisfiable.

» First: The old expression is satisfiable = the new QG (G V53 7 o007 o)

expression is satisfiable. New:
< Assume the old expression is satisfiable (1 Vxz Viyr) A
#= 3 i t s.t. the old on is true [RENSINEGEA
X an assignment s.t. the old expression is true REERVEEVIEINNN
%= some x; is true in the assignment V-3 V Xn—1 V Xn)

%= Setting y; := true for j < i — 2 and y; := false for
J < i — 2 makes the new expression true.

%= The new expression is satisfiable.

Jim Anderson (modified by Nathan Otterness) 21

Reducing from CNF-Sat to 3-Sat (CRHCATAEIED

» Second: The new expression is satistiable = the old New:
expression is satisfiable. (x1 VX, VYA

» Assume an assignment exists such that the new E& X ’; 3 1//3/ 2% //t A
expression is true (i.e. it's satisfiable). One of the YA

Ta Vo2V X1 V
following must be the case: (Yn—3 V Xn-1 V Xn)

» If y, is false, then x; or x, is true.

< If y,,_3 is true, then x,,_; or x,, is true.

< If y, is true and y,,_3 is false, then some i exists such

that y; is true and y;,, is false. This implies that x;,, is
true.

» For all of the above cases, the old expression also had to
be true because some x; was true.

Jim Anderson (modified by Nathan Otterness) 22

Problems We Will Cover

CNF-
Satisfiability
3- Clique
Satisfiability Problem

Vertex
Cover

Directed
Hamiltonian
Circuit

I didn’t have time to do

these, sorry... =

Undirected
Hamiltonian

Circuit

Jim Anderson (modified by Nathan Otterness)

To show it’s in NP:
The Cllque Problem 1. Nondeterministically

“guess” a selection of k
nodes in the graph.

Theorem: The clique problem is NP-complete.

2. In polynomial time,
check whether the k
nodes are fully connected.

Proof:
» The clique problem is in NP. <

» To show the clique problem is NP-hard we will show
that CNF-Sat reduces to the clique problem.

» Consider a CNF expression F = F; AF, A -+ A F;, where
Fi = (xil VvV Xio VeV xiki)'

» We will construct a graph G that has a g-clique if and
only if F is satisfiable.

Jim Anderson (modified by Nathan Otterness) 24

The Clique Problem

> F =F AF, A AF,, where F; = (x;1 V X5 V- V Xy,).
» Construct the graph ¢ = (V, E) as follows:

< Each pair [, j] is a vertex, where 1 < i < q and
1<j<k;.

«Each ([i,j], [k,]) is an edge, where i # k and
x_ij o= Xl -

+Given F, you can construct G in polynomial time.

Jim Anderson (modified by Nathan Otterness) 25

The Clique Problem

Example: F = (y; VY2) A (Y2 VY3) A (Y3 VY1)
The literals are:
X11 = V1 X21 = Y2 X31 = Y3

X12 = Y2 Xp2 = Y3 X32 = Y1

Jim Anderson (modified by Nathan Otterness) 26

The Clique Problem
Example: F = (y; Vy2) Ay, Vy3) A (Y3 VY1)

G has a clique of size q if and only if F is satisfiable.

G has two 3-cliques:
» {[1,1],(2,1],[3,1]} corresponding to y; = y, = y3 = true.
» {[1,2],(2,2],[3,2]} corresponding to y; = y, = y; = false.

Jim Anderson (modified by Nathan Otterness) 27

The Clique Problem

Proof that G has a g-clique if and only if F is satisfiable:
» Assume F is satisfiable.

«Then, 3 an assignment to variables s.t. F is true.
< Each F; has > 1 literal that is true.

* Let x;, In F; be true.

<« Consider {[i,m;] |1 <i < q}.

< Consider [i,m;] and |}, m]-] where i # j.

*Xim; = Xjm,; = true implies x;,,, # Xjm

+Since i # j, ([i, m;], [, mj]) is an edge.

+So, {li,m;] |1 <i < q}isa q-clique.

Jim Anderson (modified by Nathan Otterness) 28

The Clique Problem

» Assume G has a g-clique.

+ Let the vertices in the clique be {[i,m;] | 1 <i < q}
*Let Sirye = {y | Xim, = y for some i} and
Stalse = {y | Xim, = y for some i}.

% By setting each variable in S, to true and each
variable in S¢,. to false, each clause F; is made

true. So, F is satisfiable.

Jim Anderson (modified by Nathan Otterness) 29

Vertex Cover

Theorem 10.20: The Vertex Cover problem is NP-
Complete.

Vertex Cover: Given a graph ¢ = (V, E), find a subset
S of the vertices V such that each edge in E is incident
upon some vertex in S. (This is also called node cover.)

The Vertex Cover Problem: Does an undirected graph G
have a vertex cover of size k?

Jim Anderson (modified by Nathan Otterness) 30

Vertex Cover

Vertex Cover example: Does this graph G contain a
vertex cover of size 27

Yes: {2, 3} is a vertex cover.

Jim Anderson (modified by Nathan Otterness) 31

Vertex Cover

To prove that Vertex Cover is in NP:
1. Nondeterministically “Guess” a set of k vertices in G.

2. In polynomial time, check to see if this set is a vertex
cover.

To prove that Vertex Cover is NP-hard, we will reduce
from the clique problem

» We show that a polynomial-time solution to vertex
cover will let us solve the clique problem in
polynomial time.

Jim Anderson (modified by Nathan Otterness) 32

Vertex Cover

Here’s the transformation that we’ll make:

1. Start with an instance of the clique problem: (G, k)
o LetG = (V,E)

2. In polynomial time, compute G

o LetG = (V,E), where E = {(v,w) |v =W A
(v,w) € E}

3. Construct the following instance of the vertex cover
problem: (G, |V| — k).

G has a vertex cover of size |V| — k if and only if G had a

clique of size k. (We'll prove this on the following
slides.)

Jim Anderson (modified by Nathan Otterness) 33

Vertex Cover

Transformation example:

» Input to the clique problem: Does G have a 3-clique?
G =

1. Start with an instance of
: the clique problem:
(Yes, it does) G.10
o v G6=,E)
2. In polynomial time,
(5) compute G
G = (V,E), where
(4) E={(v,w)|v+wWA
(v,w) € E}
Construct the following
instance of the vertex

cover problem:
G, V] = k).

Jim Anderson (modified by Nathan Otterness) 34

Vertex Cover

Transformation example:

» Next, construct G:

Jim Anderson (modified by Nathan Otterness)

1.

2.

Start with an instance of
the clique problem:

(G, k)
v G=(,E)
In polynomial time,
compute G
G = (V,E), where
E={(v,w)|v+wWA
(v,w) & E}
Construct the following
instance of the vertex
cover problem:

(G, V] = F).

Vertex Cover

Transformation example:
» Does G contain a vertex cover of size |V| — k?

% (k was from the size of the clique in the clique (@R

problem, so |V | — k is 2.) Eﬁeiiiq“e problem:

v G=(,E)
2. In polynomial time,

compute G
G = (V,E), where
E={(v,w)|v+wWA
(v,w) € E}

Construct the following

instance of the vertex

cover problem:
G, V] = k).

(Yes, it does)

Rl

Jim Anderson (modified by Nathan Otterness)

Vertex Cover

Now, we need to prove that G has a vertex cover of
size |V| — k if and only if G has a clique of size k:

» Assume S is a clique in G.
+No edge in G connects two vertices in S, and

+ Every edge in G is incident upon at least one
vertexinV — §, so

<V — S is a vertex cover of G.

Jim Anderson (modified by Nathan Otterness) 37

Vertex Cover

Now, we need to prove that G has a vertex cover of
size |V| — k if and only if G has a clique of size k:

» Assume IV — S is a vertex cover of G

< This means every edge in G is incident upon at
least one vertex in V — S, and

+»No edge in G connects two vertices in S, so

«Every pair of vertices in S is connected in G

QThis is the definition of a clique, so S is a clique in G.

Jim Anderson (modified by Nathan Otterness) 38

