NP Completeness

COMP 455 - 002, Spring 2019

Time Complexity (Revisited)

- A **problem** is a yes/no question.
- Example: The clique problem: Given a graph G and integer k, does G contain a k-clique?
 - *(A *k*-clique is a fully-connected group of *k* nodes.)
- ► (*G*, *k*) is an *instance* of this problem (for some specific graph *G*).
- A problem is *decidable* if an algorithm exists that will take any instance of this problem and always produce the correct yes/no answer.
 We will only b
- An algorithm is a TM that always halts.

Jim Anderson (modified by Nathan Otterness)

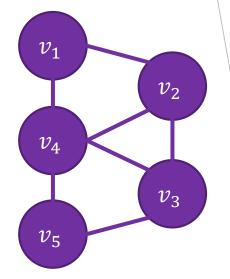
We will only be concerned with decidable problems when discussing NP completeness.

Another Example Problem

Consider this undirected graph:

Let k = 3. We can encode an instance of the clique problem as a string *w*:

$$w = 3(1,2)(1,4)(2,3)(2,4)(3,4)(3,5)(4,5)$$



The language corresponding to the clique problem could be stated as follows:

► $L = \{ \text{all strings } k(i_1, i_2) \dots (i_m, j_m) \mid \text{the corresponding graph has a } k\text{-clique} \}.$

• If *M* is a TM that solves the clique problem, then L(M) = L. Jim Anderson (modified by Nathan Otterness)

Additional Constraints on Encoding

Many different ways exist to encode problems. For these problems, the *choice of encoding matters*!

- The standard encoding for these problems is binary or something "polynomially related" to binary.
 - ✤ For example, decimal is OK. Unary is *not OK*.

There are two reasons for this:

- With unary encodings, polynomial-time solutions exist to some NP-complete problems. This is because time complexity is measured based on input *length*! Using artificially long inputs is "cheating".
- ► Real computers use binary encodings.

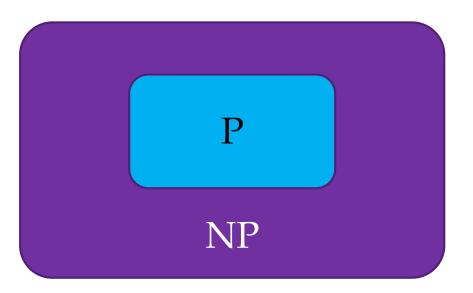
Two Basic Complexity Classes

(There are lots of other classes – we're just focusing on these two for now.)

- P-Time: Any language L accepted in polynomial time by some *deterministic* TM.
- NP-Time: Any language L accepted in polynomial time by some *nondeterministic* TM.
 - Recall that the time complexity of a NDTM is based on the smallest number of moves needed to accept a string of a given length.

We usually abbreviate P-Time as "P" and NP-Time as "NP."

The Relationship Between P and NP



Every DTM is also a NDTM, so P is in NP. It's not known whether P = NP or P ⊂ NP.

P vs. NP

The P = NP question is the *most* important open question in theoretical computer science. Here's why:

- ► Lots of interesting problems are in NP.
- Problems in P have "efficient" solutions. (Meaning deterministic, polynomial-time solutions.)
- For many important problems in NP (e.g. yes/no counterparts to optimization problems or graph problems) we haven't found "efficient" solutions despite decades of research.
 - ♦ The suggests that $P \neq NP$.
 - *But*, if *P* = *NP*, then these problems *do* have "efficient" solutions.

Hard and Complete Problems

We want to identify the "hardest" problems in NP.

- If the "hard" problems have deterministic polynomialtime solutions, then so do all problems in NP.
- This reduces the P=NP question to that of whether one of these "hard" problems is in P.

Hard and Complete Problems

What do we specifically mean by "hard" and "complete"? We need some more definitions:

- ▶ *L* is **polynomially transformable** to *L*' if there exists a polynomial-time-bounded DTM *M* that can convert each string *w* in the alphabet of *L* into a string *w*' in the alphabet of *L* into a string *w*' in the alphabet of *L*' such that $w \in L$ if and only if $w' \in L'$.
- Let C be a class of languages. L is hard for C if every language in C is polynomially transformable to L.
- ► *L* is **complete for** *C* if *L* is in *C* and hard for *C*.

In other words, we want a DTM that converts instances of one problem to instances of another in polynomial time.

NP-Complete Problems

Using the previous definitions, *L* is **NP-complete** if it is in NP and NP-hard.

Note: Showing that *L* is in NP is usually straightforward: show that a NDTM can accept *L* by "guessing" an answer and then verifying the guess is correct in polynomial time.

Our goal is to first identify some NP-complete problems.

NP-Complete Problems

- Given the unlikelihood of P=NP, if a language L is NPcomplete, then L is *probably* an intractable problem.
 - Note: "NP-complete" is not (currently) synonymous with "exponential time."
- We can show P=NP if we're able to find a single NP-Complete problem that's in P. Nobody's been able to do so, but it hasn't been proven impossible yet, either.

"Guess-and-Verify" Example

Let a NDTM accept strings of the form $10^{i_1}10^{i_2} \dots 10^{i_k}$ such that there is some $I \subseteq \{1, \dots, k\}$ for which $\sum_{j \in I} i_j = \sum_{j \notin I} i_j$.

(This is called the **partition problem**.)

Here's how our NDTM can work:

- ► The TM has three tapes, the input is on tape 1.
- The TM scans the input and copies each group of 0s to either tape 2 or tape 3, the choice being nondeterministic.
- The TM accepts if an equal number of 0s were copied to both tapes after scanning the entire input string.

This technically isn't a "legal" encoding (it encodes i_n using a unary # of 0s). We're just using it here to simplify the example.

Proving a Problem is NP-Complete

There are two ways to show *L* is NP complete:

Prove it from scratch (very difficult!)

► Use *reduction*:

- I. Show that *L* is in NP (*i.e.* design a "guess-and-verify" polynomial-time NDTM for *L*), and
- II. Show that a known NP-complete problem can be polynomially transformed to *L*.

So, if we want to use reduction, we first need a known NP-complete problem.

Cook's Theorem

The **satisfiability problem** is the following: given a Boolean expression *E*, is it possible to assign values to the variables in such a way that makes *E* true?

Example:

- ($x \lor y$) $\land z$ is satisfiable.
- ($x \lor y$) $\land \overline{x} \land \overline{y}$ is not satisfiable.

Cook's Theorem: The satisfiability problem is NP-complete.

The proof is too long to cover in this class, so we will need to take it on faith.

Variations on Satisfiability

- ► A literal is either *x* or ¬*x*, where *x* is a Boolean variable.
- A Boolean expression is in conjunctive normal form (CNF) if it is a conjunct of "clauses" of literals:

 $\texttt{Example:} (a \lor b) \land (c) \land (\neg a \lor b \lor \neg c)$

- ▶ **k-CNF**: A conjunct of clauses containing *k* literals.
- k-satisfiability: Satisfiability for expressions in k-CNF.

A *clause* is a group of literals that are "or"-d together.

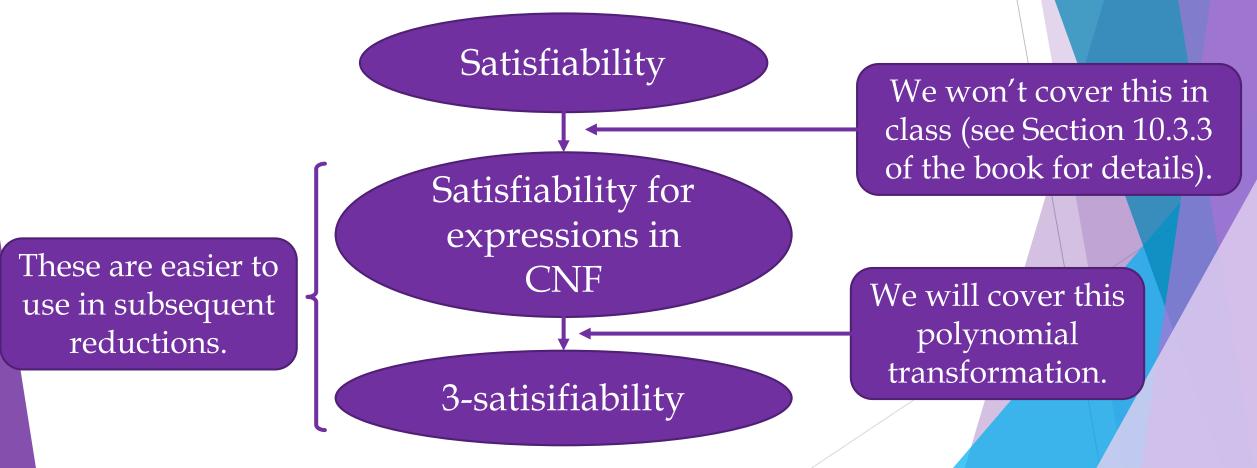
A *conjunct* is a group of

literals or clauses that

are "and"-ed together.

Variations on Satisfiability

We will show the following:



16

3-Sat

- The satisfiability problem for CNF expressions with exactly three literals per clause is called 3satisifiability ("3-Sat").
 - *Example: Is $(a \lor b \lor c) \land (\neg c \lor d \lor e)$ satisfiable?

3-Sat

Theorem 10.15: 3-satisfiability is NP-complete. **Proof**:

We must do two things:

- Show 3-Sat is in NP.
 - This is easy: just nondeterministically generate an assignment for each variable, then, in polynomial time verify that each clause evaluates to true.

Show 3-Sat is NP-hard.

To do this we will show that if we can solve 3-Sat efficiently, then we can solve CNF-Sat efficiently.

This is called a **reduction** from CNF-Sat.

- Our goal is to take a Boolean expression in CNF and, in polynomial time, generate a new expression in 3-CNF that is satisfiable if and only if the original CNF expression is satisfiable.
- We want to show that if a polynomial time solution to 3-CNF exists, then the following algorithm would be possible:
 - 1. Convert a CNF-Sat problem to a 3-Sat problem in polynomial time.
 - 2. Use the polynomial-time 3-Sat algorithm to determine if the converted expression is satisfiable.

Converting from CNF-Sat to 3-Sat:

- ▶ We can convert each clause containing *n* literals *x*₁ ... *x_n* to a conjunct of *n* − 2 new clauses, each of which contain exactly three literals.
 - ✤ This requires adding n 3 new literals $y_1 ... y_{n-3}$ per clause.

Example:

 $(x_1 \lor x_2 \lor \cdots \lor x_n) \text{ becomes:}$ $(x_1 \lor x_2 \lor y_1) \land (\overline{y_1} \lor x_3 \lor y_2) \land (\overline{y_2} \lor x_4 \lor y_3) \land \cdots$ $\land (\overline{y_{n-4}} \lor x_{n-2} \lor y_{n-3}) \land (\overline{y_{n-3}} \lor x_{n-1} \lor x_n)$

- We want to show that the old expression is satisfiable if and only if the new expression is satisfiable.
- ► First: The old expression is satisfiable ⇒ the new expression is satisfiable.
 - Assume the old expression is satisfiable
 - $\Rightarrow \exists$ an assignment s.t. the old expression is true
 - \Rightarrow some x_i is true in the assignment
 - ♦ ⇒ Setting $y_j \coloneqq$ true for $j \le i 2$ and $y_j \coloneqq$ false for j < i 2 makes the new expression true.
 - \Rightarrow The new expression is satisfiable.

Old: $(x_1 \lor x_2 \lor \cdots \lor x_n)$ New: $(x_1 \lor x_2 \lor y_1) \land$ $(\overline{y_1} \lor x_3 \lor y_2) \land$ $(\overline{y_2} \lor x_4 \lor y_3) \land \cdots \land$ $(\overline{y_{n-3}} \lor x_{n-1} \lor x_n)$

- ► Second: The new expression is satisfiable ⇒ the old expression is satisfiable.
- Assume an assignment exists such that the new expression is true (i.e. it's satisfiable). One of the following must be the case:
 - * If y_1 is false, then x_1 or x_2 is true.
 - ♦ If y_{n-3} is true, then x_{n-1} or x_n is true.
 - ◆ If y_1 is true and y_{n-3} is false, then some *i* exists such that y_i is true and y_{i+1} is false. This implies that x_{i+2} is true.
- For all of the above cases, the old expression also had to be true because some x_i was true.

Old: $(x_1 \lor x_2 \lor \cdots \lor x_n)$ New: $(x_1 \lor x_2 \lor y_1) \land$ $(\overline{y_1} \lor x_3 \lor y_2) \land$ $(\overline{y_2} \lor x_4 \lor y_3) \land \cdots \land$ $(\overline{y_{n-3}} \lor x_{n-1} \lor x_n)$

Jim Anderson (modified by Nathan Otterness)

Theorem: The clique problem is NP-complete.

Proof:

- ► The clique problem is in NP. ◄
- To show the clique problem is NP-hard we will show that CNF-Sat reduces to the clique problem.
- Consider a CNF expression $F = F_1 \wedge F_2 \wedge \cdots \wedge F_q$, where $F_i = (x_{i1} \vee x_{i2} \vee \cdots \vee x_{ik_i}).$
- We will construct a graph G that has a q-clique if and only if F is satisfiable.

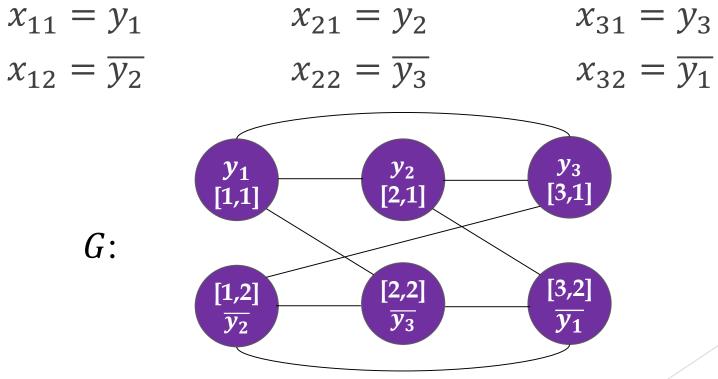
To show it's in NP:
1. Nondeterministically
"guess" a selection of k
nodes in the graph.
2. In polynomial time,
check whether the k
nodes are fully connected.

$$\blacktriangleright F = F_1 \land F_2 \land \cdots \land F_q, \text{ where } F_i = (x_{i1} \lor x_{i2} \lor \cdots \lor x_{ik_i}).$$

• Construct the graph G = (V, E) as follows:

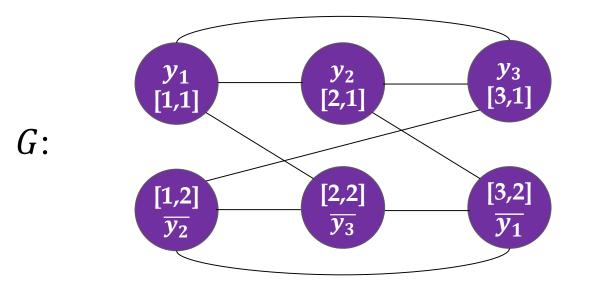
- ★ Each pair [i, j] is a vertex, where $1 \le i \le q$ and $1 \le j \le k_i$.
- ★ Each ([*i*, *j*], [*k*, *l*]) is an edge, where $i \neq k$ and $\overline{x_{ij}} \neq x_{kl}$.
- ♦ Given *F*, you can construct *G* in polynomial time.

Example: $F = (y_1 \lor \overline{y_2}) \land (y_2 \lor \overline{y_3}) \land (y_3 \lor \overline{y_1})$ The literals are:



Jim Anderson (modified by Nathan Otterness)

The Clique Problem Example: $F = (y_1 \lor \overline{y_2}) \land (y_2 \lor \overline{y_3}) \land (y_3 \lor \overline{y_1})$



G has a clique of size *q* if and only if *F* is satisfiable. *G* has two 3-cliques:

{[1,1], [2,1], [3,1]} corresponding to y₁ = y₂ = y₃ = true.
{[1,2], [2,2], [3,2]} corresponding to y₁ = y₂ = y₃ = false.

Proof that *G* has a *q*-clique if and only if *F* is satisfiable:

- Assume *F* is satisfiable.
 - ✤Then, ∃ an assignment to variables s.t. F is true.
 - ♦ Each F_i has ≥ 1 literal that is true.
 - * Let x_{im_i} in F_i be true.
 - ♦ Consider $\{[i, m_i] \mid 1 \le i \le q\}$.
 - ♦ Consider $[i, m_i]$ and $[j, m_j]$ where $i \neq j$.
 - $x_{im_i} = x_{jm_j} = \text{true implies } x_{im_i} \neq \overline{x_{jm_j}}.$ $Since i \neq j, ([i, m_i], [j, m_j]) \text{ is an edge.}$ $So, \{[i, m_i] \mid 1 \leq i \leq q\} \text{ is a } q\text{-clique.}$

- ► Assume *G* has a *q*-clique.
 - ★ Let the vertices in the clique be $\{[i, m_i] | 1 \le i \le q\}$

Let S_{true} = {y | x_{im_i} = y for some i} and
$$S_{false} = \{y | x_{imi} = \overline{y} \text{ for some } i\}.$$

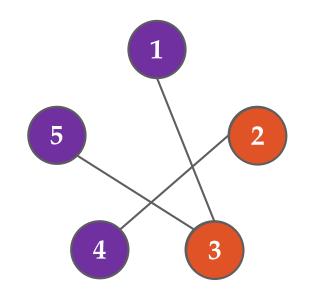
* By setting each variable in S_{true} to true and each variable in S_{false} to false, each clause F_i is made true. So, F is satisfiable.

Theorem 10.20: The Vertex Cover problem is NP-Complete.

Vertex Cover: Given a graph G = (V, E), find a subset *S* of the vertices *V* such that each edge in *E* is incident upon some vertex in *S*. (This is also called node cover.)

The **Vertex Cover Problem**: *Does an undirected graph G have a vertex cover of size k*?

Vertex Cover example: Does this graph *G* contain a vertex cover of size 2?



Yes: {2, 3} is a vertex cover.

To prove that Vertex Cover is in NP:

- 1. Nondeterministically "Guess" a set of *k* vertices in *G*.
- 2. In polynomial time, check to see if this set is a vertex cover.

To prove that Vertex Cover is NP-hard, we will reduce from the clique problem

We show that a polynomial-time solution to vertex cover will let us solve the clique problem in polynomial time.

Here's the transformation that we'll make:

1. Start with an instance of the clique problem: (G, k)

• Let G = (V, E)

2. In polynomial time, compute \bar{G}

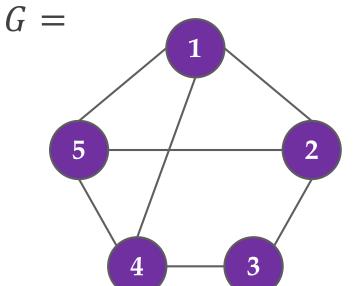
★ Let
$$\overline{G} = (V, \overline{E})$$
, where $\overline{E} = \{(v, w) \mid v \neq w \land (v, w) \notin E\}$

3. Construct the following instance of the vertex cover problem: $(\bar{G}, |V| - k)$.

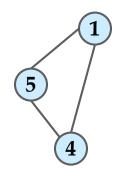
 \overline{G} has a vertex cover of size |V| - k if and only if G had a clique of size k. (We'll prove this on the following slides.)

Transformation example:

► Input to the clique problem: Does *G* have a 3-clique?



(Yes, it does)

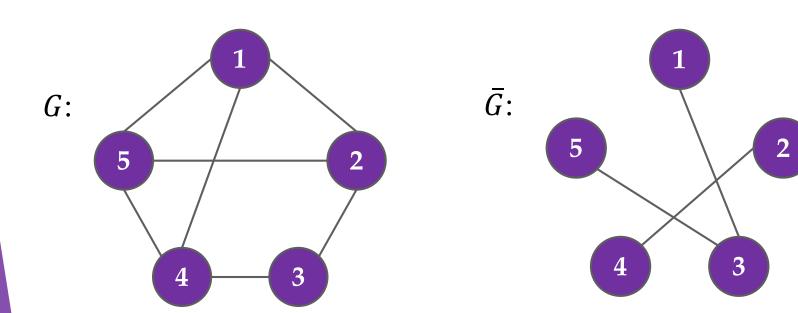


1. Start with an instance of the clique problem: (G, k)

- $\bullet \quad G = (V, E)$
- 2. In polynomial time, compute \overline{G}
 - $\hat{\overline{G}} = (V, \overline{E}), \text{ where} \\ \overline{\overline{E}} = \{(v, w) \mid v \neq w \land \\ (v, w) \notin E\}$
- 3. Construct the following instance of the vertex cover problem: $(\bar{G}, |V| k)$.

Transformation example:

Next, construct \overline{G} :



Start with an instance of the clique problem:
 (*G*, *k*)

$$\bullet \quad G = (V, E)$$

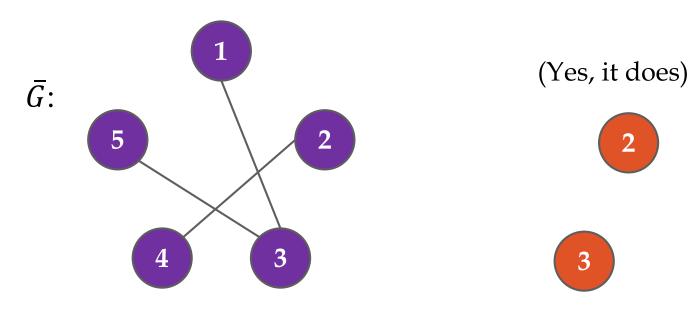
- 2. In polynomial time, compute \overline{G}
 - $\hat{\overline{G}} = (V, \overline{E}), \text{ where}$ $\overline{\overline{E}} = \{(v, w) \mid v \neq w \land \\ (v, w) \notin E\}$
- 3. Construct the following instance of the vertex cover problem: $(\bar{G}, |V| k)$.

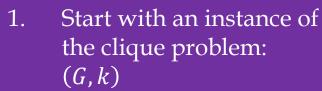
Transformation example:

▶ Does \overline{G} contain a vertex cover of size |V| - k? (k was from the size of the clique in the clique)problem, so |V| - k is 2.)

2

3





•
$$G = (V, E)$$

- In polynomial time, 2. compute *G*
 - $\bar{G} = (V, \bar{E})$, where $\overline{E} = \{(v, w) \mid v \neq w \land$ $(v,w) \notin E$
- 3. Construct the following instance of the vertex cover problem: $(\overline{G}, |V| - k).$

Now, we need to prove that \overline{G} has a vertex cover of size |V| - k if and only if *G* has a clique of size *k*:

- ► Assume *S* is a clique in *G*.
 - ♦ No edge in Ḡ connects two vertices in S, and
 ♦ Every edge in Ḡ is incident upon at least one vertex in V S, so

*V - S is a vertex cover of \overline{G} .

Now, we need to prove that \overline{G} has a vertex cover of size |V| - k if and only if *G* has a clique of size *k*:

Assume V - S is a vertex cover of \overline{G}

- ✤ This means every edge in \overline{G} is incident upon at least one vertex in *V* − *S*, and
- *No edge in \overline{G} connects two vertices in *S*, so
- ◆ Every pair of vertices in *S* is connected in *G*□ This is the definition of a clique, so *S* is a clique in *G*.