
NP Completeness
COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Time Complexity (Revisited)

 A problem is a yes/no question.

 Example: The clique problem: Given a graph 𝐺 and
integer 𝑘, does 𝐺 contain a 𝑘-clique?

❖(A 𝒌-clique is a fully-connected group of 𝑘 nodes.)

 𝐺, 𝑘 is an instance of this problem (for some specific
graph 𝐺).

 A problem is decidable if an algorithm exists that will take
any instance of this problem and always produce the
correct yes/no answer.

 An algorithm is a TM that always halts.
Jim Anderson (modified by Nathan Otterness) 2

We will only be concerned
with decidable problems when
discussing NP completeness.

Another Example Problem

Consider this undirected graph:

Let 𝑘 = 3. We can encode an instance of the
clique problem as a string 𝑤:

 𝑤 = 3 1,2 1,4 2,3 2,4 3,4 3,5 4,5

The language corresponding to the clique problem
could be stated as follows:

 𝐿 = {all strings 𝑘 𝑖1, 𝑖2 … 𝑖𝑚, 𝑗𝑚 | the
corresponding graph has a 𝑘-clique}.

 If 𝑀 is a TM that solves the clique problem, then
𝐿 𝑀 = 𝐿.
Jim Anderson (modified by Nathan Otterness) 3

𝑣1

𝑣4

𝑣5

𝑣3

𝑣2

Additional Constraints on Encoding

Many different ways exist to encode problems. For these
problems, the choice of encoding matters!

 The standard encoding for these problems is binary or
something “polynomially related” to binary.

❖For example, decimal is OK. Unary is not OK.

There are two reasons for this:

 With unary encodings, polynomial-time solutions exist to
some NP-complete problems. This is because time complexity
is measured based on input length! Using artificially long
inputs is “cheating”.

 Real computers use binary encodings.

Jim Anderson (modified by Nathan Otterness) 4

Two Basic Complexity Classes

(There are lots of other classes—we’re just focusing on these
two for now.)

 P-Time: Any language 𝐿 accepted in polynomial time by
some deterministic TM.

 NP-Time: Any language 𝐿 accepted in polynomial time by
some nondeterministic TM.

❖Recall that the time complexity of a NDTM is based on
the smallest number of moves needed to accept a string
of a given length.

We usually abbreviate P-Time as “P” and NP-Time as “NP.”

Jim Anderson (modified by Nathan Otterness) 5

The Relationship Between P and NP

 Every DTM is also a NDTM, so P is in NP.

 It’s not known whether 𝑃 = 𝑁𝑃 or 𝑃 ⊂ 𝑁𝑃.

Jim Anderson (modified by Nathan Otterness) 6

P

NP

P vs. NP

The P = NP question is the most important open question in
theoretical computer science. Here’s why:

 Lots of interesting problems are in NP.

 Problems in P have “efficient” solutions. (Meaning
deterministic, polynomial-time solutions.)

 For many important problems in NP (e.g. yes/no
counterparts to optimization problems or graph problems)
we haven’t found “efficient” solutions despite decades of
research.

❖The suggests that 𝑃 ≠ 𝑁𝑃.

❖But, if 𝑃 = 𝑁𝑃, then these problems do have “efficient”
solutions.

Jim Anderson (modified by Nathan Otterness) 7

Hard and Complete Problems

We want to identify the “hardest” problems in NP.

 If the “hard” problems have deterministic polynomial-
time solutions, then so do all problems in NP.

 This reduces the P=NP question to that of whether one
of these “hard” problems is in P.

Jim Anderson (modified by Nathan Otterness) 8

Hard and Complete Problems

What do we specifically mean by “hard” and
“complete”? We need some more definitions:

 𝐿 is polynomially transformable to 𝐿′ if there exists a
polynomial-time-bounded DTM 𝑀 that can convert
each string 𝑤 in the alphabet of 𝐿 into a string 𝑤′ in the
alphabet of 𝐿′ such that 𝑤 ∈ 𝐿 if and only if 𝑤′ ∈ 𝐿′.

 Let 𝐶 be a class of languages. 𝐿 is hard for 𝑪 if every
language in 𝐶 is polynomially transformable to 𝐿.

 𝐿 is complete for 𝑪 if 𝐿 is in 𝐶 and hard for 𝐶.

Jim Anderson (modified by Nathan Otterness) 9

In other words, we
want a DTM that

converts instances of
one problem to

instances of another
in polynomial time.

NP-Complete Problems

Using the previous definitions, 𝐿 is NP-complete if it is in
NP and NP-hard.

 Note: Showing that 𝐿 is in NP is usually
straightforward: show that a NDTM can accept 𝐿 by
“guessing” an answer and then verifying the guess is
correct in polynomial time.

Our goal is to first identify some NP-complete problems.

Jim Anderson (modified by Nathan Otterness) 10

NP-Complete Problems

 Given the unlikelihood of P=NP, if a language 𝐿 is NP-
complete, then 𝐿 is probably an intractable problem.

❖Note: “NP-complete” is not (currently) synonymous
with “exponential time.”

 We can show P=NP if we’re able to find a single NP-
Complete problem that’s in P. Nobody’s been able to
do so, but it hasn’t been proven impossible yet, either.

Jim Anderson (modified by Nathan Otterness) 11

“Guess-and-Verify” Example

Let a NDTM accept strings of the form 10𝑖110𝑖2 …10𝑖𝑘

such that there is some 𝐼 ⊆ 1,… , 𝑘 for which
σ𝑗∈𝐼 𝑖𝑗 = σ𝑗∉𝐼 𝑖𝑗.

(This is called the partition problem.)

Here’s how our NDTM can work:

 The TM has three tapes, the input is on tape 1.

 The TM scans the input and copies each group of 0s to
either tape 2 or tape 3, the choice being
nondeterministic.

 The TM accepts if an equal number of 0s were copied
to both tapes after scanning the entire input string.

Jim Anderson (modified by Nathan Otterness) 12

This technically isn’t a
“legal” encoding (it
encodes 𝑖𝑛 using a

unary # of 0s). We’re
just using it here to

simplify the example.

Proving a Problem is NP-Complete

There are two ways to show 𝐿 is NP complete:

 Prove it from scratch (very difficult!)

 Use reduction:

I. Show that 𝐿 is in NP (i.e. design a “guess-and-
verify” polynomial-time NDTM for 𝐿), and

II. Show that a known NP-complete problem can
be polynomially transformed to 𝐿.

So, if we want to use reduction, we first need a
known NP-complete problem.

Jim Anderson (modified by Nathan Otterness) 13

Cook’s Theorem

The satisfiability problem is the following: given a
Boolean expression 𝐸, is it possible to assign values
to the variables in such a way that makes 𝐸 true?

Example:

 𝑥 ∨ 𝑦 ∧ 𝑧 is satisfiable.

 𝑥 ∨ 𝑦 ∧ ҧ𝑥 ∧ ത𝑦 is not satisfiable.

Cook’s Theorem: The satisfiability problem is NP-
complete.

The proof is too long to cover in this class, so we will
need to take it on faith.

Jim Anderson (modified by Nathan Otterness) 14

Variations on Satisfiability

 A literal is either 𝑥 or ¬𝑥, where 𝑥 is a Boolean
variable.

 A Boolean expression is in conjunctive normal form
(CNF) if it is a conjunct of “clauses” of literals:

❖Example: 𝑎 ∨ 𝑏 ∧ 𝑐 ∧ ¬𝑎 ∨ 𝑏 ∨ ¬𝑐

 k-CNF: A conjunct of clauses containing 𝑘 literals.

 k-satisfiability: Satisfiability for expressions in k-
CNF.

Jim Anderson (modified by Nathan Otterness) 15

A clause is a group
of literals that are
“or”-d together.

A conjunct is a group of
literals or clauses that
are “and”-ed together.

Variations on Satisfiability

We will show the following:

Jim Anderson (modified by Nathan Otterness) 16

Satisfiability

Satisfiability for
expressions in

CNF

3-satisifiability

These are easier to
use in subsequent

reductions.

We won’t cover this in
class (see Section 10.3.3
of the book for details).

We will cover this
polynomial

transformation.

3-Sat

 The satisfiability problem for CNF expressions
with exactly three literals per clause is called 3-
satisifiability (“3-Sat”).

❖Example: Is 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ 𝑑 ∨ 𝑒 satisfiable?

Jim Anderson (modified by Nathan Otterness) 17

3-Sat

Theorem 10.15: 3-satisfiability is NP-complete.

Proof:

We must do two things:

 Show 3-Sat is in NP.

❖This is easy: just nondeterministically generate an
assignment for each variable, then, in polynomial
time verify that each clause evaluates to true.

 Show 3-Sat is NP-hard.

❖To do this we will show that if we can solve 3-Sat
efficiently, then we can solve CNF-Sat efficiently.

Jim Anderson (modified by Nathan Otterness) 18

This is called a reduction
from CNF-Sat.

Reducing from CNF-Sat to 3-Sat

 Our goal is to take a Boolean expression in CNF and, in
polynomial time, generate a new expression in 3-CNF
that is satisfiable if and only if the original CNF
expression is satisfiable.

 We want to show that if a polynomial time solution to
3-CNF exists, then the following algorithm would be
possible:

1. Convert a CNF-Sat problem to a 3-Sat problem in
polynomial time.

2. Use the polynomial-time 3-Sat algorithm to
determine if the converted expression is satisfiable.

Jim Anderson (modified by Nathan Otterness) 19

Reducing from CNF-Sat to 3-Sat

Converting from CNF-Sat to 3-Sat:

 We can convert each clause containing 𝑛 literals
𝑥1…𝑥𝑛 to a conjunct of 𝑛 − 2 new clauses, each of
which contain exactly three literals.

❖This requires adding 𝑛 − 3 new literals 𝑦1…𝑦𝑛−3
per clause.

Example:

𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑛 becomes:
𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧ 𝑦1 ∨ 𝑥3 ∨ 𝑦2 ∧ 𝑦2 ∨ 𝑥4 ∨ 𝑦3 ∧ ⋯
∧ 𝑦𝑛−4 ∨ 𝑥𝑛−2 ∨ 𝑦𝑛−3 ∧ 𝑦𝑛−3 ∨ 𝑥𝑛−1 ∨ 𝑥𝑛

Jim Anderson (modified by Nathan Otterness) 20

Reducing from CNF-Sat to 3-Sat

 We want to show that the old expression is satisfiable
if and only if the new expression is satisfiable.

 First: The old expression is satisfiable ⇒ the new
expression is satisfiable.

❖Assume the old expression is satisfiable

❖⇒ ∃ an assignment s.t. the old expression is true

❖⇒ some 𝑥𝑖 is true in the assignment

❖⇒ Setting 𝑦𝑗 ≔ true for 𝑗 ≤ 𝑖 − 2 and 𝑦𝑗 ≔ false for
𝑗 < 𝑖 − 2 makes the new expression true.

❖⇒ The new expression is satisfiable.

Jim Anderson (modified by Nathan Otterness) 21

Old: 𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑛

New:

𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧
𝑦1 ∨ 𝑥3 ∨ 𝑦2 ∧
𝑦2 ∨ 𝑥4 ∨ 𝑦3 ∧ ⋯∧
𝑦𝑛−3 ∨ 𝑥𝑛−1 ∨ 𝑥𝑛

Reducing from CNF-Sat to 3-Sat

 Second: The new expression is satisfiable ⇒ the old
expression is satisfiable.

 Assume an assignment exists such that the new
expression is true (i.e. it’s satisfiable). One of the
following must be the case:

❖ If 𝑦1 is false, then 𝑥1 or 𝑥2 is true.

❖ If 𝑦𝑛−3 is true, then 𝑥𝑛−1 or 𝑥𝑛 is true.

❖ If 𝑦1 is true and 𝑦𝑛−3 is false, then some 𝑖 exists such
that 𝑦𝑖 is true and 𝑦𝑖+1 is false. This implies that 𝑥𝑖+2 is
true.

 For all of the above cases, the old expression also had to
be true because some 𝑥𝑖 was true.

Jim Anderson (modified by Nathan Otterness) 22

Old: 𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑛

New:

𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧
𝑦1 ∨ 𝑥3 ∨ 𝑦2 ∧
𝑦2 ∨ 𝑥4 ∨ 𝑦3 ∧ ⋯∧
𝑦𝑛−3 ∨ 𝑥𝑛−1 ∨ 𝑥𝑛

Problems We Will Cover

Jim Anderson (modified by Nathan Otterness) 23

CNF-
Satisfiability

3-
Satisfiability

Clique
Problem

Vertex
Cover

Directed
Hamiltonian

Circuit

Undirected
Hamiltonian

Circuit

I didn’t have time to do
these, sorry…

The Clique Problem

Theorem: The clique problem is NP-complete.

Proof:

 The clique problem is in NP.

 To show the clique problem is NP-hard we will show
that CNF-Sat reduces to the clique problem.

 Consider a CNF expression 𝐹 = 𝐹1 ∧ 𝐹2 ∧ ⋯∧ 𝐹𝑞, where
𝐹𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ ⋯∨ 𝑥𝑖𝑘𝑖 .

 We will construct a graph 𝐺 that has a 𝑞-clique if and
only if 𝐹 is satisfiable.

Jim Anderson (modified by Nathan Otterness) 24

To show it’s in NP:
1. Nondeterministically
“guess” a selection of 𝑘
nodes in the graph.
2. In polynomial time,
check whether the 𝑘
nodes are fully connected.

The Clique Problem

 𝐹 = 𝐹1 ∧ 𝐹2 ∧ ⋯∧ 𝐹𝑞, where 𝐹𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ ⋯∨ 𝑥𝑖𝑘𝑖 .

 Construct the graph 𝐺 = 𝑉, 𝐸 as follows:

❖Each pair 𝑖, 𝑗 is a vertex, where 1 ≤ 𝑖 ≤ 𝑞 and
1 ≤ 𝑗 ≤ 𝑘𝑖.

❖Each 𝑖, 𝑗 , 𝑘, 𝑙 is an edge, where 𝑖 ≠ 𝑘 and
𝑥𝑖𝑗 ≠ 𝑥𝑘𝑙.

❖Given 𝐹, you can construct 𝐺 in polynomial time.

Jim Anderson (modified by Nathan Otterness) 25

The Clique Problem

Example: 𝐹 = 𝑦1 ∨ 𝑦2 ∧ 𝑦2 ∨ 𝑦3 ∧ 𝑦3 ∨ 𝑦1

The literals are:

Jim Anderson (modified by Nathan Otterness) 26

𝑥11 = 𝑦1 𝑥21 = 𝑦2 𝑥31 = 𝑦3

𝑥12 = 𝑦2 𝑥22 = 𝑦3 𝑥32 = 𝑦1

𝒚𝟏
[1,1]

[2,2]
𝒚𝟑

[3,2]

𝒚𝟏
[1,2]
𝒚𝟐

𝒚𝟑
[3,1]

𝒚𝟐
[2,1]

𝐺:

The Clique Problem
Example: 𝐹 = 𝑦1 ∨ 𝑦2 ∧ 𝑦2 ∨ 𝑦3 ∧ 𝑦3 ∨ 𝑦1

Jim Anderson (modified by Nathan Otterness) 27

𝒚𝟏
[1,1]

[2,2]
𝒚𝟑

[3,2]

𝒚𝟏
[1,2]
𝒚𝟐

𝒚𝟑
[3,1]

𝒚𝟐
[2,1]

𝐺 has a clique of size 𝑞 if and only if 𝐹 is satisfiable.

𝐺 has two 3-cliques:

 1,1 , 2,1 , 3,1 corresponding to 𝑦1 = 𝑦2 = 𝑦3 = true.

 1,2 , 2,2 , 3,2 corresponding to 𝑦1 = 𝑦2 = 𝑦3 = false.

𝐺:

The Clique Problem
Proof that 𝐺 has a 𝑞-clique if and only if 𝐹 is satisfiable:

 Assume 𝐹 is satisfiable.

❖Then, ∃ an assignment to variables s.t. 𝐹 is true.

❖Each 𝐹𝑖 has ≥ 1 literal that is true.

❖Let 𝑥𝑖𝑚𝑖
in 𝐹𝑖 be true.

❖Consider 𝑖, 𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑞 .

❖Consider 𝑖,𝑚𝑖 and 𝑗,𝑚𝑗 where 𝑖 ≠ 𝑗.

❖𝑥𝑖𝑚𝑖
= 𝑥𝑗𝑚𝑗

= true implies 𝑥𝑖𝑚𝑖
≠ 𝑥𝑗𝑚𝑗

.

❖Since 𝑖 ≠ 𝑗, 𝑖, 𝑚𝑖 , [𝑗, 𝑚𝑗] is an edge.

❖So, 𝑖,𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑞 is a 𝑞-clique.

Jim Anderson (modified by Nathan Otterness) 28

The Clique Problem
 Assume 𝐺 has a 𝑞-clique.

❖Let the vertices in the clique be 𝑖,𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑞

❖Let 𝑆𝑡𝑟𝑢𝑒 = 𝑦 | 𝑥𝑖𝑚𝑖
= 𝑦 for some 𝑖 and

𝑆𝑓𝑎𝑙𝑠𝑒 = 𝑦 | 𝑥𝑖𝑚𝑖
= ത𝑦 for some 𝑖 .

❖By setting each variable in 𝑆𝑡𝑟𝑢𝑒 to true and each
variable in 𝑆𝑓𝑎𝑙𝑠𝑒 to false, each clause 𝐹𝑖 is made

true. So, 𝐹 is satisfiable.

Jim Anderson (modified by Nathan Otterness) 29

Vertex Cover

Theorem 10.20: The Vertex Cover problem is NP-
Complete.

Vertex Cover: Given a graph 𝐺 = 𝑉, 𝐸 , find a subset
𝑆 of the vertices 𝑉 such that each edge in 𝐸 is incident
upon some vertex in 𝑆. (This is also called node cover.)

The Vertex Cover Problem: Does an undirected graph 𝐺
have a vertex cover of size 𝑘?

Jim Anderson (modified by Nathan Otterness) 30

Vertex Cover

Vertex Cover example: Does this graph 𝐺 contain a
vertex cover of size 2?

Jim Anderson (modified by Nathan Otterness) 31

1

4 3

25

Yes: 2, 3 is a vertex cover.

3

2

Vertex Cover

To prove that Vertex Cover is in NP:

1. Nondeterministically “Guess” a set of 𝑘 vertices in 𝐺.

2. In polynomial time, check to see if this set is a vertex
cover.

To prove that Vertex Cover is NP-hard, we will reduce
from the clique problem

 We show that a polynomial-time solution to vertex
cover will let us solve the clique problem in
polynomial time.

Jim Anderson (modified by Nathan Otterness) 32

Vertex Cover

Here’s the transformation that we’ll make:

1. Start with an instance of the clique problem: 𝐺, 𝑘

❖ Let 𝐺 = 𝑉, 𝐸

2. In polynomial time, compute ҧ𝐺

❖ Let ҧ𝐺 = 𝑉, ത𝐸 , where ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣, 𝑤 ∉ 𝐸

3. Construct the following instance of the vertex cover
problem: ҧ𝐺, 𝑉 − 𝑘 .

ҧ𝐺 has a vertex cover of size 𝑉 − 𝑘 if and only if 𝐺 had a
clique of size 𝑘. (We’ll prove this on the following
slides.)

Jim Anderson (modified by Nathan Otterness) 33

Vertex Cover

Transformation example:

 Input to the clique problem: Does 𝐺 have a 3-clique?
𝐺 =

Jim Anderson (modified by Nathan Otterness) 34

1

4 3

5 2

4

5

1

(Yes, it does)

1. Start with an instance of
the clique problem:
𝐺, 𝑘

❖ 𝐺 = 𝑉, 𝐸
2. In polynomial time,

compute ҧ𝐺
❖ ҧ𝐺 = 𝑉, ത𝐸 , where

ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣,𝑤 ∉ 𝐸

3. Construct the following
instance of the vertex
cover problem:
ҧ𝐺, 𝑉 − 𝑘 .

Vertex Cover

Transformation example:

 Next, construct ҧ𝐺:

Jim Anderson (modified by Nathan Otterness) 35

1

4 3

5 2

𝐺: ҧ𝐺:

1

4 3

25

1. Start with an instance of
the clique problem:
𝐺, 𝑘

❖ 𝐺 = 𝑉, 𝐸
2. In polynomial time,

compute ҧ𝐺
❖ ҧ𝐺 = 𝑉, ത𝐸 , where

ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣,𝑤 ∉ 𝐸

3. Construct the following
instance of the vertex
cover problem:
ҧ𝐺, 𝑉 − 𝑘 .

Vertex Cover

Transformation example:

 Does ҧ𝐺 contain a vertex cover of size 𝑉 − 𝑘?

❖(𝑘 was from the size of the clique in the clique
problem, so 𝑉 − 𝑘 is 2.)

Jim Anderson (modified by Nathan Otterness) 36

1. Start with an instance of
the clique problem:
𝐺, 𝑘

❖ 𝐺 = 𝑉, 𝐸
2. In polynomial time,

compute ҧ𝐺
❖ ҧ𝐺 = 𝑉, ത𝐸 , where

ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣,𝑤 ∉ 𝐸

3. Construct the following
instance of the vertex
cover problem:
ҧ𝐺, 𝑉 − 𝑘 .

ҧ𝐺:

1

4 3

25

(Yes, it does)

3

2

Vertex Cover

Now, we need to prove that ҧ𝐺 has a vertex cover of
size 𝑉 − 𝑘 if and only if 𝐺 has a clique of size 𝑘:

 Assume 𝑆 is a clique in 𝐺.

❖No edge in ҧ𝐺 connects two vertices in 𝑆, and

❖Every edge in ҧ𝐺 is incident upon at least one
vertex in 𝑉 − 𝑆, so

❖𝑉 − 𝑆 is a vertex cover of ҧ𝐺.

Jim Anderson (modified by Nathan Otterness) 37

Vertex Cover

Now, we need to prove that ҧ𝐺 has a vertex cover of
size 𝑉 − 𝑘 if and only if 𝐺 has a clique of size 𝑘:

 Assume 𝑉 − 𝑆 is a vertex cover of ҧ𝐺

❖This means every edge in ҧ𝐺 is incident upon at
least one vertex in 𝑉 − 𝑆, and

❖No edge in ҧ𝐺 connects two vertices in 𝑆, so

❖Every pair of vertices in 𝑆 is connected in 𝐺

❑This is the definition of a clique, so 𝑆 is a clique in 𝐺.

Jim Anderson (modified by Nathan Otterness) 38

