
NP Completeness
COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Time Complexity (Revisited)

 A problem is a yes/no question.

 Example: The clique problem: Given a graph 𝐺 and
integer 𝑘, does 𝐺 contain a 𝑘-clique?

❖(A 𝒌-clique is a fully-connected group of 𝑘 nodes.)

 𝐺, 𝑘 is an instance of this problem (for some specific
graph 𝐺).

 A problem is decidable if an algorithm exists that will take
any instance of this problem and always produce the
correct yes/no answer.

 An algorithm is a TM that always halts.
Jim Anderson (modified by Nathan Otterness) 2

We will only be concerned
with decidable problems when
discussing NP completeness.

Another Example Problem

Consider this undirected graph:

Let 𝑘 = 3. We can encode an instance of the
clique problem as a string 𝑤:

 𝑤 = 3 1,2 1,4 2,3 2,4 3,4 3,5 4,5

The language corresponding to the clique problem
could be stated as follows:

 𝐿 = {all strings 𝑘 𝑖1, 𝑖2 … 𝑖𝑚, 𝑗𝑚 | the
corresponding graph has a 𝑘-clique}.

 If 𝑀 is a TM that solves the clique problem, then
𝐿 𝑀 = 𝐿.
Jim Anderson (modified by Nathan Otterness) 3

𝑣1

𝑣4

𝑣5

𝑣3

𝑣2

Additional Constraints on Encoding

Many different ways exist to encode problems. For these
problems, the choice of encoding matters!

 The standard encoding for these problems is binary or
something “polynomially related” to binary.

❖For example, decimal is OK. Unary is not OK.

There are two reasons for this:

 With unary encodings, polynomial-time solutions exist to
some NP-complete problems. This is because time complexity
is measured based on input length! Using artificially long
inputs is “cheating”.

 Real computers use binary encodings.

Jim Anderson (modified by Nathan Otterness) 4

Two Basic Complexity Classes

(There are lots of other classes—we’re just focusing on these
two for now.)

 P-Time: Any language 𝐿 accepted in polynomial time by
some deterministic TM.

 NP-Time: Any language 𝐿 accepted in polynomial time by
some nondeterministic TM.

❖Recall that the time complexity of a NDTM is based on
the smallest number of moves needed to accept a string
of a given length.

We usually abbreviate P-Time as “P” and NP-Time as “NP.”

Jim Anderson (modified by Nathan Otterness) 5

The Relationship Between P and NP

 Every DTM is also a NDTM, so P is in NP.

 It’s not known whether 𝑃 = 𝑁𝑃 or 𝑃 ⊂ 𝑁𝑃.

Jim Anderson (modified by Nathan Otterness) 6

P

NP

P vs. NP

The P = NP question is the most important open question in
theoretical computer science. Here’s why:

 Lots of interesting problems are in NP.

 Problems in P have “efficient” solutions. (Meaning
deterministic, polynomial-time solutions.)

 For many important problems in NP (e.g. yes/no
counterparts to optimization problems or graph problems)
we haven’t found “efficient” solutions despite decades of
research.

❖The suggests that 𝑃 ≠ 𝑁𝑃.

❖But, if 𝑃 = 𝑁𝑃, then these problems do have “efficient”
solutions.

Jim Anderson (modified by Nathan Otterness) 7

Hard and Complete Problems

We want to identify the “hardest” problems in NP.

 If the “hard” problems have deterministic polynomial-
time solutions, then so do all problems in NP.

 This reduces the P=NP question to that of whether one
of these “hard” problems is in P.

Jim Anderson (modified by Nathan Otterness) 8

Hard and Complete Problems

What do we specifically mean by “hard” and
“complete”? We need some more definitions:

 𝐿 is polynomially transformable to 𝐿′ if there exists a
polynomial-time-bounded DTM 𝑀 that can convert
each string 𝑤 in the alphabet of 𝐿 into a string 𝑤′ in the
alphabet of 𝐿′ such that 𝑤 ∈ 𝐿 if and only if 𝑤′ ∈ 𝐿′.

 Let 𝐶 be a class of languages. 𝐿 is hard for 𝑪 if every
language in 𝐶 is polynomially transformable to 𝐿.

 𝐿 is complete for 𝑪 if 𝐿 is in 𝐶 and hard for 𝐶.

Jim Anderson (modified by Nathan Otterness) 9

In other words, we
want a DTM that

converts instances of
one problem to

instances of another
in polynomial time.

NP-Complete Problems

Using the previous definitions, 𝐿 is NP-complete if it is in
NP and NP-hard.

 Note: Showing that 𝐿 is in NP is usually
straightforward: show that a NDTM can accept 𝐿 by
“guessing” an answer and then verifying the guess is
correct in polynomial time.

Our goal is to first identify some NP-complete problems.

Jim Anderson (modified by Nathan Otterness) 10

NP-Complete Problems

 Given the unlikelihood of P=NP, if a language 𝐿 is NP-
complete, then 𝐿 is probably an intractable problem.

❖Note: “NP-complete” is not (currently) synonymous
with “exponential time.”

 We can show P=NP if we’re able to find a single NP-
Complete problem that’s in P. Nobody’s been able to
do so, but it hasn’t been proven impossible yet, either.

Jim Anderson (modified by Nathan Otterness) 11

“Guess-and-Verify” Example

Let a NDTM accept strings of the form 10𝑖110𝑖2 …10𝑖𝑘

such that there is some 𝐼 ⊆ 1,… , 𝑘 for which
σ𝑗∈𝐼 𝑖𝑗 = σ𝑗∉𝐼 𝑖𝑗.

(This is called the partition problem.)

Here’s how our NDTM can work:

 The TM has three tapes, the input is on tape 1.

 The TM scans the input and copies each group of 0s to
either tape 2 or tape 3, the choice being
nondeterministic.

 The TM accepts if an equal number of 0s were copied
to both tapes after scanning the entire input string.

Jim Anderson (modified by Nathan Otterness) 12

This technically isn’t a
“legal” encoding (it
encodes 𝑖𝑛 using a

unary # of 0s). We’re
just using it here to

simplify the example.

Proving a Problem is NP-Complete

There are two ways to show 𝐿 is NP complete:

 Prove it from scratch (very difficult!)

 Use reduction:

I. Show that 𝐿 is in NP (i.e. design a “guess-and-
verify” polynomial-time NDTM for 𝐿), and

II. Show that a known NP-complete problem can
be polynomially transformed to 𝐿.

So, if we want to use reduction, we first need a
known NP-complete problem.

Jim Anderson (modified by Nathan Otterness) 13

Cook’s Theorem

The satisfiability problem is the following: given a
Boolean expression 𝐸, is it possible to assign values
to the variables in such a way that makes 𝐸 true?

Example:

 𝑥 ∨ 𝑦 ∧ 𝑧 is satisfiable.

 𝑥 ∨ 𝑦 ∧ ҧ𝑥 ∧ ത𝑦 is not satisfiable.

Cook’s Theorem: The satisfiability problem is NP-
complete.

The proof is too long to cover in this class, so we will
need to take it on faith.

Jim Anderson (modified by Nathan Otterness) 14

Variations on Satisfiability

 A literal is either 𝑥 or ¬𝑥, where 𝑥 is a Boolean
variable.

 A Boolean expression is in conjunctive normal form
(CNF) if it is a conjunct of “clauses” of literals:

❖Example: 𝑎 ∨ 𝑏 ∧ 𝑐 ∧ ¬𝑎 ∨ 𝑏 ∨ ¬𝑐

 k-CNF: A conjunct of clauses containing 𝑘 literals.

 k-satisfiability: Satisfiability for expressions in k-
CNF.

Jim Anderson (modified by Nathan Otterness) 15

A clause is a group
of literals that are
“or”-d together.

A conjunct is a group of
literals or clauses that
are “and”-ed together.

Variations on Satisfiability

We will show the following:

Jim Anderson (modified by Nathan Otterness) 16

Satisfiability

Satisfiability for
expressions in

CNF

3-satisifiability

These are easier to
use in subsequent

reductions.

We won’t cover this in
class (see Section 10.3.3
of the book for details).

We will cover this
polynomial

transformation.

3-Sat

 The satisfiability problem for CNF expressions
with exactly three literals per clause is called 3-
satisifiability (“3-Sat”).

❖Example: Is 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ ¬𝑐 ∨ 𝑑 ∨ 𝑒 satisfiable?

Jim Anderson (modified by Nathan Otterness) 17

3-Sat

Theorem 10.15: 3-satisfiability is NP-complete.

Proof:

We must do two things:

 Show 3-Sat is in NP.

❖This is easy: just nondeterministically generate an
assignment for each variable, then, in polynomial
time verify that each clause evaluates to true.

 Show 3-Sat is NP-hard.

❖To do this we will show that if we can solve 3-Sat
efficiently, then we can solve CNF-Sat efficiently.

Jim Anderson (modified by Nathan Otterness) 18

This is called a reduction
from CNF-Sat.

Reducing from CNF-Sat to 3-Sat

 Our goal is to take a Boolean expression in CNF and, in
polynomial time, generate a new expression in 3-CNF
that is satisfiable if and only if the original CNF
expression is satisfiable.

 We want to show that if a polynomial time solution to
3-CNF exists, then the following algorithm would be
possible:

1. Convert a CNF-Sat problem to a 3-Sat problem in
polynomial time.

2. Use the polynomial-time 3-Sat algorithm to
determine if the converted expression is satisfiable.

Jim Anderson (modified by Nathan Otterness) 19

Reducing from CNF-Sat to 3-Sat

Converting from CNF-Sat to 3-Sat:

 We can convert each clause containing 𝑛 literals
𝑥1…𝑥𝑛 to a conjunct of 𝑛 − 2 new clauses, each of
which contain exactly three literals.

❖This requires adding 𝑛 − 3 new literals 𝑦1…𝑦𝑛−3
per clause.

Example:

𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑛 becomes:
𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧ 𝑦1 ∨ 𝑥3 ∨ 𝑦2 ∧ 𝑦2 ∨ 𝑥4 ∨ 𝑦3 ∧ ⋯
∧ 𝑦𝑛−4 ∨ 𝑥𝑛−2 ∨ 𝑦𝑛−3 ∧ 𝑦𝑛−3 ∨ 𝑥𝑛−1 ∨ 𝑥𝑛

Jim Anderson (modified by Nathan Otterness) 20

Reducing from CNF-Sat to 3-Sat

 We want to show that the old expression is satisfiable
if and only if the new expression is satisfiable.

 First: The old expression is satisfiable ⇒ the new
expression is satisfiable.

❖Assume the old expression is satisfiable

❖⇒ ∃ an assignment s.t. the old expression is true

❖⇒ some 𝑥𝑖 is true in the assignment

❖⇒ Setting 𝑦𝑗 ≔ true for 𝑗 ≤ 𝑖 − 2 and 𝑦𝑗 ≔ false for
𝑗 < 𝑖 − 2 makes the new expression true.

❖⇒ The new expression is satisfiable.

Jim Anderson (modified by Nathan Otterness) 21

Old: 𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑛

New:

𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧
𝑦1 ∨ 𝑥3 ∨ 𝑦2 ∧
𝑦2 ∨ 𝑥4 ∨ 𝑦3 ∧ ⋯∧
𝑦𝑛−3 ∨ 𝑥𝑛−1 ∨ 𝑥𝑛

Reducing from CNF-Sat to 3-Sat

 Second: The new expression is satisfiable ⇒ the old
expression is satisfiable.

 Assume an assignment exists such that the new
expression is true (i.e. it’s satisfiable). One of the
following must be the case:

❖ If 𝑦1 is false, then 𝑥1 or 𝑥2 is true.

❖ If 𝑦𝑛−3 is true, then 𝑥𝑛−1 or 𝑥𝑛 is true.

❖ If 𝑦1 is true and 𝑦𝑛−3 is false, then some 𝑖 exists such
that 𝑦𝑖 is true and 𝑦𝑖+1 is false. This implies that 𝑥𝑖+2 is
true.

 For all of the above cases, the old expression also had to
be true because some 𝑥𝑖 was true.

Jim Anderson (modified by Nathan Otterness) 22

Old: 𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑛

New:

𝑥1 ∨ 𝑥2 ∨ 𝑦1 ∧
𝑦1 ∨ 𝑥3 ∨ 𝑦2 ∧
𝑦2 ∨ 𝑥4 ∨ 𝑦3 ∧ ⋯∧
𝑦𝑛−3 ∨ 𝑥𝑛−1 ∨ 𝑥𝑛

Problems We Will Cover

Jim Anderson (modified by Nathan Otterness) 23

CNF-
Satisfiability

3-
Satisfiability

Clique
Problem

Vertex
Cover

Directed
Hamiltonian

Circuit

Undirected
Hamiltonian

Circuit

I didn’t have time to do
these, sorry…

The Clique Problem

Theorem: The clique problem is NP-complete.

Proof:

 The clique problem is in NP.

 To show the clique problem is NP-hard we will show
that CNF-Sat reduces to the clique problem.

 Consider a CNF expression 𝐹 = 𝐹1 ∧ 𝐹2 ∧ ⋯∧ 𝐹𝑞, where
𝐹𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ ⋯∨ 𝑥𝑖𝑘𝑖 .

 We will construct a graph 𝐺 that has a 𝑞-clique if and
only if 𝐹 is satisfiable.

Jim Anderson (modified by Nathan Otterness) 24

To show it’s in NP:
1. Nondeterministically
“guess” a selection of 𝑘
nodes in the graph.
2. In polynomial time,
check whether the 𝑘
nodes are fully connected.

The Clique Problem

 𝐹 = 𝐹1 ∧ 𝐹2 ∧ ⋯∧ 𝐹𝑞, where 𝐹𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ ⋯∨ 𝑥𝑖𝑘𝑖 .

 Construct the graph 𝐺 = 𝑉, 𝐸 as follows:

❖Each pair 𝑖, 𝑗 is a vertex, where 1 ≤ 𝑖 ≤ 𝑞 and
1 ≤ 𝑗 ≤ 𝑘𝑖.

❖Each 𝑖, 𝑗 , 𝑘, 𝑙 is an edge, where 𝑖 ≠ 𝑘 and
𝑥𝑖𝑗 ≠ 𝑥𝑘𝑙.

❖Given 𝐹, you can construct 𝐺 in polynomial time.

Jim Anderson (modified by Nathan Otterness) 25

The Clique Problem

Example: 𝐹 = 𝑦1 ∨ 𝑦2 ∧ 𝑦2 ∨ 𝑦3 ∧ 𝑦3 ∨ 𝑦1

The literals are:

Jim Anderson (modified by Nathan Otterness) 26

𝑥11 = 𝑦1 𝑥21 = 𝑦2 𝑥31 = 𝑦3

𝑥12 = 𝑦2 𝑥22 = 𝑦3 𝑥32 = 𝑦1

𝒚𝟏
[1,1]

[2,2]
𝒚𝟑

[3,2]

𝒚𝟏
[1,2]
𝒚𝟐

𝒚𝟑
[3,1]

𝒚𝟐
[2,1]

𝐺:

The Clique Problem
Example: 𝐹 = 𝑦1 ∨ 𝑦2 ∧ 𝑦2 ∨ 𝑦3 ∧ 𝑦3 ∨ 𝑦1

Jim Anderson (modified by Nathan Otterness) 27

𝒚𝟏
[1,1]

[2,2]
𝒚𝟑

[3,2]

𝒚𝟏
[1,2]
𝒚𝟐

𝒚𝟑
[3,1]

𝒚𝟐
[2,1]

𝐺 has a clique of size 𝑞 if and only if 𝐹 is satisfiable.

𝐺 has two 3-cliques:

 1,1 , 2,1 , 3,1 corresponding to 𝑦1 = 𝑦2 = 𝑦3 = true.

 1,2 , 2,2 , 3,2 corresponding to 𝑦1 = 𝑦2 = 𝑦3 = false.

𝐺:

The Clique Problem
Proof that 𝐺 has a 𝑞-clique if and only if 𝐹 is satisfiable:

 Assume 𝐹 is satisfiable.

❖Then, ∃ an assignment to variables s.t. 𝐹 is true.

❖Each 𝐹𝑖 has ≥ 1 literal that is true.

❖Let 𝑥𝑖𝑚𝑖
in 𝐹𝑖 be true.

❖Consider 𝑖, 𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑞 .

❖Consider 𝑖,𝑚𝑖 and 𝑗,𝑚𝑗 where 𝑖 ≠ 𝑗.

❖𝑥𝑖𝑚𝑖
= 𝑥𝑗𝑚𝑗

= true implies 𝑥𝑖𝑚𝑖
≠ 𝑥𝑗𝑚𝑗

.

❖Since 𝑖 ≠ 𝑗, 𝑖, 𝑚𝑖 , [𝑗, 𝑚𝑗] is an edge.

❖So, 𝑖,𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑞 is a 𝑞-clique.

Jim Anderson (modified by Nathan Otterness) 28

The Clique Problem
 Assume 𝐺 has a 𝑞-clique.

❖Let the vertices in the clique be 𝑖,𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑞

❖Let 𝑆𝑡𝑟𝑢𝑒 = 𝑦 | 𝑥𝑖𝑚𝑖
= 𝑦 for some 𝑖 and

𝑆𝑓𝑎𝑙𝑠𝑒 = 𝑦 | 𝑥𝑖𝑚𝑖
= ത𝑦 for some 𝑖 .

❖By setting each variable in 𝑆𝑡𝑟𝑢𝑒 to true and each
variable in 𝑆𝑓𝑎𝑙𝑠𝑒 to false, each clause 𝐹𝑖 is made

true. So, 𝐹 is satisfiable.

Jim Anderson (modified by Nathan Otterness) 29

Vertex Cover

Theorem 10.20: The Vertex Cover problem is NP-
Complete.

Vertex Cover: Given a graph 𝐺 = 𝑉, 𝐸 , find a subset
𝑆 of the vertices 𝑉 such that each edge in 𝐸 is incident
upon some vertex in 𝑆. (This is also called node cover.)

The Vertex Cover Problem: Does an undirected graph 𝐺
have a vertex cover of size 𝑘?

Jim Anderson (modified by Nathan Otterness) 30

Vertex Cover

Vertex Cover example: Does this graph 𝐺 contain a
vertex cover of size 2?

Jim Anderson (modified by Nathan Otterness) 31

1

4 3

25

Yes: 2, 3 is a vertex cover.

3

2

Vertex Cover

To prove that Vertex Cover is in NP:

1. Nondeterministically “Guess” a set of 𝑘 vertices in 𝐺.

2. In polynomial time, check to see if this set is a vertex
cover.

To prove that Vertex Cover is NP-hard, we will reduce
from the clique problem

 We show that a polynomial-time solution to vertex
cover will let us solve the clique problem in
polynomial time.

Jim Anderson (modified by Nathan Otterness) 32

Vertex Cover

Here’s the transformation that we’ll make:

1. Start with an instance of the clique problem: 𝐺, 𝑘

❖ Let 𝐺 = 𝑉, 𝐸

2. In polynomial time, compute ҧ𝐺

❖ Let ҧ𝐺 = 𝑉, ത𝐸 , where ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣, 𝑤 ∉ 𝐸

3. Construct the following instance of the vertex cover
problem: ҧ𝐺, 𝑉 − 𝑘 .

ҧ𝐺 has a vertex cover of size 𝑉 − 𝑘 if and only if 𝐺 had a
clique of size 𝑘. (We’ll prove this on the following
slides.)

Jim Anderson (modified by Nathan Otterness) 33

Vertex Cover

Transformation example:

 Input to the clique problem: Does 𝐺 have a 3-clique?
𝐺 =

Jim Anderson (modified by Nathan Otterness) 34

1

4 3

5 2

4

5

1

(Yes, it does)

1. Start with an instance of
the clique problem:
𝐺, 𝑘

❖ 𝐺 = 𝑉, 𝐸
2. In polynomial time,

compute ҧ𝐺
❖ ҧ𝐺 = 𝑉, ത𝐸 , where

ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣,𝑤 ∉ 𝐸

3. Construct the following
instance of the vertex
cover problem:
ҧ𝐺, 𝑉 − 𝑘 .

Vertex Cover

Transformation example:

 Next, construct ҧ𝐺:

Jim Anderson (modified by Nathan Otterness) 35

1

4 3

5 2

𝐺: ҧ𝐺:

1

4 3

25

1. Start with an instance of
the clique problem:
𝐺, 𝑘

❖ 𝐺 = 𝑉, 𝐸
2. In polynomial time,

compute ҧ𝐺
❖ ҧ𝐺 = 𝑉, ത𝐸 , where

ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣,𝑤 ∉ 𝐸

3. Construct the following
instance of the vertex
cover problem:
ҧ𝐺, 𝑉 − 𝑘 .

Vertex Cover

Transformation example:

 Does ҧ𝐺 contain a vertex cover of size 𝑉 − 𝑘?

❖(𝑘 was from the size of the clique in the clique
problem, so 𝑉 − 𝑘 is 2.)

Jim Anderson (modified by Nathan Otterness) 36

1. Start with an instance of
the clique problem:
𝐺, 𝑘

❖ 𝐺 = 𝑉, 𝐸
2. In polynomial time,

compute ҧ𝐺
❖ ҧ𝐺 = 𝑉, ത𝐸 , where

ത𝐸 = {
ሽ

𝑣, 𝑤 | 𝑣 ≠ 𝑤 ∧
𝑣,𝑤 ∉ 𝐸

3. Construct the following
instance of the vertex
cover problem:
ҧ𝐺, 𝑉 − 𝑘 .

ҧ𝐺:

1

4 3

25

(Yes, it does)

3

2

Vertex Cover

Now, we need to prove that ҧ𝐺 has a vertex cover of
size 𝑉 − 𝑘 if and only if 𝐺 has a clique of size 𝑘:

 Assume 𝑆 is a clique in 𝐺.

❖No edge in ҧ𝐺 connects two vertices in 𝑆, and

❖Every edge in ҧ𝐺 is incident upon at least one
vertex in 𝑉 − 𝑆, so

❖𝑉 − 𝑆 is a vertex cover of ҧ𝐺.

Jim Anderson (modified by Nathan Otterness) 37

Vertex Cover

Now, we need to prove that ҧ𝐺 has a vertex cover of
size 𝑉 − 𝑘 if and only if 𝐺 has a clique of size 𝑘:

 Assume 𝑉 − 𝑆 is a vertex cover of ҧ𝐺

❖This means every edge in ҧ𝐺 is incident upon at
least one vertex in 𝑉 − 𝑆, and

❖No edge in ҧ𝐺 connects two vertices in 𝑆, so

❖Every pair of vertices in 𝑆 is connected in 𝐺

❑This is the definition of a clique, so 𝑆 is a clique in 𝐺.

Jim Anderson (modified by Nathan Otterness) 38

