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This is a “transition 
diagram” for a deterministic 
finite automaton.

Diagrams like this 
visualize automata like a 
simple game.

    

     
 

 



Example: Detect Even Number of 1s
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In this “game”, we will 
move from circle to circle, 
following the instructions 
given by an input string.

    

     
 

 

Input string: 1111



Example: Detect Even Number of 1s
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The “player” starts at the 
indicated circle:     

     
 

 

Input string: 1111



Example: Detect Even Number of 1s
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The “game” proceeds by 
reading one character at a 
time from the input string 
and following the path 
labeled with the character.

    

     
 

 

Input string: 1111

Current Symbol



Example: Detect Even Number of 1s
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The “game” ends when all 
input symbols have been 
read.

    

     
 

 

Input string: 1111

Current Symbol

Done!



Defining a Deterministic Finite Automaton

We define a deterministic finite automaton (DFA) as a 
5-tuple: 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄: A set of states

 Σ: A set of input symbols (the alphabet)

 𝑞0: The initial state. 𝑞0 ∈ 𝑄.

 𝐹: A set of accepting (“final”) states. 𝐹 ⊆ 𝑄.

 𝛿: The “transition function” mapping 𝑄 × Σ → 𝑄.
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𝛿 must be defined for all 
symbols in all states.

𝛿 returns a single state.



From the Diagram to 𝑄, Σ, 𝛿, 𝑞0, 𝐹
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The circles represent states.

 𝑄 = 𝑞0, 𝑞1



From the Diagram to 𝑄, Σ, 𝛿, 𝑞0, 𝐹
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This automaton only 
handles strings of 1s

 Σ = 1



From the Diagram to 𝑄, Σ, 𝛿, 𝑞0, 𝐹
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The initial state is labeled 
with “Start”

 𝑞0 = 𝑞0



From the Diagram to 𝑄, Σ, 𝛿, 𝑞0, 𝐹
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Accepting states have 
double circles. This 
automaton only has one.

 𝐹 = 𝑞0



From the Diagram to 𝑄, Σ, 𝛿, 𝑞0, 𝐹
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The arrows connecting the states 
represent possible transitions.

𝛿 is the automaton’s transition 
function:
𝛿 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑦𝑚𝑏𝑜𝑙
= 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒

𝛿 can be represented as a table:

𝜹 1

𝑞0 𝑞1

𝑞1 𝑞0

Current state

Current input symbol

Destination state



From the Diagram to 𝑄, Σ, 𝛿, 𝑞0, 𝐹
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This automaton in tuple 
notation:

 𝑄 = 𝑞0, 𝑞1

 Σ = 1

 𝑞0 = 𝑞0

 𝐹 = 𝑞0

 𝛿 = 𝜹 1

𝑞0 𝑞1

𝑞1 𝑞0

We use a table here, but 𝛿 can 
also be described using words, 

mathematical formulas, etc.



“Transition Table” Representation
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The table for 𝛿 implicitly lists the 
states and alphabet.

A “transition table” just adds the 
remaining needed information:

 Indicate the start state with →

 Indicate accepting states with ∗

 Example: 𝜹 1

∗→ 𝑞0 𝑞1

𝑞1 𝑞0



Notation: Extending 𝛿 to Strings

 An automaton’s standard transition function, 𝛿, takes two 
parameters: a state and a symbol.

 The “extended transition function”, መ𝛿, takes a state and a string.

 መ𝛿 can be defined in terms of 𝛿:

❖ Assume that 𝑤 is a string, 𝑎 is a symbol in Σ, and 𝑞 is a state.

❖ Recursively, መ𝛿 𝑞,𝑤𝑎 = 𝛿 መ𝛿 𝑞, 𝑤 , 𝑎 .

 Examples from the previous automaton:

❖ መ𝛿 𝑞0, 𝜀 = 𝑞0

❖ መ𝛿 𝑞0, 111 = 𝑞1

❖ መ𝛿 𝑞0, 1111 = 𝑞0
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𝛿 𝑞, 𝑎 = መ𝛿 𝑞, 𝑎 for DFAs.



Example: Proofs About Automata

Here is a more complex 
automaton.

Transition table 
representation:
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𝜹 0 1

→ 𝑞0 𝑞1 𝑞0

𝑞1 𝑞0 𝑞2

∗ 𝑞2 𝑞0 𝑞2



Example: Proofs About Automata

Questions:

 What language does 
this automaton 
represent?

 How should we prove 
it’s correct?
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Example: Proofs About Automata

𝐿 = {𝑥|𝑥 has an odd 
number of 0s and ends 
with a 1}.

We will prove this by 
induction on the length 
of an input string, 𝑥.
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Example: Proofs About Automata

We start our proof by 
defining what each state 
means about the input 
read so far:

 𝑞0: Even # of 0s

 𝑞1: Odd # of 0s, and 
ends with a 0

 𝑞2: Odd # of 0s, and 
ends with a 1
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Proof obligation:
Show that these definitions are correct!



Example: Proofs About Automata

Base case: Prove the 
definition is correct for a 
string of length 0 (𝜀).

The automaton is in 
state 𝑞0 after processing  
𝜀.

Since 𝜀 contains an even 
number of 0s, our 
definition of 𝑞0 holds.

Jim Anderson (modified by Nathan Otterness) 20

      

 
 

 

 

  

     



Example: Proofs About Automata

Inductive step: Assume 
that መ𝛿 𝑞0, 𝑥 is correct 
for string 𝑥.

We need to prove that 
መ𝛿 𝑞0, 𝑥𝑎 remains correct 
for any symbol 𝑎.

This requires proving 
correctness for all 
possible transitions from 
all three states (mutual 
induction).
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Example: Proofs About Automata

Induction part 1: state 𝒒𝟎

If መ𝛿 𝑞0, 𝑥 = 𝑞0, then we 
can assume 𝑥 contained an 
even number of 0s.

𝛿 𝑞0, 1 = 𝑞0. Reading a 1 
doesn’t change the # of 0s, 
so this is correct.

𝛿 𝑞0, 0 = 𝑞1. We’ve read 
an odd # of zeros, but the 
string doesn’t end in 1 yet.
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Example: Proofs About Automata

Induction part 2: state 𝒒𝟏

If መ𝛿 𝑞0, 𝑥 = 𝑞1, then we 
can assume 𝑥 contained an 
odd number of 0s and 
ends with a 0.

𝛿 𝑞1, 1 = 𝑞2. The string 
contains an odd # of 0s, 
but now ends with 1.

𝛿 𝑞1, 0 = 𝑞0. Reading an 
additional 0 means that 
the string contains an even 
number of 0s.
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Example: Proofs About Automata

Induction part 3: state 𝒒𝟐
If መ𝛿 𝑞0, 𝑥 = 𝑞2, then we 
can assume 𝑥 contained an 
odd number of 0s and 
ends with a 1.

𝛿 𝑞2, 1 = 𝑞2. This doesn’t 
change the # of 0s or the 
fact that the string ends 
with a 1.

𝛿 𝑞2, 0 = 𝑞0. Reading an 
additional 0 means that 
the string contains an even 
number of 0s.
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Example: Proofs About Automata

Finishing up:
We’ve now proven that 
our claims about the 
states were correct, but 
we still need to prove 
the automaton 
recognizes the language.
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The automaton ends in 𝑞2 if and only if the string contained an 
odd number of 0s and ended with 1.

Since 𝑞2 is the only accepting state, the automaton accepts strings 
if and only if they contain an odd number of 0s and end with a 1.



Nondeterministic Finite Automata

 We’ve been looking at deterministic finite 
automata (DFAs) so far.

❖𝛿 returns exactly one state for every symbol in 
every state

 With nondeterministic finite automata (NFAs), the 
transition function 𝛿 returns a set of states.

❖𝛿: 𝑄 × Σ → 2𝑄

❖This can include no states at all!
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2𝑄: The power set of 𝑄. 
(the set of all possible 

subsets of 𝑄)



Note on “Nondeterministic” Terminology

 DFAs always follow the same path for a single input 
string.

❖DFAs accept a string if and only if this path leads to 
an accepting state.

 NFAs may follow one of many different paths for the 
same input string.

❖This is why they are called nondeterministic.

❖NFAs accept strings if and only if it is possible for 
them to reach an accepting state for a given input 
string.
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Extended Transition Function for NFAs

 As with DFAs, መ𝛿 for NFAs processes a string rather 
than a single character.

 As with the definition of 𝛿 for NFAs, መ𝛿 for NFAs 
returns the set of states an NFA is in after 
processing a string.

 If an NFA has a start state 𝑞, then the NFA accepts 

string 𝑥 if and only if መ𝛿 𝑞, 𝑥 ∩ 𝐹 ≠ ∅

❖“The set of states after processing 𝑥 contains at 
least one accepting state”
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Recursive Definition of መ𝛿 for NFAs

 መ𝛿 𝑞, 𝜀 = 𝑞

 መ𝛿 𝑞, 𝑤𝑎 ={ 𝑝 | for some state 𝑟 in መ𝛿 𝑞, 𝑤 , 𝑝 is in 𝛿 𝑟, 𝑎 } 

Jim Anderson (modified by Nathan Otterness) 29

q
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a

a

a
States in
መ𝛿 𝑞, 𝑤𝑎 .

Note: This is
a set.

As with DFAs,

𝛿 𝑞, 𝑎 = መ𝛿 𝑞, 𝑎 for NFAs.



Definition of 𝛿 for Sets of States

 Since 𝛿 can return a set of states for NFAs, it can be 
helpful to define a version of 𝛿 that takes a set of 
states rather than a single state.

If 𝑃 is a set of states,
𝛿 𝑃, 𝑎 = ⋃𝑞∈𝑃𝛿 𝑞, 𝑎
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Nondeterministic Finite Automata

Example: Match all strings 
ending with 01
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𝜹 0 1

→ 𝑞0 𝑞0, 𝑞1 𝑞0

𝑞1 ∅ 𝑞2

∗ 𝑞2 ∅ ∅



Example NFA Execution
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Input string: 10101

Current Symbol



Example NFA Execution

Jim Anderson (modified by Nathan Otterness) 33

      
  

    

     

Input string: 10101

Current Symbol

Done!



Example NFA Execution
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Input string: 10101

 𝐹 = 𝑞2

 መ𝛿 𝑞0, 10101 = 𝑞0, 𝑞2

 𝑞0, 𝑞2 ∩ 𝐹 = 𝑞2

As expected, this NFA 
accepts 10101, because it ends 
in a set of states containing an 
accepting state.



NFAs vs DFAs

 NFAs are often more convenient than DFAs

❖Write an NFA that accepts L = {x|x is a string of 
0s or 1s that contains 0101000 as a substring}

❖Now write a DFA that accepts L

 Good news: Any language that can be recognized 
by an NFA can also be recognized by a DFA.
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Equivalence of NFAs and DFAs

 Let 𝑁 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹 be an NFA.

 We will show how to construct an equivalent DFA, 
𝐷, using a technique called subset construction.

 Main idea: 𝐷 will keep track of the subset of states 
that 𝑁 might be in.

❖In other words, each of 𝐷’s states corresponds to 
a subset of 𝑁’s states.
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Subset Construction

 The constructed DFA 𝐷 = 𝑄′, Σ, 𝛿′, 𝑞0
′ , 𝐹′ , where:

❖𝑄′ = 2𝑄 = Assuming the states in 𝑄 are 
𝑞0, 𝑞1, … , 𝑞𝑛 , the states in 𝑄′ are all possible 

subsets of 𝑞0, 𝑞1, … , 𝑞𝑛 .

❖𝑞0
′ = 𝑞0

❖𝐹′ = {𝑞 ∈ 𝑄′ | 𝑞 = … , 𝑞𝑗 , … and 𝑞𝑗 ∈ 𝐹}

❑“𝐷’s final states consist of all subsets containing one 
or more of 𝑁’s final states.”

❖For all 𝑞 and 𝑝 in 𝑄′, 𝛿′ 𝑞, 𝑎 = 𝑝 iff 𝛿 𝑞, 𝑎 = 𝑝.
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Subset Construction: Example
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 Start with the following NFA:

❖𝑁 = 𝑞0, 𝑞1, 𝑞2 , 0, 1 , 𝛿, 𝑞0, 𝑞2

❖𝛿 =

 Construct DFA 𝐷 = 𝑄′, 0, 1 , 𝛿′, 𝑞0 , 𝐹′ , where

❖𝑄′ =

∅, 𝑞0 , 𝑞1 , 𝑞2 , 𝑞0, 𝑞1 , 𝑞0, 𝑞2 , 𝑞1, 𝑞2 , 𝑞0, 𝑞1, 𝑞2

❖𝐹′ = q2 , q0, q2 , q1, q2 , q0, q1, q2

❖𝛿′ is defined on the following slide.

      

 

 

 
 

     

 

𝜹 0 1

𝑞0 𝑞1 𝑞0

𝑞1 𝑞0 𝑞1, 𝑞2

𝑞2 ∅ ∅



Subset Construction: Example

 𝛿′ =
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𝟎 𝟏

∅ ∅ ∅

𝑞0 {𝑞1} 𝑞0

𝑞1 𝑞0 𝑞1, 𝑞2

𝑞2 ∅ ∅

𝑞0, 𝑞1 𝑞0, 𝑞1 𝑞0, 𝑞1, 𝑞2

𝑞0, 𝑞2 𝑞1 𝑞0

𝑞1, 𝑞2 𝑞0 𝑞1, 𝑞2

𝑞0, 𝑞1, 𝑞2 𝑞0, 𝑞1 𝑞0, 𝑞1, 𝑞2



Subset Construction: Example

Diagram for 𝐷:
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𝜹′ 𝟎 𝟏

∅ ∅ ∅

→ 𝑞0 {𝑞1} 𝑞0

𝑞1 𝑞0 𝑞1, 𝑞2

∗ 𝑞2 ∅ ∅

𝑞0, 𝑞1 𝑞0, 𝑞1 𝑞0, 𝑞1, 𝑞2

∗ 𝑞0, 𝑞2 𝑞1 𝑞0

∗ 𝑞1, 𝑞2 𝑞0 𝑞1, 𝑞2

∗ 𝑞0, 𝑞1, 𝑞2 𝑞0, 𝑞1 𝑞0, 𝑞1, 𝑞2



Subset Construction: Example
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We don’t care 
about these states; 
they are unreachable
from the start state.

Diagram for 𝐷:



Subset Construction: Example
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Diagram for 𝐷 without 
unreachable states:



Theorem 2.11

Proof: We need to show that መ𝛿′ 𝑞0
′ , 𝑥 = 𝑆 if and only 

if መ𝛿 𝑞0, 𝑥 = 𝑆.

We will prove this by induction on 𝑥 .
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Theorem 2.11 (from the textbook):
If 𝑁 is the original NFA and 𝐷 is the constructed DFA 
(as defined earlier), then 𝐿 𝑁 = 𝐿 𝐷 .



Proof of Theorem 2.11

Base case:

𝑥 = 0. (Put another way, 𝑥 = 𝜀).

Verifying the base case:
መ𝛿′ 𝑞0

′ , 𝜀 = 𝑞0
′ = 𝑞0

and
መ𝛿 𝑞0, 𝜀 = {𝑞0}

by the definition of the extended transition function.

So, 𝐿 𝑁 = 𝐿 𝐷 holds for the base case.
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Reminder:
𝛿′ is for the DFA 𝐷
𝛿 is for the NFA 𝑁



Proof of Theorem 2.11

Inductive step:

By the inductive hypothesis we assume that:

መ𝛿′ 𝑞0
′ , 𝑥 = 𝑆 iff መ𝛿 𝑞0, 𝑥 = 𝑆

We now apply the definition of the extended transition 
function to advance by a single symbol:

መ𝛿′ 𝑆, 𝑎 = 𝑇 iff መ𝛿 𝑆, 𝑎 = 𝑇, by the definition of 𝛿′.

Therefore መ𝛿′ 𝑞0
′ , 𝑥 = 𝑇 iff መ𝛿 𝑞0, 𝑥 = 𝑇.
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Reminder:
𝛿′ is for the DFA 𝐷
𝛿 is for the NFA 𝑁

Reminder:
For string 𝑤 and symbol 𝑎:
መ𝛿 𝑞, 𝑤𝑎 = 𝛿 መ𝛿 𝑞, 𝑤 , 𝑎



Finishing the Proof of Theorem 2.11

Finally, since መ𝛿′ 𝑞0
′ , 𝑥 is in 𝐹′ if and only if መ𝛿 𝑞0, 𝑥

contains a state in 𝐹, 𝐿 𝐷 = 𝐿 𝑁 .

 Note: This construction results in a state explosion.
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Reminder:
𝛿′ is for the DFA 𝐷
𝛿 is for the NFA 𝑁



NFAs with 𝜀-Transitions

NFAs with 𝜀-transitions have all the same rules as 
regular NFAs, but with additional flexibility.

The transition function for NFAs with 𝜀-transitions:
𝛿: 𝑄 × Σ ∪ 𝜀 → 2𝑄

Example:
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𝜀-Closure

Let 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞 ≡
𝑞 ∪ 𝑝 | 𝑝 is reachable from 𝑞 via 𝜀 − transitions

 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 = 𝑞0, 𝑞1, 𝑞2

 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞1 = 𝑞1, 𝑞2

For a set of states 𝑃,
𝐸𝐶𝐿𝑂𝑆𝐸 𝑃 ≡ ∪𝑞∈𝑃 𝐸𝐶𝐿𝑂𝑆𝐸(𝑞)
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Definition of መ𝛿 for 𝜀-NFAs

Recursive definition of መ𝛿:

 መ𝛿 𝑞, 𝜀 = 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞

 For a string 𝑤 and symbol 𝑎: መ𝛿 𝑞, 𝑤𝑎 = 𝐸𝐶𝐿𝑂𝑆𝐸 𝑃 , 

where 𝑃 = 𝑝 | for some 𝑟 in መ𝛿 𝑞, 𝑤 , 𝑝 is in መ𝛿 𝑟, 𝑎

 In other words, መ𝛿 𝑞, 𝑎 = 𝐸𝐶𝐿𝑂𝑆𝐸 𝛿 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞 , 𝑎

for a starting state 𝑞 and a single symbol 𝑎.
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Unlike before, መ𝛿 𝑞, 𝑎 ≠ 𝛿 𝑞, 𝑎 for 𝜀-NFAs!



𝜀-NFA Example
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Input string: 011

መ𝛿 𝑞0 , 𝜀 = 𝑞0, 𝑞1, 𝑞2

How to simulate an 𝜀-NFA:
1. Follow transitions as you 

would for a normal NFA.
2. Take the 𝜀-closure for 

any states you end up in.



𝜀-NFA Example
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Input string: 011

Current Symbol

መ𝛿 𝑞0 , 0 = 𝑞0, 𝑞1, 𝑞2

How to simulate an 𝜀-NFA:
1. Follow transitions as you 

would for a normal NFA.
2. Take the 𝜀-closure for 

any states you end up in.



𝜀-NFA Example
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Input string: 011

Current Symbol

መ𝛿 𝑞0 , 01 = 𝑞1, 𝑞2

How to simulate an 𝜀-NFA:
1. Follow transitions as you 

would for a normal NFA.
2. Take the 𝜀-closure for 

any states you end up in.



𝜀-NFA Example
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Input string: 011

Current Symbol

መ𝛿 𝑞0 , 011 = 𝑞1, 𝑞2

How to simulate an 𝜀-NFA:
1. Follow transitions as you 

would for a normal NFA.
2. Take the 𝜀-closure for 

any states you end up in.



𝜀-NFA Example
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Input string: 011

Current Symbol

መ𝛿 𝑞0 , 011 = 𝑞1, 𝑞2

How to simulate an 𝜀-NFA:
1. Follow transitions as you 

would for a normal NFA.
2. Take the 𝜀-closure for 

any states you end up in.

Done!



Extending 𝛿 to Sets of States

This is similar to normal NFAs. If 𝑅 is a set of states:

𝛿 𝑅, 𝑎 = ∪𝑞∈𝑅 𝛿 𝑞, 𝑎
መ𝛿 𝑅,𝑤 =∪𝑞∈𝑅

መ𝛿 𝑞, 𝑤
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The Language of an 𝜀-NFA

NFAs with 𝜀-transitions define languages similarly to 
standard NFAs:

If 𝑀 is an NFA with 𝜀-transitions, then:

𝐿 𝑀 ≡ 𝑤 | መ𝛿 𝑞0, 𝑤 contains a state in 𝐹

More good news: any language that can be recognized 
by an 𝜀-NFA can also be recognized by an NFA 
without 𝜀-transitions.
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Eliminating 𝜀-Transitions

 The textbook shows how to transform an NFA with 
𝜀-transitions to a DFA.

 We will instead show how to transform an NFA 
with 𝜀 transitions into an NFA without 𝜀-transitions.

❖You could then transform such an NFA into a 
DFA using subset construction.
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Eliminating 𝜀-Transitions

 Let 𝐸 be an NFA with 𝜀-transitions: 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 Define 𝑁 to be an NFA without 𝜀-transitions.
𝑁 = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹

′ , where:

❖𝛿′ 𝑞, 𝑎 ≡ መ𝛿 𝑞, 𝑎

❖𝐹′ ≡ ቊ
𝐹 ∪ 𝑞0
𝐹
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, if 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 contained a state in 𝐹
, otherwise



Eliminating 𝜀-Transitions: Example
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𝑁 = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹
′ , where:

• 𝛿′ 𝑞, 𝑎 ≡ 𝛿 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞 , 𝑎

• 𝐹′ ≡ ቊ
𝐹 ∪ 𝑞0
𝐹

, if 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 contained a state in F
, otherwise

      
  

   

     

𝟎 𝟏 𝟐

𝑞0 𝑞0, 𝑞1, 𝑞2 𝑞1, 𝑞2 𝑞2

𝑞1 ∅ 𝑞1, 𝑞2 𝑞2

𝑞2 ∅ ∅ 𝑞2

𝛿′ = 𝐹′ = 𝑞0, 𝑞2

      
      

   

          



Theorem 2.22

 If: Proving this is easy (see Theorem 2.22 in the book)

 Only if: The textbook directly constructs a DFA 𝐷
from 𝜀-NFA 𝐸, but we will instead construct an 
ordinary NFA 𝑁, and use Theorem 2.11 to conclude 
that Theorem 2.22 holds.  We start by defining 𝑁 as it 
was on the preceding slides.
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Theorem 2.22 (from the textbook):
Language 𝐿 is accepted by an 𝜀-NFA 𝐸 if and only if it 
is accepted by some DFA 𝐷.



First Claim in Proof of Theorem 2.22

Rather than starting with a claim 
about 𝐿 𝐸 or 𝐿 𝑁 , we instead 

claim that መ𝛿′ 𝑞0, 𝑥 = መ𝛿 𝑞0, 𝑥 for 
some string 𝑥.
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Reminder:
𝛿′ is for the NFA 𝑁
𝛿 is for the 𝜀-NFA 𝐸

We will prove this claim using induction on 𝑥 .

 Note: This may not hold for 𝑥 = 0.  For example, 

in the previous example መ𝛿 𝑞0, 𝜀 = {𝑞0, 𝑞1, 𝑞2}, but 
መ𝛿′ 𝑞0, 𝜀 = 𝑞0 .

 We instead use 𝑥 = 1 as our base case (next slide).

𝑁 = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹
′ , where:

• 𝛿′ 𝑞, 𝑎 ≡ 𝛿 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞 , 𝑎

• 𝐹′ ≡ ቊ
𝐹 ∪ 𝑞0
𝐹

, if 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 contained a state in F
, otherwise



Proof of Theorem 2.22: Base Case
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Base case: 𝑥 = 1

For any symbol 𝑎, መ𝛿′ 𝑞0, 𝑎 = መ𝛿 𝑞0, 𝑎 , by the 
definition of 𝛿′.

Reminder:
𝛿′ is for the NFA 𝑁
𝛿 is for the 𝜀-NFA 𝐸

Claim:
መ𝛿′ 𝑞0, 𝑥 = መ𝛿 𝑞0, 𝑥

𝑁 = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹
′ , where:

• 𝛿′ 𝑞, 𝑎 ≡ 𝛿 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞 , 𝑎

• 𝐹′ ≡ ቊ
𝐹 ∪ 𝑞0
𝐹

, if 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 contained a state in F
, otherwise



Proof of Theorem 2.22: Inductive Step
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Reminder:
𝛿′ is for the NFA 𝑁
𝛿 is for the 𝜀-NFA 𝐸

Claim:
መ𝛿′ 𝑞0, 𝑥 = መ𝛿 𝑞0, 𝑥

𝑁 = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹
′ , where:

• 𝛿′ 𝑞, 𝑎 ≡ 𝛿 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞 , 𝑎

• 𝐹′ ≡ ቊ
𝐹 ∪ 𝑞0
𝐹

, if 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 contained a state in F
, otherwise

Let 𝑥 = 𝑤𝑎, where 𝑤 is a string 
and 𝑎 is a symbol.

We must show that መ𝛿′ 𝑞0, 𝑥 =
መ𝛿 𝑞0, 𝑥 .

By the inductive hypothesis, መ𝛿′ 𝑞0, 𝑤 = መ𝛿 𝑞0, 𝑤 .

መ𝛿′(𝑞0, 𝑤𝑎)

= 𝛿′ መ𝛿′ 𝑞0, 𝑤 , 𝑎 , by the inductive definition of መ𝛿′

= ∪𝑞∈෡𝛿′ 𝑞0,𝑤
𝛿′ 𝑞, 𝑎 , by the definition of 𝛿′ for sets of states

= ∪𝑞∈෡𝛿 𝑞0,𝑤
መ𝛿 𝑞, 𝑎 , by the inductive hypothesis and definition of 𝛿′

= መ𝛿 መ𝛿 𝑞0, 𝑤 , 𝑎 , by the definition of መ𝛿 for 𝜀-NFAs and sets of states

= መ𝛿 𝑞0, 𝑤𝑎 , by the definition of መ𝛿



Proof of Theorem 2.22: Finishing Up

To show that 𝐿 𝑁 = 𝐿 𝐸 we must show that መ𝛿′(𝑞0, 𝑥)

contains a state in 𝐹 iff መ𝛿 𝑞0, 𝑥 contains a state in 𝐹.

Additionally, we need to deal with 𝑥 = 0.

Case where 𝒙 = 𝜺:

 መ𝛿′ 𝑞0, 𝜀 = 𝑞0

 መ𝛿 𝑞0, 𝜀 = 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0

 𝑞0 is in 𝐹′ if and only if 𝐸𝐶𝐿𝑂𝑆𝐸(𝑞0) contains a state 
in 𝐹, by the definition of 𝐹′.
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Reminder:
𝛿′ is for the NFA 𝑁
𝛿 is for the 𝜀-NFA 𝐸



Proof of Theorem 2.22: Finishing Up

Case where 𝒙 ≠ 𝜺:

 By the inductive proof earlier, መ𝛿′ 𝑞0, 𝑥 = መ𝛿 𝑞0, 𝑥 .

 If 𝐹′ = 𝐹 or 𝑞0 ∉ መ𝛿′ 𝑞0, 𝑥 , we are done.

 Otherwise, 𝑞0 ∈ 𝐹′, 𝑞0 ∉ 𝐹, and 𝑞0 ∈ መ𝛿′ 𝑞0, 𝑥 .

❖In this case, some state in 𝐸𝐶𝐿𝑂𝑆𝐸 𝑞0 is in 𝐹.

❖By construction of መ𝛿, that state is in መ𝛿 𝑞0, 𝑥 .
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Reminder:
𝛿′ is for the NFA 𝑁
𝛿 is for the 𝜀-NFA 𝐸


