Finite Automata

COMP 455 – 002, Spring 2019

1

This is a "transition diagram" for a *deterministic finite automaton*.

Diagrams like this visualize automata like a simple game.

In this "game", we will move from circle to circle, following the instructions given by an input string.

Input string: 1111

3

The "player" starts at the indicated circle:

Input string: 1111

The "game" proceeds by reading one character at a time from the input string and following the path labeled with the character.

6

Defining a Deterministic Finite Automaton

We define a deterministic finite automaton (DFA) as a 5-tuple: $(Q, \Sigma, \delta, q_0, F)$

► *Q*: A set of states

- Σ: A set of input symbols (the *alphabet*)
- ▶ q_0 : The initial state. $q_0 \in Q$.
- ► *F*: A set of accepting ("final") states. $F \subseteq Q$.
- ► δ : The "transition function" mapping $Q \times \Sigma \rightarrow Q$.

 δ *must* be defined for all symbols in all states.

 δ returns a single state.

8

This automaton only handles strings of 1s $\Sigma = \{1\}$

9

The initial state is labeled with "Start"

 $\blacktriangleright q_0 = q_0$

Accepting states have double circles. This automaton only has one. Start 1 q_0 q_1

 $\blacktriangleright F = \{q_0\}$

Start

qo

The arrows connecting the states represent possible transitions.

 δ is the automaton's transition function:

 $\delta(current \ state, current \ symbol) = destination \ state$

 δ can be represented as a table:

 \mathbf{q}_1

This automaton in tuple notation:

- $\blacktriangleright Q = \{q_0, q_1\}$
- $\blacktriangleright \Sigma = \{1\}$
- ► $q_0 = q_0$
- $\blacktriangleright F = \{q_0\}$

We use a table here, but δ can also be described using words, mathematical formulas, *etc*.

"Transition Table" Representation

The table for δ implicitly lists the states and alphabet.

A "transition table" just adds the remaining needed information:

• Indicate the start state with \rightarrow

Indicate accepting states with *

Notation: Extending δ to Strings

- An automaton's standard transition function, δ , takes two parameters: a state and a *symbol*.
- The "extended transition function", $\hat{\delta}$, takes a state and a *string*.
- $\hat{\delta}$ can be defined in terms of δ :
 - Assume that *w* is a string, *a* is a symbol in Σ, and *q* is a state.
 - $\label{eq:Recursively} \& \text{Recursively}, \hat{\delta}(q, wa) = \delta \big(\hat{\delta}(q, w), a \big).$
- Examples from the previous automaton:
 - $\hat{\delta}(q_0, \varepsilon) = q_0$ $\hat{\delta}(q_0, 111) = q_1$ $\hat{\delta}(q_0, 1111) = q_0$

$\delta(q,a) = \hat{\delta}(q,a)$ for DFAs.

Here is a more complex automaton.

Transition table representation:

δ	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_0	q_2
* q ₂	q_0	q_2

Questions:

- What language does this automaton represent?
- How should we prove it's correct?

 $L = \{x \mid x \text{ has an odd}$ number of 0s and ends with a 1 $\}$.

We will prove this by induction on the length of an input string, *x*.

We start our proof by defining what each state means about the input read so far:

- ▶ q_0 : Even # of 0s
- *q*₁: Odd # of 0s, and ends with a 0
- ▶ q_2 : Odd # of 0s, and ends with a 1

Proof obligation: Show that these definitions are correct!

Base case: Prove the definition is correct for a string of length 0 (ϵ).

The automaton is in state q_0 after processing ε .

Since ε contains an even number of 0s, our definition of q_0 holds.

Inductive step: Assume that $\hat{\delta}(q_0, x)$ is correct for string *x*.

We need to prove that $\hat{\delta}(q_0, xa)$ remains correct for any symbol *a*.

This requires proving correctness for all possible transitions from all three states (mutual induction).

Induction part 1: state q_0

If $\hat{\delta}(q_0, x) = q_0$, then we can assume *x* contained an even number of 0s.

 $\delta(q_0, 1) = q_0$. Reading a 1 doesn't change the # of 0s, so this is correct.

 $\delta(q_0, 0) = q_1$. We've read an odd # of zeros, but the string doesn't end in 1 yet.

Induction part 2: state *q*₁

If $\hat{\delta}(q_0, x) = q_1$, then we can assume *x* contained an odd number of 0s and ends with a 0.

 $\delta(q_1, 1) = q_2$. The string contains an odd # of 0s, but now ends with 1.

 $\delta(q_1, 0) = q_0$. Reading an additional 0 means that the string contains an even number of 0s.

Induction part 3: state q_2

If $\hat{\delta}(q_0, x) = q_2$, then we can assume *x* contained an odd number of 0s and ends with a 1.

 $\delta(q_2, 1) = q_2$. This doesn't change the # of 0s or the fact that the string ends with a 1.

 $\delta(q_2, 0) = q_0$. Reading an additional 0 means that the string contains an even number of 0s.

q₂

Finishing up:

We've now proven that our claims about the states were correct, but we still need to prove the automaton recognizes the language.

The automaton ends in q_2 if and only if the string contained an odd number of 0s and ended with 1.

Since q_2 is the only accepting state, the automaton accepts strings if and only if they contain an odd number of 0s and end with a 1.

Nondeterministic Finite Automata

- We've been looking at deterministic finite automata (DFAs) so far.
 - * δ returns exactly one state for every symbol in every state
- With nondeterministic finite automata (NFAs), the transition function δ returns a *set of states*.

This can include no states at all!

2^Q: The *power set* of *Q*.
(the set of all possible subsets of *Q*)

 $\diamond \delta: Q \times \Sigma \to 2^Q$

Note on "Nondeterministic" Terminology

- DFAs always follow the same path for a single input string.
 - DFAs accept a string if and only if this path leads to an accepting state.
- NFAs may follow one of many different paths for the same input string.
 - This is why they are called *nondeterministic*.
 - NFAs accept strings if and only if *it is possible* for them to reach an accepting state for a given input string.

Extended Transition Function for NFAs

- As with DFAs, $\hat{\delta}$ for NFAs processes a string rather than a single character.
- As with the definition of δ for NFAs, δ for NFAs returns the set of states an NFA is in after processing a string.
- ► If an NFA has a start state q, then the NFA accepts string x if and only if $\hat{\delta}(q, x) \cap F \neq \emptyset$
 - * "The set of states after processing x contains at least one accepting state"

Definition of δ for Sets of States

Since δ can return a set of states for NFAs, it can be helpful to define a version of δ that takes a set of states rather than a single state.

If *P* is a set of states,

$$\delta(P,a) = \bigcup_{q \in P} \delta(q,a)$$

Nondeterministic Finite Automata

Example: Match all strings ending with 01

δ	0	1
$\rightarrow q_0$	$\{q_0, q_1\}$	$\{q_0\}$
q_1	Ø	{q ₂ }
* q ₂	Ø	Ø

Start

Example NFA Execution

Example NFA Execution

Example NFA Execution

F = {*q*₂} *δ̂*(*q*₀, 10101) = {*q*₀, *q*₂}
{*q*₀, *q*₂} ∩ *F* = {*q*₂}
As expected, this NFA accepts 10101, because it ends

in a set of states containing an accepting state.

Start

0, 1

Input string: 10101

NFAs vs DFAs

► NFAs are often more convenient than DFAs

Write an NFA that accepts L = {x | x is a string of 0s or 1s that contains 0101000 as a substring}

*Now write a DFA that accepts L

Good news: Any language that can be recognized by an NFA can also be recognized by a DFA.

Equivalence of NFAs and DFAs

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.
- We will show how to construct an equivalent DFA, D, using a technique called subset construction.
- Main idea: D will keep track of the subset of states that N might be in.
 - In other words, each of D's states corresponds to a subset of N's states.

Subset Construction

► The constructed DFA $D = (Q', \Sigma, \delta', q'_0, F')$, where:

♦ Q' = 2^Q = Assuming the states in Q are {q₀, q₁, ..., q_n}, the states in Q' are all possible subsets of {q₀, q₁, ..., q_n}.

$$\diamond q_0' = \{q_0\}$$

$$\mathbf{\bullet} F' = \{ q \in Q' \mid q = \{ \dots, q_j, \dots \} \text{ and } q_j \in F \}$$

□ "*D*'s final states consist of all subsets containing one or more of *N*'s final states."

• For all q and p in Q', $\delta'(q, a) = p$ iff $\delta(q, a) = p$.

Start with the following NFA:

$$\bullet N = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

• Construct DFA $D = (Q', \{0, 1\}, \delta', \{q_0\}, F')$, where

Q' = $\{ \emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$ $F' = \{ \{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$ S' is defined on the following slide.

$\blacktriangleright \delta' =$		0	1
	Ø	Ø	Ø
	$\{q_0\}$	$\{q_1\}$	$\{q_0\}$
	$\{q_1\}$	$\{q_0\}$	$\{q_1, q_2\}$
	$\{q_2\}$	Ø	Ø
	$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$
	$\{q_0, q_2\}$	$\{q_1\}$	$\{q_0\}$
	$\{q_1, q_2\}$	$\{q_0\}$	$\{q_1, q_2\}$
	$\{q_0,q_1,q_2\}$	$\{q_0, q_1\}$	$\{q_0,q_1,q_2\}$

Diagram for *D*:

$oldsymbol{\delta}'$	0	1	
Ø	Ø	Ø	
$\rightarrow \{q_0\}$	$\{q_1\}$	$\{q_0\}$	
$\{q_1\}$	$\{q_0\}$	$\{q_1, q_2\}$	
$* \{q_2\}$	Ø	Ø	
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	
$* \{q_0, q_2\}$	$\{q_1\}$	$\{q_0\}$	
$*\left\{ q_{1},q_{2}\right\}$	$\{q_0\}$	$\{q_1, q_2\}$	
$* \{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	

Jim Anderson (modified by Nathan Otterness)

Jim Anderson (modified by Nathan Otterness)

Diagram for *D* without unreachable states:

Theorem 2.11

Theorem 2.11 (from the textbook): If *N* is the original NFA and *D* is the constructed DFA (as defined earlier), then L(N) = L(D).

Proof: We need to show that $\hat{\delta}'(q'_0, x) = S$ if and only if $\hat{\delta}(q_0, x) = S$.

We will prove this by induction on |x|.

Proof of Theorem 2.11

Base case:

|x| = 0. (Put another way, $x = \varepsilon$). Verifying the base case: $\hat{\delta}'(q_0', \varepsilon) = q_0' = \{q_0\}$ and $\hat{\delta}(q_0,\varepsilon) = \{q_0\}$ by the definition of the extended transition function. So, L(N) = L(D) holds for the base case.

Reminder: δ' is for the DFA *D* δ is for the NFA N

Proof of Theorem 2.11

Inductive step:

By the inductive hypothesis we assume that:

 $\hat{\delta}'(q_0',x)=S \text{ iff } \hat{\delta}(q_0,x)=S$

Reminder: δ' is for the DFA *D* δ is for the NFA *N*

Reminder: For string *w* and symbol *a*: $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

We now apply the definition of the extended transition function to advance by a single symbol:

 $\hat{\delta}'(S, a) = T$ iff $\hat{\delta}(S, a) = T$, by the definition of δ' . Therefore $\hat{\delta}'(q'_0, x) = T$ iff $\hat{\delta}(q_0, x) = T$.

Finishing the Proof of Theorem 2.11

Finally, since $\hat{\delta}'(q'_0, x)$ is in F' if and only if $\hat{\delta}(q_0, x)$ contains a state in F, L(D) = L(N).

▶ Note: This construction results in a *state explosion*.

Reminder: δ' is for the DFA *D* δ is for the NFA *N*

NFAs with *ε*-Transitions

NFAs with ε -transitions have all the same rules as regular NFAs, but with additional flexibility.

The transition function for NFAs with ε -transitions: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$

ɛ-Closure

Let $ECLOSE(q) \equiv$ {q} \cup {p | p is reachable from q via ε – transitions}

• $ECLOSE(q_0) = \{q_0, q_1, q_2\}$ • $ECLOSE(q_1) = \{q_1, q_2\}$

For a set of states *P*, $ECLOSE(P) \equiv \bigcup_{q \in P} ECLOSE(q)$

Definition of $\hat{\delta}$ for ε -NFAs

Recursive definition of $\hat{\delta}$:

 $\blacktriangleright \hat{\delta}(q,\varepsilon) = ECLOSE(q)$

- For a string *w* and symbol *a*: $\hat{\delta}(q, wa) = ECLOSE(P)$, where $P = \{p \mid \text{for some } r \text{ in } \hat{\delta}(q, w), p \text{ is in } \hat{\delta}(r, a)\}$
- ► In other words, $\hat{\delta}(q, a) = ECLOSE(\delta(ECLOSE(q), a))$ for a starting state q and a single symbol a.

Unlike before, $\hat{\delta}(q, a) \neq \delta(q, a)$ for ε -NFAs!

Input string: 011 $\hat{\delta}(\{q_0\}, \varepsilon) = \{q_0, q_1, q_2\}$

- 1. Follow transitions as you would for a normal NFA.
- 2. Take the ε -closure for any states you end up in.

- 1. Follow transitions as you would for a normal NFA.
- 2. Take the ε -closure for any states you end up in.

- 1. Follow transitions as you would for a normal NFA.
- 2. Take the ε -closure for any states you end up in.

- 1. Follow transitions as you would for a normal NFA.
- 2. Take the ε -closure for any states you end up in.

Jim Anderson (modified by Nathan Otterness)

Extending δ to Sets of States

This is similar to normal NFAs. If *R* is a set of states:

$$\delta(R, a) = \bigcup_{q \in R} \delta(q, a)$$
$$\hat{\delta}(R, w) = \bigcup_{q \in R} \hat{\delta}(q, w)$$

The Language of an *ε*-NFA

NFAs with *ε*-transitions define languages similarly to standard NFAs:

If *M* is an NFA with ε -transitions, then: $L(M) \equiv \{ w \mid \hat{\delta}(q_0, w) \text{ contains a state in } F \}$

More good news: any language that can be recognized by an ε -NFA can also be recognized by an NFA without ε -transitions.

Eliminating *ε*-Transitions

- The textbook shows how to transform an NFA with ε-transitions to a DFA.
- We will instead show how to transform an NFA with ε transitions into an NFA without ε-transitions.
 - You could then transform such an NFA into a DFA using subset construction.

Eliminating *ε*-Transitions

- Let *E* be an NFA with ε -transitions: $(Q, \Sigma, \delta, q_0, F)$
- Define *N* to be an NFA without ε -transitions. $N = (Q, \Sigma, \delta', q_0, F')$, where:

$$\delta'(q, a) \equiv \hat{\delta}(q, a)$$

$$\star F' \equiv \begin{cases} F \cup \{q_0\}, \text{ if } ECLOSE(q_0) \text{ contained a state in } F \\ F & \text{, otherwise} \end{cases}$$

Eliminating *ε*-Transitions: Example

 $N = (Q, \Sigma, \delta', q_0, F'), \text{ where:}$ • $\delta'(q, a) \equiv \delta(ECLOSE(q), a)$ • $F' \equiv \begin{cases} F \cup \{q_0\}, \text{ if } ECLOSE(q_0) \text{ contained a state in F} \\ F & , \text{ otherwise} \end{cases}$

$\delta' =$		0	1	2
	q_0	$\{q_0,q_1,q_2\}$	$\{q_1,q_2\}$	{ <i>q</i> ₂ }
	q_1	Ø	$\{q_1,q_2\}$	${q_2}$
	q_2	Ø	Ø	${q_2}$

$$F' = \{q_0, q_2\}$$

Theorem 2.22

Theorem 2.22 (from the textbook): Language *L* is accepted by an ε -NFA *E* if and only if it is accepted by some DFA *D*.

▶ If: Proving this is easy (see Theorem 2.22 in the book)

Only if: The textbook directly constructs a DFA D from ε-NFA E, but we will instead construct an ordinary NFA N, and use Theorem 2.11 to conclude that Theorem 2.22 holds. We start by defining N as it was on the preceding slides.

First Claim in Proof of Theorem 2.22

Reminder: δ' is for the NFA *N* δ is for the *ε*-NFA *E*

Rather than starting with a claim about L(E) or L(N), we instead claim that $\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x)$ for some string x.

 $N = (Q, \Sigma, \delta', q_0, F'), \text{ where:}$ • $\delta'(q, a) \equiv \delta(ECLOSE(q), a)$ • $F' \equiv \begin{cases} F \cup \{q_0\}, \text{ if } ECLOSE(q_0) \text{ contained a state in F} \\ F & , \text{ otherwise} \end{cases}$

We will prove this claim using induction on |x|.

- Note: This may *not* hold for |x| = 0. For example, in the previous example $\hat{\delta}(q_0, \varepsilon) = \{q_0, q_1, q_2\}$, but $\hat{\delta}'(q_0, \varepsilon) = \{q_0\}$.
- We instead use |x| = 1 as our base case (next slide).

Proof of Theorem 2.22: Base Case

Reminder: δ' is for the NFA *N* δ is for the *ε*-NFA *E*

Claim:

 $\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x)$

Base case: |x| = 1

For any symbol a, $\hat{\delta}'(q_0, a) = \hat{\delta}(q_0, a)$, by the definition of δ' .

• $F' \equiv \begin{cases} F \cup \{q_0\}, \text{ if } ECLOSE(q_0) \text{ contained a state in F} \\ F & \text{, otherwise} \end{cases}$

 $N = (Q, \Sigma, \delta', q_0, F')$, where:

• $\delta'(q, a) \equiv \delta(ECLOSE(q), a)$

Proof of Theorem 2.22: Inductive Step

 $N = (Q, \Sigma, \delta', q_0, F')$, where:

 $\delta'(q, a) \equiv \delta(ECLOSE(q), a)$

• $F' \equiv \begin{cases} F \cup \{q_0\}, \text{ if } ECLOSE(q_0) \text{ contained a state in F} \\ F & , \text{ otherwise} \end{cases}$

Reminder: δ' is for the NFA *N* δ is for the *ε*-NFA *E*

Claim:

 $\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x)$

Let x = wa, where w is a string and a is a symbol. We must show that $\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x)$.

By the inductive hypothesis, $\hat{\delta}'(q_0, w) = \hat{\delta}(q_0, w)$.

 $\hat{\delta}'(q_0, wa)$

0 (90, 112)			
$= \delta' \big(\hat{\delta}'(q_0, w), a \big)$	$\delta'(\hat{\delta}'(q_0, w), a)$, by the inductive definition of $\hat{\delta}'$		
$= \cup_{q \in \widehat{\delta}'(q_0, w)} \delta'(q, a)$, by the definition of δ' for sets of states		
$= \cup_{q \in \widehat{\delta}(q_0, w)} \widehat{\delta}(q, a)$, by the inductive hypothesis and definition of δ'		
$= \hat{\delta}(\hat{\delta}(q_0, w), a)$, by the definition of $\hat{\delta}$ for ε -NFAs and sets of states		
$=\hat{\delta}(q_0,wa)$, by the definition of $\hat{\delta}$		
Jim Anderson (modified by Nathan Otterness)	63		

Proof of Theorem 2.22: Finishing Up

To show that L(N) = L(E) we must show that $\hat{\delta}'(q_0, x)$ contains a state in *F* iff $\hat{\delta}(q_0, x)$ contains a state in *F*. Additionally, we need to deal with |x| = 0.

Case where $x = \varepsilon$:

$$\blacktriangleright \hat{\delta}'(q_0,\varepsilon) = \{q_0\}$$

 $\blacktriangleright \hat{\delta}(q_0, \varepsilon) = ECLOSE(q_0)$

q₀ is in F' if and only if ECLOSE(q₀) contains a state in F, by the definition of F'. Reminder: δ' is for the NFA *N* δ is for the *ε*-NFA *E*

Proof of Theorem 2.22: Finishing Up

Case where $x \neq \varepsilon$:

By the inductive proof earlier, δ'(q₀, x) = δ(q₀, x).
If F' = F or q₀ ∉ δ'(q₀, x), we are done.
Otherwise, q₀ ∈ F', q₀ ∉ F, and q₀ ∈ δ'(q₀, x).
♦ In this case, some state in ECLOSE(q₀) is in F.
♦ By construction of δ, that state is in δ(q₀, x).

Reminder: δ' is for the NFA *N* δ is for the *ε*-NFA *E*