Finite Automata

COMP 455 - 002, Spring 2019
Example: Detect Even Number of 1s

This is a “transition diagram” for a deterministic finite automaton.

Diagrams like this visualize automata like a simple game.
Example: Detect Even Number of 1s

In this “game”, we will move from circle to circle, following the instructions given by an input string.

Input string: 1111
Example: Detect Even Number of 1s

The “player” starts at the indicated circle:

Input string: 1111
Example: Detect Even Number of 1s

The “game” proceeds by reading one character at a time from the input string and following the path labeled with the character.

Input string: 1111
Example: Detect Even Number of 1s

The “game” ends when all input symbols have been read.

Input string: 1111

Done!
Defining a Deterministic Finite Automaton

We define a deterministic finite automaton (DFA) as a 5-tuple: \((Q, \Sigma, \delta, q_0, F)\)

- \(Q\): A set of states
- \(\Sigma\): A set of input symbols (the *alphabet*)
- \(q_0\): The initial state. \(q_0 \in Q\).
- \(F\): A set of accepting (“final”) states. \(F \subseteq Q\).
- \(\delta\): The “transition function” mapping \(Q \times \Sigma \rightarrow Q\).
From the Diagram to \((Q, \Sigma, \delta, q_0, F)\)

The circles represent states.

- \(Q = \{q_0, q_1\}\)
From the Diagram to \((Q, \Sigma, \delta, q_0, F)\)

This automaton only handles strings of 1s

\[\Sigma = \{1\} \]
From the Diagram to \((Q, \Sigma, \delta, q_0, F)\)

The initial state is labeled with “Start”

\[
q_0 = q_0
\]
From the Diagram to \((Q, \Sigma, \delta, q_0, F)\)

Accepting states have double circles. This automaton only has one.

\[F = \{q_0\} \]
From the Diagram to \((Q, \Sigma, \delta, q_0, F)\)

The arrows connecting the states represent possible transitions.

\(\delta\) is the automaton’s transition function:

\[
\delta(\text{current state}, \text{current symbol}) = \text{destination state}
\]

\(\delta\) can be represented as a table:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Current input symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
</tr>
</tbody>
</table>

Jim Anderson (modified by Nathan Otterness)
From the Diagram to \((Q, \Sigma, \delta, q_0, F)\)

This automaton in tuple notation:

- \(Q = \{q_0, q_1\}\)
- \(\Sigma = \{1\}\)
- \(q_0 = q_0\)
- \(F = \{q_0\}\)
- \(\delta = \begin{array}{c|c}
\delta & 1 \\
\hline
q_0 & q_1 \\
q_1 & q_0 \\
\end{array}\)

We use a table here, but \(\delta\) can also be described using words, mathematical formulas, etc.
“Transition Table” Representation

The table for δ implicitly lists the states and alphabet.

A “transition table” just adds the remaining needed information:

- Indicate the start state with →
- Indicate accepting states with *
- Example:

<table>
<thead>
<tr>
<th>δ</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*→ q₀</td>
<td>q₁</td>
</tr>
<tr>
<td>q₁</td>
<td>q₀</td>
</tr>
</tbody>
</table>
Notation: Extending δ to Strings

- An automaton’s standard transition function, δ, takes two parameters: a state and a symbol.
- The “extended transition function”, $\hat{\delta}$, takes a state and a string.
- $\hat{\delta}$ can be defined in terms of δ:
 - Assume that w is a string, a is a symbol in Σ, and q is a state.
 - Recursively, $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$.
- Examples from the previous automaton:
 - $\hat{\delta}(q_0, \varepsilon) = q_0$
 - $\hat{\delta}(q_0, 111) = q_1$
 - $\hat{\delta}(q_0, 1111) = q_0$

$\delta(q, a) = \delta(q, a)$ for DFAs.
Example: Proofs About Automata

Here is a more complex automaton.

Transition table representation:

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₀</td>
<td>q₂</td>
</tr>
<tr>
<td>* q₂</td>
<td>q₀</td>
<td>q₂</td>
</tr>
</tbody>
</table>

Diagram:

- **q₀**
 - Transition on 0 to **q₁**
 - Transition on 1 to **q₂**
- **q₁**
 - Transition on 0 to **q₀**
 - Transition on 1 to **q₂**
- **q₂**
 - Transition on 0 to **q₀**
Example: Proofs About Automata

Questions:

- What language does this automaton represent?
- How should we prove it’s correct?
Example: Proofs About Automata

$L = \{ x \mid x \text{ has an odd number of 0s and ends with a 1} \}$.

We will prove this by induction on the length of an input string, x.

```
1
q_0
0
q_1
0
1
q_2
```

Jim Anderson (modified by Nathan Otterness)
Example: Proofs About Automata

We start our proof by defining what each state means about the input read so far:

- q_0: Even # of 0s
- q_1: Odd # of 0s, and ends with a 0
- q_2: Odd # of 0s, and ends with a 1

Proof obligation: Show that these definitions are correct!
Example: Proofs About Automata

Base case: Prove the definition is correct for a string of length 0 (ε).

The automaton is in state q_0 after processing ε.

Since ε contains an even number of 0s, our definition of q_0 holds.
Example: Proofs About Automata

Inductive step: Assume that $\delta(q_0, x)$ is correct for string x.

We need to prove that $\delta(q_0, xa)$ remains correct for any symbol a.

This requires proving correctness for all possible transitions from all three states (mutual induction).
Example: Proofs About Automata

Induction part 1: state q_0

If $\delta(q_0, x) = q_0$, then we can assume x contained an even number of 0s.

$\delta(q_0, 1) = q_0$. Reading a 1 doesn’t change the # of 0s, so this is correct.

$\delta(q_0, 0) = q_1$. We’ve read an odd # of zeros, but the string doesn’t end in 1 yet.
Example: Proofs About Automata

Induction part 2: state q_1

If $\delta(q_0, x) = q_1$, then we can assume x contained an odd number of 0s and ends with a 0.

$\delta(q_1, 1) = q_2$. The string contains an odd # of 0s, but now ends with 1.

$\delta(q_1, 0) = q_0$. Reading an additional 0 means that the string contains an even number of 0s.
Example: Proofs About Automata

Induction part 3: state \(q_2 \)
If \(\delta(q_0, x) = q_2 \), then we can assume \(x \) contained an odd number of 0s and ends with a 1.
\(\delta(q_2, 1) = q_2 \). This doesn’t change the # of 0s or the fact that the string ends with a 1.
\(\delta(q_2, 0) = q_0 \). Reading an additional 0 means that the string contains an even number of 0s.
Example: Proofs About Automata

Finishing up:
We’ve now proven that our claims about the states were correct, but we still need to prove the automaton recognizes the language.

The automaton ends in q_2 if and only if the string contained an odd number of 0s and ended with 1.

Since q_2 is the only accepting state, the automaton accepts strings if and only if they contain an odd number of 0s and end with a 1.
Nondeterministic Finite Automata

- We’ve been looking at deterministic finite automata (DFAs) so far.
 - δ returns exactly one state for every symbol in every state

- With nondeterministic finite automata (NFAs), the transition function δ returns a set of states.
 - $\delta: Q \times \Sigma \rightarrow 2^Q$
 - This can include no states at all!

2^Q: The power set of Q. (the set of all possible subsets of Q)
Note on “Nondeterministic” Terminology

- DFAs always follow the same path for a single input string.
 - DFAs accept a string if and only if this path leads to an accepting state.
- NFAs may follow one of many different paths for the same input string.
 - This is why they are called *nondeterministic*.
 - NFAs accept strings if and only if it is possible for them to reach an accepting state for a given input string.
Extended Transition Function for NFAs

- As with DFAs, δ for NFAs processes a string rather than a single character.
- As with the definition of δ for NFAs, $\hat{\delta}$ for NFAs returns the set of states an NFA is in after processing a string.
- If an NFA has a start state q, then the NFA accepts string x if and only if $\hat{\delta}(q, x) \cap F \neq \emptyset$
 - “The set of states after processing x contains at least one accepting state”
Recursive Definition of $\hat{\delta}$ for NFAs

- $\hat{\delta}(q, \varepsilon) = q$
- $\hat{\delta}(q, wa) = \{ p \mid \text{for some state } r \text{ in } \hat{\delta}(q, w), p \text{ is in } \delta(r, a)\}$

As with DFAs, $\delta(q, a) = \delta(q, a)$ for NFAs.

Note: This is a set.
Definition of δ for Sets of States

Since δ can return a set of states for NFAs, it can be helpful to define a version of δ that takes a set of states rather than a single state.

If P is a set of states,

$$\delta(P, a) = \bigcup_{q \in P} \delta(q, a)$$
Nondeterministic Finite Automata

Example: Match all strings ending with 01

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow q_0$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>q_1</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>$\ast q_2$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Example NFA Execution

Input string: 10101
Example NFA Execution

Input string: 10101

Done!
Example NFA Execution

- $F = \{q_2\}$
- $\delta(q_0, 10101) = \{q_0, q_2\}$
- $\{q_0, q_2\} \cap F = \{q_2\}$

As expected, this NFA accepts 10101, because it ends in a set of states containing an accepting state.
NFAs vs DFAs

- NFAs are often more convenient than DFAs
 - Write an NFA that accepts \(L = \{ x \mid x \text{ is a string of 0s or 1s that contains 0101000 as a substring} \} \)
 - Now write a DFA that accepts \(L \)
- Good news: Any language that can be recognized by an NFA can also be recognized by a DFA.
Equivalence of NFAs and DFAs

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

We will show how to construct an equivalent DFA, D, using a technique called *subset construction*.

Main idea: D will keep track of the subset of states that N might be in.

- In other words, each of D’s states corresponds to a subset of N’s states.
Subset Construction

The constructed DFA $D = (Q', \Sigma, \delta', q_0', F')$, where:

- $Q' = 2^Q = \text{Assuming the states in } Q \text{ are } \{q_0, q_1, ..., q_n\}, \text{ the states in } Q' \text{ are all possible subsets of } \{q_0, q_1, ..., q_n\}.$
- $q_0' = \{q_0\}$
- $F' = \{q \in Q' \mid q = \{..., q_j, ...\} \text{ and } q_j \in F\}$
 - “D’s final states consist of all subsets containing one or more of N’s final states.”
- For all q and p in Q', $\delta'(q, a) = p$ iff $\delta(q, a) = p$.

Jim Anderson (modified by Nathan Otterness)
Subset Construction: Example

- Start with the following NFA:
 - \(N = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}) \)

 \[
 \begin{array}{c|cc}
 \delta & 0 & 1 \\
 \hline
 q_0 & \{q_1\} & \{q_0\} \\
 q_1 & \{q_0\} & \{q_1, q_2\} \\
 q_2 & \emptyset & \emptyset \\
 \end{array}
 \]

- Construct DFA \(D = (Q', \{0, 1\}, \delta', \{q_0\}, F') \), where
 - \(Q' = \{\emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\} \)
 - \(F' = \{\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\} \)
 - \(\delta' \) is defined on the following slide.
Subset Construction: Example

\[\delta' = \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0 })</td>
<td>({ q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_1 })</td>
<td>({ q_0 })</td>
<td>({ q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_2 })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_2 })</td>
<td>({ q_1 })</td>
<td>({ q_0 })</td>
</tr>
<tr>
<td>({ q_1, q_2 })</td>
<td>({ q_0 })</td>
<td>({ q_1, q_2 })</td>
</tr>
<tr>
<td>({ q_0, q_1, q_2 })</td>
<td>({ q_0, q_1 })</td>
<td>({ q_0, q_1, q_2 })</td>
</tr>
</tbody>
</table>

![Diagram of subset construction example]
Subset Construction: Example

Diagram for D:

<table>
<thead>
<tr>
<th>δ'</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\rightarrow {q_0}$</td>
<td>${q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>${q_0}$</td>
<td>${q_1, q_2}$</td>
</tr>
<tr>
<td>$* {q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
<tr>
<td>$* {q_0, q_2}$</td>
<td>${q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>$* {q_1, q_2}$</td>
<td>${q_0}$</td>
<td>${q_1, q_2}$</td>
</tr>
<tr>
<td>$* {q_0, q_1, q_2}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1, q_2}$</td>
</tr>
</tbody>
</table>

Jim Anderson (modified by Nathan Otterness)
We don’t care about these states; they are unreachable from the start state.
Subset Construction: Example

Diagram for D without unreachable states:
Theorem 2.11

Proof: We need to show that $\hat{\delta}'(q_0', x) = S$ if and only if $\hat{\delta}(q_0, x) = S$.

We will prove this by induction on $|x|$.

Theorem 2.11 (from the textbook): If N is the original NFA and D is the constructed DFA (as defined earlier), then $L(N) = L(D)$.
Proof of Theorem 2.11

Base case:

$|x| = 0$. (Put another way, $x = \varepsilon$).

Verifying the base case:

\[\hat{\delta}'(q'_0, \varepsilon) = q'_0 = \{q_0\} \]

and

\[\hat{\delta}(q_0, \varepsilon) = \{q_0\} \]

by the definition of the extended transition function.

So, $L(N) = L(D)$ holds for the base case.
Proof of Theorem 2.11

Inductive step:
By the inductive hypothesis we assume that:
\[\hat{\delta}'(q'_0, x) = S \iff \hat{\delta}(q_0, x) = S \]

We now apply the definition of the extended transition function to advance by a single symbol:
\[\hat{\delta}'(S, a) = T \iff \hat{\delta}(S, a) = T, \text{ by the definition of } \delta'. \]
Therefore \[\hat{\delta}'(q'_0, x) = T \iff \hat{\delta}(q_0, x) = T. \]
Finishing the Proof of Theorem 2.11

Finally, since $\hat{\delta}'(q_0', x)$ is in F' if and only if $\hat{\delta}(q_0, x)$ contains a state in F, $L(D) = L(N)$.

▶ Note: This construction results in a *state explosion*.
NFAs with ε-Transitions

NFAs with ε-transitions have all the same rules as regular NFAs, but with additional flexibility.

The transition function for NFAs with ε-transitions:

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$$

Example:
ε-Closure

Let $ECLOSE(q) \equiv \{q\} \cup \{p \mid p \text{ is reachable from } q \text{ via } \varepsilon - \text{transitions}\}$

- $ECLOSE(q_0) = \{q_0, q_1, q_2\}$
- $ECLOSE(q_1) = \{q_1, q_2\}$

For a set of states P,

$$ECLOSE(P) \equiv \cup_{q \in P} ECLOSE(q)$$
Definition of $\hat{\delta}$ for ε-NFAs

Recursive definition of $\hat{\delta}$:

- $\hat{\delta}(q, \varepsilon) = ECLOSE(q)$
- For a string w and symbol a: $\hat{\delta}(q, wa) = ECLOSE(P)$, where $P = \{ p \mid \text{for some } r \text{ in } \hat{\delta}(q, w), \ p \text{ is in } \hat{\delta}(r, a) \}$
- In other words, $\hat{\delta}(q, a) = ECLOSE(\hat{\delta}(ECLOSE(q), a))$ for a starting state q and a single symbol a.

Unlike before, $\hat{\delta}(q, a) \neq \delta(q, a)$ for ε-NFAs!
The ε-NFA Example

How to simulate an ε-NFA:
1. Follow transitions as you would for a normal NFA.
2. Take the ε-closure for any states you end up in.

Input string: 011

$\delta(\{q_0\}, \varepsilon) = \{q_0, q_1, q_2\}$
\(\varepsilon\text{-NFA Example}\)

Input string: 011

\[\hat{\delta}(\{q_0\}, 0) = \{q_0, q_1, q_2\}\]

How to simulate an \(\varepsilon\)-NFA:
1. Follow transitions as you would for a normal NFA.
2. Take the \(\varepsilon\)-closure for any states you end up in.
\(\varepsilon \)-NFA Example

How to simulate an \(\varepsilon \)-NFA:
1. Follow transitions as you would for a normal NFA.
2. Take the \(\varepsilon \)-closure for any states you end up in.

Input string: 011

\(\hat{\delta}(\{q_0\}, 01) = \{q_1, q_2\} \)
ε-NFA Example

How to simulate an ε-NFA:
1. Follow transitions as you would for a normal NFA.
2. Take the ε-closure for any states you end up in.

Input string: 011

$\delta(\{q_0\}, 011) = \{q_1, q_2\}$
ε-NFA Example

How to simulate an ε-NFA:
1. Follow transitions as you would for a normal NFA.
2. Take the ε-closure for any states you end up in.

Input string: 011 Done!

\[\hat{\delta}(\{q_0\}, 011) = \{q_1, q_2\} \]
Extending δ to Sets of States

This is similar to normal NFAs. If R is a set of states:

$$\delta(R, a) = \bigcup_{q \in R} \delta(q, a)$$
$$\hat{\delta}(R, w) = \bigcup_{q \in R} \hat{\delta}(q, w)$$
The Language of an ϵ-NFA

NFAs with ϵ-transitions define languages similarly to standard NFAs:

If M is an NFA with ϵ-transitions, then:

$$L(M) \equiv \{w \mid \delta(q_0, w) \text{ contains a state in } F\}$$

More good news: any language that can be recognized by an ϵ-NFA can also be recognized by an NFA without ϵ-transitions.
Eliminating ε-Transitions

- The textbook shows how to transform an NFA with ε-transitions to a DFA.
- We will instead show how to transform an NFA with ε transitions into an NFA without ε-transitions.
 - You could then transform such an NFA into a DFA using subset construction.
Eliminating ε-Transitions

- Let E be an NFA with ε-transitions: $(Q, \Sigma, \delta, q_0, F)$
- Define N to be an NFA without ε-transitions.
 $N = (Q, \Sigma, \delta', q_0, F')$, where:
 - $\delta'(q, a) \equiv \hat{\delta}(q, a)$
 - $F' \equiv \begin{cases} F \cup \{q_0\}, & \text{if } E\text{CLOSE}(q_0) \text{ contained a state in } F \\ F, & \text{otherwise} \end{cases}$
Eliminating ε-Transitions: Example

\[N = (Q, \Sigma, \delta', q_0, F') \], where:

- $\delta'(q, a) \equiv \delta(\text{ECLOSE}(q, a))$
- $F' \equiv \begin{cases} F \cup \{q_0\}, & \text{if ECLOSE}(q_0) \text{ contained a state in } F \\ F, & \text{otherwise} \end{cases}$

\[
\begin{array}{|c|c|c|c|}
\hline
\delta' & 0 & 1 & 2 \\
\hline
q_0 & \{q_0, q_1, q_2\} & \{q_1, q_2\} & \{q_2\} \\
q_1 & \emptyset & \{q_1, q_2\} & \{q_2\} \\
q_2 & \emptyset & \emptyset & \{q_2\} \\
\hline
\end{array}
\]

\[F' = \{q_0, q_2\} \]
Theorem 2.22

Theorem 2.22 (from the textbook):
Language L is accepted by an ϵ-NFA E if and only if it is accepted by some DFA D.

- **If**: Proving this is easy (see Theorem 2.22 in the book)
- **Only if**: The textbook directly constructs a DFA D from ϵ-NFA E, but we will instead construct an ordinary NFA N, and use Theorem 2.11 to conclude that Theorem 2.22 holds. We start by defining N as it was on the preceding slides.
First Claim in Proof of Theorem 2.22

Rather than starting with a claim about $L(E)$ or $L(N)$, we instead claim that $\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x)$ for some string x.

We will prove this claim using induction on $|x|$.

► **Note**: This may *not* hold for $|x| = 0$. For example, in the previous example $\hat{\delta}(q_0, \varepsilon) = \{q_0, q_1, q_2\}$, but $\hat{\delta}'(q_0, \varepsilon) = \{q_0\}$.

► We instead use $|x| = 1$ as our base case (next slide).
Proof of Theorem 2.22: Base Case

Base case: $|x| = 1$

For any symbol a, $\hat{\delta}'(q_0, a) = \hat{\delta}(q_0, a)$, by the definition of δ'.
Proof of Theorem 2.22: Inductive Step

Let \(x = wa \), where \(w \) is a string and \(a \) is a symbol.
We must show that \(\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x) \).

By the inductive hypothesis, \(\hat{\delta}'(q_0, w) = \hat{\delta}(q_0, w) \).

\[
\begin{align*}
\hat{\delta}'(q_0, wa) &= \hat{\delta}'(\hat{\delta}'(q_0, w), a) \quad \text{, by the inductive definition of } \hat{\delta}' \\
&= \bigcup_{q \in \hat{\delta}'(q_0, w)} \hat{\delta}'(q, a) \quad \text{, by the definition of } \hat{\delta}' \text{ for sets of states} \\
&= \bigcup_{q \in \hat{\delta}(q_0, w)} \hat{\delta}(q, a) \quad \text{, by the inductive hypothesis and definition of } \hat{\delta}' \\
&= \hat{\delta}(\hat{\delta}(q_0, w), a) \quad \text{, by the definition of } \hat{\delta} \text{ for } \varepsilon\text{-NFAs and sets of states} \\
&= \hat{\delta}(q_0, wa) \quad \text{, by the definition of } \hat{\delta}
\end{align*}
\]
Proof of Theorem 2.22: Finishing Up

To show that $L(N) = L(E)$ we must show that $\hat{\delta}'(q_0, x)$ contains a state in F iff $\hat{\delta}(q_0, x)$ contains a state in F. Additionally, we need to deal with $|x| = 0$.

Case where $x = \varepsilon$:

- $\hat{\delta}'(q_0, \varepsilon) = \{q_0\}$
- $\hat{\delta}(q_0, \varepsilon) = ECLOSE(q_0)$
- q_0 is in F' if and only if $ECLOSE(q_0)$ contains a state in F, by the definition of F'.

Reminder:
- δ' is for the NFA N
- δ is for the ε-NFA E
Proof of Theorem 2.22: Finishing Up

Case where $x \neq \varepsilon$:

- By the inductive proof earlier, $\hat{\delta}'(q_0, x) = \hat{\delta}(q_0, x)$.
- If $F' = F$ or $q_0 \notin \hat{\delta}'(q_0, x)$, we are done.
- Otherwise, $q_0 \in F'$, $q_0 \notin F$, and $q_0 \in \hat{\delta}'(q_0, x)$.
 - In this case, some state in $ECLOSE(q_0)$ is in F.
 - By construction of $\hat{\delta}$, that state is in $\hat{\delta}(q_0, x)$.

Reminder:
δ' is for the NFA N
δ is for the ε-NFA E