
Regular Expressions
COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Regular Expressions

 Regular expressions are simply algebraic notation
for defining languages.

 A regular expression defines a language.

 In practice, regular expressions can usually define
languages in a concise “user-friendly” manner.

❖At least compared to describing a finite
automaton…

Jim Anderson (modified by Nathan Otterness) 2

Definition of Regular Expressions

 Regular expressions are defined by taking the union,
concatenation, and closure of languages.

❖Union: 𝐿1 ∪ 𝐿2 ≡ 𝑥 | 𝑥 ∈ 𝐿1or 𝑥 ∈ 𝐿2

❖Concatenation: 𝐿1𝐿2 ≡ 𝑥𝑦 | 𝑥 ∈ 𝐿1 and 𝑦 ∈ 𝐿2

❖Closure (“Kleene closure”): 𝐿∗ ≡ ∪𝑖≥0 𝐿𝑖, where:

❑𝐿0 = 𝜀

❑𝐿1 = 𝐿

❑𝐿𝑖 = the concatenation of 𝑖 copies of 𝐿

Jim Anderson (modified by Nathan Otterness) 3

Kleene Closure: Example

 Let language 𝐿 = 00, 11 .

 (From the previous definition) 𝐿𝑖 represents 𝑖 strings
from 𝐿 concatenated together.

❖𝐿2 = 0000, 0011, 1100, 1111

❖𝐿3 = 000000, 000011, 001100, …

 𝐿∗ is any number of strings from 𝐿 concatenated
together.

❖𝐿∗ = 𝜀, 00, 11, 0000, 0011, 1111, 000000, …

Jim Anderson (modified by Nathan Otterness) 4

Definition of Regular Expressions

Regular expressions are formally recursively defined
(for an alphabet Σ):

1. ∅ is a regular expression denoting the empty set.

2. 𝜀 is a regular expression denoting 𝜀 .

3. For each 𝑎 ∈ Σ, 𝒂 is a regular expression denoting 𝑎 .

4. If 𝐸 and 𝐹 are regular expressions denoting 𝐿 𝐸 and
𝐿 𝐹 (respectively), then:

• 𝐸 + 𝐹 is a regular expression denoting 𝐿 𝐸 ∪ 𝐿 𝐹

• 𝐸𝐹 is a regular expression denoting 𝐿 𝐸 𝐿 𝐹

• 𝐸∗ is a regular expression denoting 𝐿 𝐸 ∗.

Jim Anderson (modified by Nathan Otterness) 5

Note that we will
use bold characters

for literal symbols in
regular expressions.

Example Regular Expressions

(The following examples assume Σ = 0, 1 .)

 𝟎𝟏

❖The language consisting only of the string 01.

 𝟎 + 𝟏

❖The language consisting of the strings 0, 1 .

 𝟎𝟏 + 𝟏𝟎

❖The language consisting of the strings 01, 10 .

Jim Anderson (modified by Nathan Otterness) 6

Example Regular Expressions

(The following examples assume Σ = 0, 1 .)

 𝟏𝟎(𝟎 + 𝟏)

❖The language consisting of 100, 101 .

 𝟏𝟎 𝟎 + 𝟏 ∗

❖The language consisting of all strings that start
with 10 and are followed by any number of 0s or
1s.

 𝟏𝟎 𝟎 + 𝟏 ∗ + 𝜀

❖The same language as above, but also containing
the empty string.

Jim Anderson (modified by Nathan Otterness) 7

Finite Automata and Regular Expressions

Regular expressions and finite automata define the
same class of languages.

Jim Anderson (modified by Nathan Otterness) 8

Regular
Expressions

𝜀-NFAsDFAs

NFAs

Theorem 3.7Theorem 3.4

Theorem 2.22Theorem 2.11

This is by our proof of
Theorem 2.22—the book

instead goes directly from
𝜀-NFAs to DFAs.

The rest of this presentation covers these proofs.

From DFAs to Regular Expressions

Theorem 3.4: If 𝐿 = 𝐿 𝑀 for some DFA 𝑀, then a
regular expression 𝑅 exists for which 𝐿 = 𝐿 𝑅 .

Proof:

 Let 𝑀 = 𝑞1, 𝑞2, … , 𝑞𝑛 , Σ, 𝛿, 𝑞1, 𝐹

 Let 𝑅𝑖𝑗
𝑘 ≡ all strings that take us from 𝑞𝑖 to 𝑞𝑗

without entering a state higher than 𝑞𝑘.

Jim Anderson (modified by Nathan Otterness) 9

We can re-label any set
of states to start with 𝑞1.

qi qj

No state “higher” than 𝑘

Note: 𝑅𝑖𝑗
𝑛 = all strings that

go from state 𝑞𝑖 to 𝑞𝑗.

Proof of Theorem 3.4, continued

 Let 𝑅𝑖𝑗
𝑘 ≡ all strings that take us from 𝑞𝑖 to 𝑞𝑗

without entering a state higher than 𝑞𝑘.

Define 𝑅𝑖𝑗
𝑘 as follows:

Jim Anderson (modified by Nathan Otterness) 10

𝑅𝑖𝑗
𝑘 = 𝑅𝑖𝑘

𝑘−1 𝑅𝑘𝑘
𝑘−1 ∗

𝑅𝑘𝑗
𝑘−1 ∪ 𝑅𝑖𝑗

𝑘−1

𝑅𝑖𝑗
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 , if 𝑖 ≠ 𝑗

𝑅𝑖𝑖
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑖 ∪ 𝜀

Proof of Theorem 3.4, continued

Define 𝑅𝑖𝑗
𝑘 as follows:

Jim Anderson (modified by Nathan Otterness) 11

𝑅𝑖𝑗
𝑘 = 𝑅𝑖𝑘

𝑘−1 𝑅𝑘𝑘
𝑘−1 ∗

𝑅𝑘𝑗
𝑘−1 ∪ 𝑅𝑖𝑗

𝑘−1

𝑅𝑖𝑗
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 , if 𝑖 ≠ 𝑗

𝑅𝑖𝑖
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑖 ∪ 𝜀

To get from 𝑞𝑖 to 𝑞𝑗,

potentially through 𝑞𝑘…

Start with strings that get
from 𝑞𝑖 to 𝑞𝑘 through
states lower than 𝑘…. Followed by any

number of strings that
cycle back to state 𝑞𝑘…

Followed by strings that
get from state 𝑞𝑘 to 𝑞𝑗.

Also include strings that go
from 𝑞𝑖 to 𝑞𝑗 without going

through 𝑞𝑘.

𝑅𝑖𝑗
𝑘 ≡ all strings that take us

from 𝑞𝑖 to 𝑞𝑗 without entering

a state higher than 𝑞𝑘.

Proof of Theorem 3.4, continued

 Let 𝑅𝑖𝑗
𝑘 ≡ all strings that take us from 𝑞𝑖 to 𝑞𝑗

without entering a state higher than 𝑞𝑘.

Define 𝑅𝑖𝑗
𝑘 as follows:

Jim Anderson (modified by Nathan Otterness) 12

𝑅𝑖𝑗
𝑘 = 𝑅𝑖𝑘

𝑘−1 𝑅𝑘𝑘
𝑘−1 ∗

𝑅𝑘𝑗
𝑘−1 ∪ 𝑅𝑖𝑗

𝑘−1

𝑅𝑖𝑗
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 , if 𝑖 ≠ 𝑗

𝑅𝑖𝑖
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑖 ∪ 𝜀

Strings that go
directly from 𝑞𝑖 to 𝑞𝑗.

These are the symbols that
cause transitions from 𝑞𝑖 to 𝑞𝑗.

Proof of Theorem 3.4, continued

 Let 𝑅𝑖𝑗
𝑘 ≡ all strings that take us from 𝑞𝑖 to 𝑞𝑗

without entering a state higher than 𝑞𝑘.

Define 𝑅𝑖𝑗
𝑘 as follows:

Jim Anderson (modified by Nathan Otterness) 13

𝑅𝑖𝑗
𝑘 = 𝑅𝑖𝑘

𝑘−1 𝑅𝑘𝑘
𝑘−1 ∗

𝑅𝑘𝑗
𝑘−1 ∪ 𝑅𝑖𝑗

𝑘−1

𝑅𝑖𝑗
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 , if 𝑖 ≠ 𝑗

𝑅𝑖𝑖
0 = 𝑎 | 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑖 ∪ 𝜀

Strings that loop
from 𝑞𝑖 back to 𝑞𝑖.

Proof of Theorem 3.4, continued

Claim: There exists a regular expression 𝑟𝑖𝑗
𝑘 denoting 𝑅𝑖𝑗

𝑘 .

We will prove this by induction on 𝑘.

Basis: 𝑘 = 0

Let 𝐴 ≡ 𝑎1, 𝑎2, … , 𝑎𝑝 denote the symbols that take 𝑞𝑖 to
𝑞𝑗. Then,

Jim Anderson (modified by Nathan Otterness) 14

𝒂𝟏 + 𝒂𝟐 + ⋯ + 𝒂𝒑 , if 𝐴 ≠ ∅ and 𝑖 ≠ 𝑗

∅ , if 𝐴 = ∅ and 𝑖 ≠ 𝑗

𝒂𝟏 + 𝒂𝟐 + ⋯ + 𝒂𝒑 + 𝜀 , if 𝐴 ≠ ∅ and 𝑖 = 𝑗

𝜀 , if 𝐴 = ∅ and 𝑖 = 𝑗

𝑟𝑖𝑗
0 =

Proof of Theorem 3.4, continued

Claim: There exists a regular expression 𝑟𝑖𝑗
𝑘 denoting 𝑅𝑖𝑗

𝑘 .

We will prove this by induction on 𝑘.

Inductive step: 𝑘 > 0.

In this case,

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑘

𝑘−1 𝑟𝑘𝑘
𝑘−1 ∗

𝑟𝑘𝑗
𝑘−1 + 𝑟𝑖𝑗

𝑘−1

Jim Anderson (modified by Nathan Otterness) 15

Proof of Theorem 3.4, continued

Claim: There exists a regular expression 𝑟𝑖𝑗
𝑘 denoting 𝑅𝑖𝑗

𝑘 .

We will prove this by induction on 𝑘.

Inductive step: 𝑘 > 0.

In this case,

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑘

𝑘−1 𝑟𝑘𝑘
𝑘−1 ∗

𝑟𝑘𝑗
𝑘−1 + 𝑟𝑖𝑗

𝑘−1

Jim Anderson (modified by Nathan Otterness) 16

The inductive hypothesis lets us assume that we
already have these regular expressions!

Proof of Theorem 3.4, continued

Finishing up:

We still need to show that we can construct a regular
expression that matches 𝐿 𝑀 .

We note that 𝐿 𝑀 = 𝑞𝑗∈𝐹ڂ 𝑅1𝑗
𝑛

Therefore, 𝐿 𝑀 is denoted by the regular expression:

𝑟1𝑗1

𝑛 + 𝑟1𝑗2

𝑛 + ⋯ + 𝑟1𝑗𝑝

𝑛 , where 𝐹 = 𝑞𝑗1
, 𝑞𝑗2

, … , 𝑞𝑗𝑝
.

Jim Anderson (modified by Nathan Otterness) 17

Any string that takes us from state
𝑞1 to 𝑞𝑗, where 𝑞𝑗 is a final state.

Example: DFA to Regular Expression

Jim Anderson (modified by Nathan Otterness) 18

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑟11
𝑘 𝜀

𝑟12
𝑘 𝟎

𝑟13
𝑘 𝟏

𝑟21
𝑘 ∅

𝑟22
𝑘 𝟎 + 𝟏 + 𝜀

𝑟23
𝑘 ∅

𝑟31
𝑘 ∅

𝑟32
𝑘 ∅

𝑟33
𝑘 𝟎 + 𝟏 + 𝜀

𝒂𝟏 + 𝒂𝟐 + ⋯ + 𝒂𝒑 , if 𝐴 ≠ ∅ and 𝑖 ≠ 𝑗

∅ , if 𝐴 = ∅ and 𝑖 ≠ 𝑗
𝒂𝟏 + 𝒂𝟐 + ⋯ + 𝒂𝒑 + 𝜀 , if 𝐴 ≠ ∅ and 𝑖 = 𝑗

𝜀 , if 𝐴 = ∅ and 𝑖 = 𝑗

𝑟𝑖𝑗
0 =

If 𝐴 is the set of symbols going from 𝑞𝑖 to 𝑞𝑗:

Example: DFA to Regular Expression

Jim Anderson (modified by Nathan Otterness) 19

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑟11
𝑘 𝜀 𝜀

𝑟12
𝑘 𝟎 𝟎

𝑟13
𝑘 𝟏 𝟏

𝑟21
𝑘 ∅ ∅

𝑟22
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀

𝑟23
𝑘 ∅ ∅

𝑟31
𝑘 ∅ ∅

𝑟32
𝑘 ∅ ∅

𝑟33
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑘

𝑘−1 𝑟𝑘𝑘
𝑘−1 ∗

𝑟𝑘𝑗
𝑘−1 + 𝑟𝑖𝑗

𝑘−1

Example: DFA to Regular Expression

Jim Anderson (modified by Nathan Otterness) 20

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑟11
𝑘 𝜀 𝜀 𝜀

𝑟12
𝑘 𝟎 𝟎 𝟎 𝟎 + 𝟏 ∗

𝑟13
𝑘 𝟏 𝟏 𝟏

𝑟21
𝑘 ∅ ∅ ∅

𝑟22
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 ∗

𝑟23
𝑘 ∅ ∅ ∅

𝑟31
𝑘 ∅ ∅ ∅

𝑟32
𝑘 ∅ ∅ ∅

𝑟33
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑘

𝑘−1 𝑟𝑘𝑘
𝑘−1 ∗

𝑟𝑘𝑗
𝑘−1 + 𝑟𝑖𝑗

𝑘−1

Example: DFA to Regular Expression

Jim Anderson (modified by Nathan Otterness) 21

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑟11
𝑘 𝜀 𝜀 𝜀 𝜀

𝑟12
𝑘 𝟎 𝟎 𝟎 𝟎 + 𝟏 ∗ 𝟎 𝟎 + 𝟏 ∗

𝑟13
𝑘 𝟏 𝟏 𝟏 𝟏 𝟎 + 𝟏 ∗

𝑟21
𝑘 ∅ ∅ ∅ ∅

𝑟22
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 ∗ 𝟎 + 𝟏 ∗

𝑟23
𝑘 ∅ ∅ ∅ ∅

𝑟31
𝑘 ∅ ∅ ∅ ∅

𝑟32
𝑘 ∅ ∅ ∅ ∅

𝑟33
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 ∗

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑘

𝑘−1 𝑟𝑘𝑘
𝑘−1 ∗

𝑟𝑘𝑗
𝑘−1 + 𝑟𝑖𝑗

𝑘−1

Example: DFA to Regular Expression

Jim Anderson (modified by Nathan Otterness) 22

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑟11
𝑘 𝜀 𝜀 𝜀 𝜀

𝑟12
𝑘 𝟎 𝟎 𝟎 𝟎 + 𝟏 ∗ 𝟎 𝟎 + 𝟏 ∗

𝑟13
𝑘 𝟏 𝟏 𝟏 𝟏 𝟎 + 𝟏 ∗

𝑟21
𝑘 ∅ ∅ ∅ ∅

𝑟22
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 ∗ 𝟎 + 𝟏 ∗

𝑟23
𝑘 ∅ ∅ ∅ ∅

𝑟31
𝑘 ∅ ∅ ∅ ∅

𝑟32
𝑘 ∅ ∅ ∅ ∅

𝑟33
𝑘 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 + 𝜀 𝟎 + 𝟏 ∗

The expression taking us
from 𝑞1 to 𝑞2 through
states up to 𝑞3 is 𝑟12

3 :
𝟎 𝟎 + 𝟏 ∗

Comments on this Approach

 This approach is an example of dynamic programming,
a COMP 550 topic.

 For an 𝑛-state DFA, this approach may produce a
regular expression with 4𝑛 symbols!

 Section 3.2.2 of the book presents a more efficient
method.

Jim Anderson (modified by Nathan Otterness) 23

From Regular Expressions to 𝜀-NFAs

Theorem 3.7 (reworded): If 𝑅 is a regular expression,
𝐿 𝑅 = 𝐿 𝐸 for some NFA with 𝜀-transitions 𝐸.

 We will construct 𝐸 with one final state and no
transitions out of that state.

 We will do this by induction on the number of
operators in 𝑅.

Jim Anderson (modified by Nathan Otterness) 24

Proof of Theorem 3.7

Base case: 𝑅 has no operators. There are three
possibilities here:

 𝑅 = 𝜀 𝐸:

 𝑅 = ∅ 𝐸:

 𝑅 = 𝒂 𝐸:

Jim Anderson (modified by Nathan Otterness) 25

Proof of Theorem 3.7, continued

Inductive step:

We now need to handle the three regular-expression
operators:

 Union (𝑅1 + 𝑅2)

 Concatenation (𝑅1𝑅2)

 Closure (𝑅1
∗)

Jim Anderson (modified by Nathan Otterness) 26

Proof of Theorem 3.7, continued

Inductive step: Union: 𝑅 = 𝑅1 + 𝑅2

We can assume by the inductive hypothesis that we
already have 𝜀-NFAs 𝐸1 and 𝐸2 accepting the same
languages as 𝑅1 and 𝑅2. Construct the 𝜀-NFA 𝐸 to
accept the same language as 𝑅 like this:

Jim Anderson (modified by Nathan Otterness) 27

𝐸1

𝐸2

Proof of Theorem 3.7, continued

Inductive step: Concatenation: 𝑅 = 𝑅1𝑅2

Once again, assume 𝐸1 and 𝐸2 are 𝜀-NFAs accepting
the same languages as 𝑅1 and 𝑅2. Construct the 𝜀-
NFA 𝐸 to accept the same language as 𝑅 like this:

Jim Anderson (modified by Nathan Otterness) 28

𝐸1

 𝐸2

Proof of Theorem 3.7, continued

Inductive step: Closure: 𝑅 = 𝑅1
∗

Assume 𝐸1 is an 𝜀-NFA accepting the same language as
𝑅1. Construct the 𝜀-NFA 𝐸 to accept the same language
as 𝑅 like this:

Jim Anderson (modified by Nathan Otterness) 29

𝐸1

Example Regular Expression Conversion

We’ll convert the regular expression 𝟎 𝟎 + 𝟏 ∗ to an
NFA with 𝜀-transitions.

Jim Anderson (modified by Nathan Otterness) 30

𝟎:

𝟏:

𝟎 + 𝟏:

Example Regular Expression Conversion

Jim Anderson (modified by Nathan Otterness) 31

𝟎 + 𝟏:

𝟎 + 𝟏 ∗:

Example Regular Expression Conversion

Jim Anderson (modified by Nathan Otterness) 32

𝟎 𝟎 + 𝟏 ∗:

𝟎 + 𝟏 ∗:

Example Regular Expression Conversion

Jim Anderson (modified by Nathan Otterness) 33

𝟎 𝟎 + 𝟏 ∗:

Note: A much simpler machine exists.

