Regular Expressions

COMP 455 - 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Regular Expressions

» Regular expressions are simply algebraic notation
for defining languages.

» A regular expression defines a language.

» In practice, regular expressions can usually define
languages in a concise “user-friendly” manner.

% At least compared to describing a finite
automaton...

Jim Anderson (modified by Nathan Otterness) 2

Definition of Regular Expressions

» Regular expressions are defined by taking the union,
concatenation, and closure of languages.

«Union: Ly UL, ={x|x € Lyorx € L,}
< Concatenation: L,L, ={xy|x € Lyandy € L,}
+ Closure (“Kleene closure”): L* = U;s, L', where:
ALl = {¢}
QL =1L

QL' = the concatenation of i copies of L

Jim Anderson (modified by Nathan Otterness) 3

Kleene Closure: Example

» Let language L = {00, 11}.

» (From the previous definition) L' represents i strings
from L concatenated together.

«L* ={0000,0011,1100,1111}
« L3 ={000000,000011,001100, ...}

» L* is any number of strings from L concatenated
together.

«L*={¢00,11,0000,0011,1111,000000, ... }

Jim Anderson (modified by Nathan Otterness) 4

Definition of Regular Expressions

Regular expressions are formally recursively defined

(for an alphabet 2): Note that we will
1. @is aregular expression denoting the empty set. use bold characters
. . . / for literal symbols in
2. €is aregular expression denoting {¢}. regular expressions.
- . .
3. For each a € 3, [alis a regular expression denoting {a}.
4. If E and F are regular expressions denoting L(E) and

L(F) (respectively), then:
(E + F) is a regular expression denoting L(E) U L(F)
(EF) is a regular expression denoting L(E)L(F)

(E*) is a regular expression denoting L(E)".

Jim Anderson (modified by Nathan Otterness) 5

Example Regular Expressions

(The following examples assume X = {0, 1}.)
» 01

+The language consisting only of the string 01.
»0+1

+The language consisting of the strings {0, 1}.
» 01+ 10

< The language consisting of the strings {01, 10}.

Jim Anderson (modified by Nathan Otterness) 6

Example Regular Expressions

(The following examples assume X~ = {0, 1}.)
> 10(0 + 1)

< The language consisting of {100, 101}.
» 10(0 + 1)

< The language consisting of all strings that start

with 10 and are followed by any number of Os or
1s.

» 10(0+1)" + ¢

+The same language as above, but also containing
the empty string.

Jim Anderson (modified by Nathan Otte 7

Finite Automata and Regular Expressions

Regular expressions and finite automata define the

same class of languages.
This is by our proof of

Theorem 2.22 — the book
instead goes directly from
e-NFAs to DFAs.

Theorem 2.11 | Theorem 2.22 |

|Theorem 3.4 Regular [Theorem 3.7|

Expressions

The rest of this presentation covers these proofs.

Jim Anderson (modified by Nathan Otterness)

From DFAs to Regular Expressions

Theorem 3.4: If L = L(M) for some DFA M, then a
regular expression R exists for which L = L(R).

Proof:

e _
» Let M = {{q1,95,..,9,). %, 6,1, F}

» Let R{‘j = all strings that take us from g; to g;
without entering a state higher than g,.

Y
Jim Anderson (modified by Nathan Otterness) NO State “ h]- gher’, than k

We can re-label any set
of states to start with q;.

Note: R;; = all strings that
go from state q; to q;.

Proof of Theorem 3.4, continued

» Let R{‘j = all strings that take us from g; to q;
without entering a state higher than gq,.

Define R{‘j as follows:

k _ _ AN R _
Rij — lek 1(Rll§k1) le{j tU lej '
R?j = {a | 6(q;,a) = qj}, ifi +j
RY = {a|6(g;a) = q;}u{e}

Jim Anderson (modified by Nathan Otterness) 10

R{‘j = all strings that take us

Proof of Theorem 3.4, continued |[ESERR T

a state higher than q.

Start with strings that get

from g; to gy through
states lower than k....

Followed by any

number of strings that
cycle back to state gy...

Define R{‘j as follows:
Followed by strings that

To get from q; to q;, get from state g, to g;.
potentially through gy... /
Also include strings that go
‘R{(k_ll(Rllglzl)*‘le{_l‘U R{(_ from gq; to q; without going
J through gq.
0 __ . el .
Ry = {a|8(q;,a) = q;},if i #j

5= ta|d(q;a) =q;}uiel

xJ
o
|

Jim Anderson (modified by Nathan Otterness) 11

Proof of Theorem 3.4, continued

» Let R{‘j = all strings that take us from g; to q;
without entering a state higher than gq,.

Define R{‘j as follows:

Strings that go

. These are the symbols that
directly from g; to q;.

cause transitions from g; to q;.

= 1a|8(gi,a) = q;3 U 1e}

Jim Anderson (modified by Nathan Otterness) 12

Proof of Theorem 3.4, continued

» Let R{‘j = all strings that take us from g; to q;
without entering a state higher than gq,.

Define R{‘j as follows:

from q; back to g;.
Rfj = RETM(RE) RETT URE™
R?j = {a | 6(q;,a) = qj}, ifi +j
= ta|8(qi,a) = q;3 U {e}

Jim Anderson (modified by Nathan Otterness) 13

Proof of Theorem 3.4, continued

i

Claim: There exists a regular expression rl-'} denoting R;;.

We will prove this by induction on k.

Basis: k =0
LetA = {al, a, ..., ap} denote the symbols that take g; to
q;. Then,
fa1+a2+---+ap ,ifAi(Z)andiij
0_)@ JifA=0and i #j

a;+a; +--+a,+¢ ,ifA#¥@andi=j

s JifA=0Qandi =

Jim Anderson (modified by Nathan Otterness) 14

Proof of Theorem 3.4, continued

k

Claim: There exists a regular expression ri’} denoting R;;.

We will prove this by induction on k.
Inductive step: k > 0.
In this case,

k _ . k—1(..k-1*..k—-1 k—1
Tij = Tik (re)Tkj + 1)

Jim Anderson (modified by Nathan Otterness) 15

Proof of Theorem 3.4, continued

i

Claim: There exists a regular expression rl-'} denoting R;;.

We will prove this by induction on k.
Inductive step: k > 0.
In this case,

The inductive hypothesis lets us assume that we
already have these regular expressions!

Jim Anderson (modified by Nathan Otterness) 16

Proof of Theorem 3.4, continued

Finishing up:

We still need to show that we can construct a regular
expression that matches L(M).

— n Any string that takes us from state
We note that L (M) U q;eF Rl] q:1 to qj, where q; is a final state.

Therefore, L(M) is denoted by the regular expression:

n n n —
T e Tij, where F = {qjl, s s q]-p}.

Jim Anderson (modified by Nathan Otterness) 17

Example: DFA to Regular Expression

0,1

=~
|
=~
|
p—
=~
|
\O)
=~
|
W

=)
+
S O = O =R O M

+
0]

If A is the set of symbols going from g; to g;:
a; +a; +--+a, JifA#=Qandi #j
0+1+¢ 1) JifA=0andi #j

w‘
S

N NN NI

ar+a;+-+a,+e, ifA=@andi=j
s JifA=0Qandi =]

Jim Anderson (modified by Nathan Otterness)

Example: DFA to Regular Expression

0,1

=~
|
)
=~
|
p—
=~
|
\O)
=~
|
o8

TN DIINNINDN DR
W [N [N [N [P [P [P
HHHH . HHI

ﬁ
o=

1S

1S

=
w
H

0O+1+¢ O0+1+c¢

Jim Anderson (modified by Nathan Otterness)

Example: DFA to Regular Expression

0 0 0(0 + 1)*
: : :
0+1+e O+1+¢ (0+1)
: : :
: : :
: : :
A 0+1+e 0+1+e O+1+¢

Jim Anderson (modified by Nathan Otterness)

Example: DFA to Regular Expression

B k=1 k=2 k=3 0,1
0 0 000+1)* 00+1)"

1 1 1 100 + 1)

: : : :

0+1+e O+1+e (0+1) (0+1)

: : : :

: : : :

: : : :

0+1+e O+1+e O+1+4+e (0+1)

Jim Anderson (modified by Nathan Otterness)

Example: DFA to Regular Expression

B k=1 k=2 k=3 0,1
0 0 000+ 1) [0(0+1)°]
i 1 1 1 1(0 + 1)*
: : : :
0+1+e O+1+e (0+1) (0+1)
0 0 0 0
0 0 0 0 The expression taking us
0 ? ? @ from g, to g, through
0O+1+¢ O0+14+4¢ O0+1+e (0+1) states up to qs is 175:

0(0 +1)"

Jim Anderson (modified by Nathan Otterness)

Comments on this Approach

» This approach is an example of dynamic programming,
a COMP 550 topic.

» For an n-state DFA, this approach may produce a
regular expression with 4" symbols!

» Section 3.2.2 of the book presents a more efficient
method.

Jim Anderson (modified by Nathan Otterness) 23

From Regular Expressions to e-NFAs

Theorem 3.7 (reworded): If R is a regular expression,
L(R) = L(E) for some NFA with e-transitions E.

» We will construct E with one final state and no
transitions out of that state.

» We will do this by induction on the number of
operators in R.

Jim Anderson (modified by Nathan Otterness) 24

Proof of Theorem 3.7

Base case: R has no operators. There are three
possibilities here:

vr=e B (o)
»R=a E: Start ° -

Jim Anderson (modified by Nathan Otterness) 25

Proof of Theorem 3.7, continued

Inductive step:

We now need to handle the three regular-expression
operators:

» Union (R + R,)
» Concatenation (R R;)
» Closure (R7)

Jim Anderson (modified by Nathan Otterness) 26

Proof of Theorem 3.7, continued

Inductive step: Union: R = R; + R,

We can assume by the inductive hypothesis that we
already have e-NFAs E; and E, accepting the same
languages as R, and R,. Construct the e-NFA E to
accept the same language as R like this:

Jim Anderson (modified by Nathan Otterness) 27

Proof of Theorem 3.7, continued

Inductive step: Concatenation: R = R{R,

Once again, assume E; and E, are e-NFAs accepting
the same languages as R; and R,. Construct the &-
NFA E to accept the same language as R like this:

e

Jim Anderson (modified by Nathan Otterness) 28

Proof of Theorem 3.7, continued

Inductive step: Closure: R = R;]

Assume E; is an e-NFA accepting the same language as
R;. Construct the e-NFA E to accept the same language
as R like this: &

Jim Anderson (modified by Nathan Otterness) 29

Example Regular Expression Conversion

We'll convert the regular expression 0(0 + 1)* to an
NFA with e-transitions.

0: Start
1: Start ° !

0+1: St

Jim Anderson (modified by Nathan Otterness) 30

Example Regular Expression Conversion

Example Regular Expression Conversion

Jim Anderson (modified by Nathan Otterness) 32

Example Regular Expression Conversion

Note: A much simpler machine exists.

Jim Anderson (modified by Nathan Otterness) 33

