
Properties of Regular 
Languages

COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1



The tool used for proving that a language 
is not regular is the Pumping Lemma.

Jim Anderson (modified by Nathan Otterness) 2

What Languages Aren’t Regular?



The Pumping Lemma

Theorem 4.1 (the Pumping Lemma for regular languages):

Let 𝐿 be a regular language.  Then there exists a constant 
𝑛 (which depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 
𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧 such that

i. 𝑤 = 𝑥𝑦𝑧,

ii. 𝑥𝑦 ≤ 𝑛,

iii. 𝑦 ≥ 1, and

iv. for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.

Jim Anderson (modified by Nathan Otterness) 3



Proof of the Pumping Lemma

 Since 𝐿 is regular, it is accepted by some DFA 𝑀.

 Let 𝑛 = the number of states in 𝑀.

 Pick any 𝑤 ∈ 𝐿, where 𝑤 > 𝑛.

 By the pigeonhole principle, 𝑀 must repeat a state 
when processing the first 𝑛 symbols in 𝑤.

Jim Anderson (modified by Nathan Otterness) 4

Theorem 4.1: Let 𝐿 be a regular language.  Then there exists a constant 𝑛 (which 
depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧
such that (i) 𝑤 = 𝑥𝑦𝑧, (ii) 𝑥𝑦 ≤ 𝑛, (iii) 𝑦 ≥ 1, and (iv) for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.



Proof of the Pumping Lemma

𝑀 must repeat a state, 𝑞, when processing the first 𝑛
symbols of input 𝑤.

Define strings 𝑥, 𝑦, and 𝑧 as in this figure:

Jim Anderson (modified by Nathan Otterness) 5

Theorem 4.1: Let 𝐿 be a regular language.  Then there exists a constant 𝑛 (which 
depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧
such that (i) 𝑤 = 𝑥𝑦𝑧, (ii) 𝑥𝑦 ≤ 𝑛, (iii) 𝑦 ≥ 1, and (iv) for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.

𝑦

𝑞0 𝑞Start
𝑥 𝑧



Proof of the Pumping Lemma

The second occurrence of state 𝑞 must occur within 
the first 𝑛 symbols of 𝑤, so 𝑥𝑦 ≤ 𝑛. Also, 𝑦 ≥ 1.

It must be possible to repeat the “𝑦-loop” 0 or more 
times, and the resulting string will still be accepted.

Therefore, 𝑥𝑦𝑘𝑧 ∈ 𝐿, for any 𝑘 ≥ 0.

Jim Anderson (modified by Nathan Otterness) 6

Theorem 4.1: Let 𝐿 be a regular language.  Then there exists a constant 𝑛 (which 
depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧
such that (i) 𝑤 = 𝑥𝑦𝑧, (ii) 𝑥𝑦 ≤ 𝑛, (iii) 𝑦 ≥ 1, and (iv) for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.

𝑦

𝑞0 𝑞Start
𝑥 𝑧



Using the Pumping Lemma

 To show that a language 𝐿 is not regular, show that 
the conditions of the Pumping Lemma do not hold.

 Formally, the Pumping Lemma says:
∃𝑛

∷ ൬

൰

∀𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∃𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∀𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∈ 𝐿

Jim Anderson (modified by Nathan Otterness) 7



Using the Pumping Lemma

 To show that a language 𝐿 is not regular, show that 
the conditions of the Pumping Lemma do not hold.

 The negation of the Pumping Lemma is:
∀𝑛

∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿

Jim Anderson (modified by Nathan Otterness) 8



Using the Pumping Lemma

∀𝑛

∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿

Show that this statement is true for 𝐿 to show that 𝐿
is not a regular language!

Jim Anderson (modified by Nathan Otterness) 9

No matter what 𝑛 is…

We can find a string 𝑤 longer than 𝑛 in 𝐿…

Where no matter how 𝑤 is divided into 
substrings 𝑥, 𝑦, and 𝑧 (with some constraints)…

We can find a value 𝑘 for which 𝑥𝑦𝑘𝑧 is not in 𝐿.



Using the Pumping Lemma: Example

 Consider the language 0𝑖
2
, where 𝑖 ≥ 1.

 We want to prove that this language is not regular.

 We need to show that ∀𝑛 ∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛 ∷

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1 ∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿 is 

true for 𝐿.

 The proof is like a game with an adversary:

❖The adversary makes the “∀” choices.

❖We make the “∃” choices.

Jim Anderson (modified by Nathan Otterness) 10



Using the Pumping Lemma: Example

 𝐿 = 0𝑖
2
| 𝑖 ≥ 1

 Assume 𝐿 is regular (this will be a proof 
by contradiction).

 Select any 𝑛.

 Let 𝑤 = 0𝑛
2
.

 Select any 𝑥𝑦𝑧 where 𝑤 = 𝑥𝑦𝑧, 𝑥𝑦 ≤ 𝑛, and 𝑦 ≥ 1.

 This implies that 1 ≤ 𝑦 ≤ 𝑛.

 Let 𝑘 = 2.  This means that 𝑥𝑦𝑘𝑧 has 𝑛2 + 𝑦 0s.

Jim Anderson (modified by Nathan Otterness) 11

∀𝑛

∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿



Using the Pumping Lemma: Example

 (Reminder) 𝐿 = 0𝑖
2
| 𝑖 ≥ 1

 Let 𝑘 = 2.  This means that 𝑥𝑦𝑘𝑧 has 𝑛2 + 𝑦 0s.

 𝑤 has 𝑛2 0s, and any entry in 𝐿 longer than 𝑤 must 
have at least 𝑛 + 1 2 0s.

 𝑛2 < 𝑛2 + 1 ≤ 𝑛2 + 𝑦 ≤ 𝑛2 + 𝑛 < 𝑛2 + 2𝑛 + 1.

 So, 𝑥𝑦𝑘𝑧 ∉ 𝐿, contradicting the Pumping Lemma.

Jim Anderson (modified by Nathan Otterness) 12

The length 
of 𝑤 (in 𝐿)

The length of 
𝑥𝑦2𝑧 if 𝑦 = 1.

The length 
of 𝑥𝑦2𝑧

The length of 
𝑥𝑦2𝑧 if 𝑦 = 𝑛.

= 𝑛 + 1 2, the length 
of the next string in 𝐿.



Using the Pumping Lemma: 2nd Example

 Consider the language 𝐿 =
𝑥 | 𝑥 contains an equal number of 0s and 1s

 Is 𝐿 regular?

Jim Anderson (modified by Nathan Otterness) 13



Using the Pumping Lemma: 2nd Example

 𝐿 = 𝑥 | 𝑥 contains an equal number of 0s and 1s

 Define 𝑤 = 0𝑛1𝑛 for an arbitrary 𝑛. (𝑤 ∈ 𝐿)

 No matter how 𝑤 is divided into 𝑥, 𝑦, and 𝑧, 𝑦 must 
consist solely of 0s because 𝑥𝑦 ≤ 𝑛 and 𝑦 ≠ 𝜀.

 Therefore, 𝑥𝑦0𝑧 has fewer 0s than 1s and is not in 𝐿.

❖In this case, 𝑘 = 0.

❖This proof would also work with any 𝑘 ≥ 2, 
because 𝑥𝑦𝑘𝑧 would have more 0s than 1s.

Jim Anderson (modified by Nathan Otterness) 14



Closure Properties

 A closure property of regular languages is a 
property that, when applied to a regular language, 
results in another regular language.

❖Union and intersection are examples of closure 
properties.

 We will demonstrate several useful closure 
properties of regular languages.

 Closure properties can also be useful for proving 
that languages aren’t regular.

Jim Anderson (modified by Nathan Otterness) 15



Closure under Union

Theorem 4.4: If 𝑀 and 𝑁 are regular languages, then 
𝑀 ∪𝑁 is a regular language.

Proof: Say that 𝑅 and 𝑆 are regular expressions where 
𝐿 𝑅 = 𝑀 and 𝐿 𝑆 = 𝑁.  Construct a regular expression 
𝑅 + 𝑆 .  This matches 𝑀 ∪ 𝑁.  Since a regular 

expression exists for 𝑀 ∪𝑁, 𝑀 ∪ 𝑁 is a regular language.

Note: The proofs for concatenation and Kleene closure 
are similar.

Jim Anderson (modified by Nathan Otterness) 16



Closure under Complementation

 If 𝐿 ⊆ Σ∗, then the complement of 𝐿, denoted ത𝐿, is 
Σ∗ − 𝐿.

 Theorem 4.5: If 𝐿 is a regular language over Σ, then 
ത𝐿 is also a regular language.

 Proof sketch for Theorem 4.5:

1. Construct a DFA for 𝐿

2. This can be transformed into a DFA for ത𝐿 by 
making all accepting states non-accepting and 
vice versa.

3. This can be proven correct by induction.

Jim Anderson (modified by Nathan Otterness) 17



Closure under Intersection

Theorem 4.8: If 𝑀 and 𝑁 are regular languages, then 
𝑀 ∩𝑁 is a regular language.

Proof: 𝑀 ∩𝑁 = ഥ𝑀 ∪ ഥ𝑁.

The book contains a more direct proof. The basic idea 
is to construct a DFA with states labeled 𝑝, 𝑞 where 
𝑝 tracks the state of a DFA for 𝑀 and 𝑞 tracks the 
state of a DFA for 𝑁.

Jim Anderson (modified by Nathan Otterness) 18



Closure under Difference

 𝑀 −𝑁 ≡ 𝑥 | 𝑥 ∈ 𝑀 ∧ 𝑥 ∉ 𝑁

 Theorem 4.10: If 𝑀 and 𝑁 are regular, then so is 
𝑀 −𝑁.

 Proof: 𝑀 −𝑁 = 𝑀 ∩ ഥ𝑁.

Jim Anderson (modified by Nathan Otterness) 19



Closure under Reversal

 The reversal of 𝐿, written 𝐿𝑅 is 𝑥 | 𝑥𝑅 ∈ 𝐿 (𝑥𝑅 is 
the string 𝑥 written backwards).

 Theorem 4.11: If 𝐿 is regular, then so is 𝐿𝑅.

Jim Anderson (modified by Nathan Otterness) 20



Proof Sketch for Theorem 4.11

 Start with a DFA for 𝐿.

 Construct an 𝜀-NFA for 𝐿𝑅 as follows:

1. Reverse all of the transitions in the DFA

2. Make the DFA’s start state the only accepting 
state.

3. Create a new start state with 𝜀-transitions to all 
of the original accepting states.

 This can be proven correct by induction.

 (The book proves Theorem 4.11 by reasoning 
about regular expressions.)

Jim Anderson (modified by Nathan Otterness) 21



Example: Reversal of a DFA

 A DFA for 𝐿:

Jim Anderson (modified by Nathan Otterness) 22

      

 

 

 

 

 
 

     

 An NFA with 𝜀-
transitions for 𝐿𝑅:       

  

 

 

  
 

 

     

  

q0
′



Homomorphisms

 A homomorphism maps symbols in an alphabet Σ to 
strings over a different alphabet, Δ.

 Example:

❖Σ = 0, 1 , Δ = a, b

❖ℎ 0 = ab, ℎ 1 = 𝜀

 Homomorphisms can be extended to strings:

❖ℎ 𝜀 = 𝜀

❖ℎ 𝑥𝑎 = ℎ 𝑥 ℎ 𝑎 , for string 𝑥 and symbol 𝑎

 Homomorphisms can be extended to languages:

❖ If 𝐿 is a language, ℎ 𝐿 = 𝑥∈𝐿ڂ ℎ 𝑥

Jim Anderson (modified by Nathan Otterness) 23



Homomorphism Example

 Σ = 0, 1 , Δ = a, b

 ℎ 0 = ab, ℎ 1 = 𝜀

 Homomorphism of a string:

❖ℎ 0011 = abab

 Homomorphism of a language:

❖ℎ 𝟏𝟎∗𝟏 = 𝐚𝐛 ∗

Jim Anderson (modified by Nathan Otterness) 24



Closure under Homomorphism

Theorem 4.14: If 𝐿 is a regular language over Σ, and 
ℎ: Σ → Δ∗ is a homomorphism, then ℎ 𝐿 is also a 
regular language.

Proof:

 Let 𝐿 = 𝐿 𝑅 be the language defined by some 
regular expression 𝑅.

 Replace each symbol 𝑎 in 𝑅 by ℎ 𝑎 .  Call the 
resulting regular expression ℎ 𝑅 .

 We will prove 𝐿 ℎ 𝑅 = ℎ 𝐿 .

Jim Anderson (modified by Nathan Otterness) 25



Proof that 𝐿 ℎ 𝑅 = ℎ 𝐿

 Let 𝐸 be a subexpression of 𝑅.

 Claim: 𝐿 ℎ 𝐸 = ℎ 𝐿 𝐸 .

 We will prove this by induction on the number of 
operators in 𝐸.

 Base case: 𝐸 is 𝜀, ∅, or 𝐚, where 𝑎 ∈ Σ.

❖The only interesting case is where 𝐸 is a single-

character regular expression, so ℎ 𝐿 𝐸 = ℎ 𝑎 .

❖ℎ 𝐸 is a regular expression for the same string 

ℎ 𝑎 , so ℎ 𝐿 𝐸 = 𝐿 ℎ 𝐸 .
Jim Anderson (modified by Nathan Otterness) 26



Proof that 𝐿 ℎ 𝑅 = ℎ 𝐿 , continued

 Inductive step: 𝐸 has at least one operator, and 
therefore has the form 𝐹 + 𝐺, 𝐹𝐺, or 𝐹∗.

 Proof for +:

Jim Anderson (modified by Nathan Otterness) 27

= 𝐿 ℎ 𝐹 + ℎ 𝐺 , by the definition of ℎ for reg. exps

= 𝐿 ℎ 𝐹 ∪ 𝐿 ℎ 𝐺 , by the definition of the + operator.

𝐿 ℎ 𝐸

= ℎ 𝐿 𝐹 ∪ 𝐿 𝐺 , since 𝐿 𝐸 = 𝐿 𝐹 ∪ 𝐿 𝐺 .

= ℎ 𝐿 𝐹 ∪ ℎ 𝐿 𝐺 , since ℎ is applied to individual strings.

ℎ 𝐿 𝐸



Proof that 𝐿 ℎ 𝑅 = ℎ 𝐿 ,continued

 We have shown the following properties are true for 
the + operator:

❖ℎ 𝐿 𝐸 = ℎ 𝐿 𝐹 ∪ ℎ 𝐿 𝐺

❖𝐿 ℎ 𝐸 = 𝐿 ℎ 𝐹 ∪ 𝐿 ℎ 𝐺

 To conclude the proof for the + operator, we note 

that ℎ 𝐿 𝐹 = 𝐿 ℎ 𝐹 and ℎ 𝐿 𝐺 = 𝐿 ℎ 𝐺 by 

the inductive hypothesis.  So, ℎ 𝐿 𝐸 = 𝐿 ℎ 𝐸 .

 The proofs for concatenation and Kleene closure are 
similar.

Jim Anderson (modified by Nathan Otterness) 28



Inverse Homomorphisms

 If ℎ is a homomorphism from alphabet Σ to 
alphabet Δ, and 𝐿 is a language in Δ, then ℎ−1 𝐿 is 
the set of strings 𝑤 in Σ∗ such that ℎ 𝑤 is in 𝐿.

Jim Anderson (modified by Nathan Otterness) 29

Strings over Σ Strings over Δ

ℎ

ℎ

ℎ

A language 𝐿 over Δ∗

𝐿 may contain strings 
that ℎ can’t map to.



Inverse Homomorphism: Example

It can be difficult to determine ℎ−1 𝐿 !

Example:

 Σ = 0,1 , Δ = a, b .

 Let ℎ 0 = aa, ℎ 1 = aba.

 𝐿 = 𝐚𝐛 + 𝐛𝐚 ∗𝐚.

What is ℎ−1 𝐿 ?

What strings over 0, 1 can ℎ map to a string in 𝐿?

Jim Anderson (modified by Nathan Otterness) 30



Inverse Homomorphism: Example

What is ℎ−1 𝐿 ?

 No string in 𝐿 begins with aa, so no string starting with 0 
(over 0, 1 ) can be mapped to a string in 𝐿.

 Strings starting with 1 will always be mapped to strings that 
start with a, because ℎ 1 = aba.

 Strings in 𝐿 that can start with a:
❖ aba
❖ abab...
❖ abba…
❖ a

 So, ℎ−1 𝐿 = 1 .

Jim Anderson (modified by Nathan Otterness) 31

• Σ = 0,1 , Δ = a, b
• ℎ 0 = aa, ℎ 1 = aba
• 𝐿 = 𝐚𝐛 + 𝐛𝐚 ∗𝐚

1 maps to this

No string starting with 1 maps to these



Closure Under Inverse Homomorphism

Theorem 4.16: If 𝐿 is a regular language, then ℎ−1 𝐿 is 
also regular.

Proof:

 Let 𝑀 = 𝑄, Δ, 𝛿, 𝑞0, 𝐹 be a DFA accepting 𝐿.

 Let ℎ: Σ → Δ∗.

 Define 𝑀′ = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹 be a DFA accepting ℎ−1 𝐿 .

Jim Anderson (modified by Nathan Otterness) 32



Closure Under Inverse Homomorphism

𝑀′ = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹

 On an input 𝑎 ∈ Σ, 𝑀′ simulates the behavior of 𝑀
on ℎ 𝑎 .

 Formally, 𝛿′ 𝑞, 𝑎 = መ𝛿 𝑞, ℎ 𝑎 .

 Exercise: Prove by induction on 𝑥 that 𝑀′ accepts 
𝑥 if and only if 𝑀 accepts h 𝑥 .

Jim Anderson (modified by Nathan Otterness) 33

Symbol in Σ String over Δ



Example. 𝐿 = 𝐚𝐛 + 𝐛𝐚 ∗𝐚, ℎ 0 = aa, ℎ 1 = aba.

Jim Anderson (modified by Nathan Otterness) 34

Closure Under Inverse Homomorphism

𝑀: 𝑀′:

    

    

     

   

 

 
 

 

   

This can be a good strategy for figuring out ℎ−1(𝐿).

    

    

     

 

 

  

 

 

   

𝐿 𝑀′ = 1



Decision Properties

 A property is a yes/no question about one or more 
languages. Some examples:

❖Is 𝐿 empty?

❖Is 𝐿 finite?

❖Are 𝐿1 and 𝐿2 equivalent?

 A property is a decision property for regular 
languages if an algorithm exists that can answer the 
question (for regular languages).

Jim Anderson (modified by Nathan Otterness) 35



Decision Properties

 The book focuses largely on efficiency issues when 
discussing decision properties.

 Efficiency is more of a COMP 550 topic (not a 
prerequisite), so these slides approach decision 
properties slightly differently.

 We will consider the three properties from the 
previous slide: emptiness, finiteness, and equivalence.

Jim Anderson (modified by Nathan Otterness) 36



Equivalence

 We want an algorithm that takes two languages, 𝐿1
and 𝐿2, and determines if they are the same.

The algorithm:

1. Convert 𝐿1 and 𝐿2 to DFAs.

2. Convert 𝐿1 and 𝐿2 to minimal DFAs. (See next slide)

3. Determine if the minimal DFAs are the same.

Jim Anderson (modified by Nathan Otterness) 37



Minimal DFAs

 Section 4.4 of the textbook gives an algorithm that 
takes a DFA and outputs a DFA that accepts the 
same language, but has a minimal number of states.

 This minimal DFA is unique.

❖This means that if two different DFAs define the 
same language, both will be converted to the 
same minimal DFA.

 We will be skipping this algorithm—it takes a long 
time to explain and won’t be used later in the class. 
You just need to know that it exists.

Jim Anderson (modified by Nathan Otterness) 38



Emptiness and Finiteness

Theorem:

The set of strings accepted by a DFA 𝑀 with 𝑛 states is:

 nonempty if and only if 𝑀 accepts a string of length 
less than 𝑛;

 infinite if and only if 𝑀 accepts a string of length 𝑘, 
where 𝑛 ≤ 𝑘 < 2𝑛.

(This approach is different from the book.)

Jim Anderson (modified by Nathan Otterness) 39



Proof of “Nonempty” Claim

“…nonempty if and only if 𝑀 accepts a string of length 
less than 𝑛”

 “If”: Obvious

 “Only if”: Let 𝑤 be the length of the shortest string 
accepted by 𝑀.

❖If 𝑤 < 𝑛 we’re done.

❖If 𝑤 ≥ 𝑛, then by the Pumping Lemma 𝑤 = 𝑥𝑦𝑧, 
and 𝑥𝑧 ∈ 𝐿 𝑀 .  Contradiction.

Jim Anderson (modified by Nathan Otterness) 40

We claimed that 𝑤 was the 
shortest string accepted by 𝑀.



Proof of “Infinite” Claim

“…infinite if and only if 𝑀 accepts a string of length 
𝑘, where 𝑛 ≤ 𝑘 < 2𝑛”

 “If”: If 𝑤 ∈ 𝐿 𝑀 and 𝑛 ≤ 𝑛 < 2𝑛, then 𝐿 𝑀 is 
infinite by the Pumping Lemma.

 “Only if”: Assume 𝐿 𝑀 is infinite.

❖Then, there exists some 𝑤 where 𝑤 ≥ 𝑛.  If 
such a string has a length under 2𝑛, we’re done.

❖Otherwise…

Jim Anderson (modified by Nathan Otterness) 41



Proof of “Infinite” Claim, continued

“…infinite if and only if 𝑀 accepts a string of length 𝑘, where 
𝑛 ≤ 𝑘 < 2𝑛”

…otherwise, all strings with a length greater than 𝑛 are 
longer than 2𝑛.  Assume this is the case.

Let 𝑤 be the shortest such string.  By the Pumping Lemma, 
𝑤 = 𝑥𝑦𝑧, 𝑦 ≥ 1, and 𝑥𝑧 ∈ 𝐿 𝑀 .

 If 𝑥𝑧 ≥ 2𝑛, we’ve contradicted the assumption that 𝑤 is 
the shortest string longer than 2𝑛.

 If 𝑥𝑧 < 2𝑛, then 𝑛 ≤ 𝑥𝑧 < 2𝑛.  This contradicts the 
assumption that the shortest string longer than 𝑛 is longer 
than 2𝑛.

Jim Anderson (modified by Nathan Otterness) 42



Decision Algorithms

 Algorithm for “nonemptiness”:

❖See if any string with length at most 𝑛 is in 𝐿 𝑀 .

❖Can be done using breadth- or depth-first search 
to find paths from the start state to a final state.

 Algorithm for “infiniteness”:

❖See if any string with length 𝑘 , where 𝑛 ≤ 𝑘 < 2𝑛
is in 𝐿 𝑀 .

❖More efficient to check for “reachable cycles”.

❖Can use depth-first search, but it’s less efficient.

Jim Anderson (modified by Nathan Otterness) 43



Another Equivalence Algorithm

We can now build another algorithm for testing 
equivalence:

 Let 𝐿1 = 𝐿 𝑀1 and 𝐿2 = 𝐿 𝑀2

❖𝑀1 and 𝑀2 are DFAs

 Create 𝑀3, where 𝐿 𝑀3 = 𝐿1 ∩ 𝐿2 ∪ 𝐿1 ∩ 𝐿2

❖Note that 𝐿 𝑀3 is nonempty if and only if 
𝐿1 ≠ 𝐿2.

 Test whether 𝐿3 is empty using the 
“nonemptiness” algorithm.

Jim Anderson (modified by Nathan Otterness) 44


