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The tool used for proving that a language 
is not regular is the Pumping Lemma.
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What Languages Aren’t Regular?



The Pumping Lemma

Theorem 4.1 (the Pumping Lemma for regular languages):

Let 𝐿 be a regular language.  Then there exists a constant 
𝑛 (which depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 
𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧 such that

i. 𝑤 = 𝑥𝑦𝑧,

ii. 𝑥𝑦 ≤ 𝑛,

iii. 𝑦 ≥ 1, and

iv. for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.
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Proof of the Pumping Lemma

 Since 𝐿 is regular, it is accepted by some DFA 𝑀.

 Let 𝑛 = the number of states in 𝑀.

 Pick any 𝑤 ∈ 𝐿, where 𝑤 > 𝑛.

 By the pigeonhole principle, 𝑀 must repeat a state 
when processing the first 𝑛 symbols in 𝑤.
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Theorem 4.1: Let 𝐿 be a regular language.  Then there exists a constant 𝑛 (which 
depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧
such that (i) 𝑤 = 𝑥𝑦𝑧, (ii) 𝑥𝑦 ≤ 𝑛, (iii) 𝑦 ≥ 1, and (iv) for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.



Proof of the Pumping Lemma

𝑀 must repeat a state, 𝑞, when processing the first 𝑛
symbols of input 𝑤.

Define strings 𝑥, 𝑦, and 𝑧 as in this figure:
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Theorem 4.1: Let 𝐿 be a regular language.  Then there exists a constant 𝑛 (which 
depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧
such that (i) 𝑤 = 𝑥𝑦𝑧, (ii) 𝑥𝑦 ≤ 𝑛, (iii) 𝑦 ≥ 1, and (iv) for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.

𝑦

𝑞0 𝑞Start
𝑥 𝑧



Proof of the Pumping Lemma

The second occurrence of state 𝑞 must occur within 
the first 𝑛 symbols of 𝑤, so 𝑥𝑦 ≤ 𝑛. Also, 𝑦 ≥ 1.

It must be possible to repeat the “𝑦-loop” 0 or more 
times, and the resulting string will still be accepted.

Therefore, 𝑥𝑦𝑘𝑧 ∈ 𝐿, for any 𝑘 ≥ 0.
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Theorem 4.1: Let 𝐿 be a regular language.  Then there exists a constant 𝑛 (which 
depends on 𝐿) such that for every 𝑤 ∈ 𝐿, where 𝑤 ≥ 𝑛, there exists strings 𝑥, 𝑦, and 𝑧
such that (i) 𝑤 = 𝑥𝑦𝑧, (ii) 𝑥𝑦 ≤ 𝑛, (iii) 𝑦 ≥ 1, and (iv) for all 𝑘 ≥ 0, 𝑥𝑦𝑘𝑧 ∈ 𝐿.

𝑦

𝑞0 𝑞Start
𝑥 𝑧



Using the Pumping Lemma

 To show that a language 𝐿 is not regular, show that 
the conditions of the Pumping Lemma do not hold.

 Formally, the Pumping Lemma says:
∃𝑛

∷ ൬

൰

∀𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∃𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∀𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∈ 𝐿
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Using the Pumping Lemma

 To show that a language 𝐿 is not regular, show that 
the conditions of the Pumping Lemma do not hold.

 The negation of the Pumping Lemma is:
∀𝑛

∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿
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Using the Pumping Lemma

∀𝑛

∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿

Show that this statement is true for 𝐿 to show that 𝐿
is not a regular language!
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No matter what 𝑛 is…

We can find a string 𝑤 longer than 𝑛 in 𝐿…

Where no matter how 𝑤 is divided into 
substrings 𝑥, 𝑦, and 𝑧 (with some constraints)…

We can find a value 𝑘 for which 𝑥𝑦𝑘𝑧 is not in 𝐿.



Using the Pumping Lemma: Example

 Consider the language 0𝑖
2
, where 𝑖 ≥ 1.

 We want to prove that this language is not regular.

 We need to show that ∀𝑛 ∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛 ∷

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1 ∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿 is 

true for 𝐿.

 The proof is like a game with an adversary:

❖The adversary makes the “∀” choices.

❖We make the “∃” choices.
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Using the Pumping Lemma: Example

 𝐿 = 0𝑖
2
| 𝑖 ≥ 1

 Assume 𝐿 is regular (this will be a proof 
by contradiction).

 Select any 𝑛.

 Let 𝑤 = 0𝑛
2
.

 Select any 𝑥𝑦𝑧 where 𝑤 = 𝑥𝑦𝑧, 𝑥𝑦 ≤ 𝑛, and 𝑦 ≥ 1.

 This implies that 1 ≤ 𝑦 ≤ 𝑛.

 Let 𝑘 = 2.  This means that 𝑥𝑦𝑘𝑧 has 𝑛2 + 𝑦 0s.
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∀𝑛

∷ ൬

൰

∃𝑤:𝑤 ∈ 𝐿 ∧ 𝑤 ≥ 𝑛

∷ ቀ

ቁ

∀𝑥, 𝑦, 𝑧: 𝑥𝑦𝑧 = 𝑤 ∧ 𝑥𝑦 ≤ 𝑛 ∧ 𝑦 ≥ 1

∷ ∃𝑘: 𝑘 ≥ 0 ∷ 𝑥𝑦𝑘𝑧 ∉ 𝐿



Using the Pumping Lemma: Example

 (Reminder) 𝐿 = 0𝑖
2
| 𝑖 ≥ 1

 Let 𝑘 = 2.  This means that 𝑥𝑦𝑘𝑧 has 𝑛2 + 𝑦 0s.

 𝑤 has 𝑛2 0s, and any entry in 𝐿 longer than 𝑤 must 
have at least 𝑛 + 1 2 0s.

 𝑛2 < 𝑛2 + 1 ≤ 𝑛2 + 𝑦 ≤ 𝑛2 + 𝑛 < 𝑛2 + 2𝑛 + 1.

 So, 𝑥𝑦𝑘𝑧 ∉ 𝐿, contradicting the Pumping Lemma.
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The length 
of 𝑤 (in 𝐿)

The length of 
𝑥𝑦2𝑧 if 𝑦 = 1.

The length 
of 𝑥𝑦2𝑧

The length of 
𝑥𝑦2𝑧 if 𝑦 = 𝑛.

= 𝑛 + 1 2, the length 
of the next string in 𝐿.



Using the Pumping Lemma: 2nd Example

 Consider the language 𝐿 =
𝑥 | 𝑥 contains an equal number of 0s and 1s

 Is 𝐿 regular?
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Using the Pumping Lemma: 2nd Example

 𝐿 = 𝑥 | 𝑥 contains an equal number of 0s and 1s

 Define 𝑤 = 0𝑛1𝑛 for an arbitrary 𝑛. (𝑤 ∈ 𝐿)

 No matter how 𝑤 is divided into 𝑥, 𝑦, and 𝑧, 𝑦 must 
consist solely of 0s because 𝑥𝑦 ≤ 𝑛 and 𝑦 ≠ 𝜀.

 Therefore, 𝑥𝑦0𝑧 has fewer 0s than 1s and is not in 𝐿.

❖In this case, 𝑘 = 0.

❖This proof would also work with any 𝑘 ≥ 2, 
because 𝑥𝑦𝑘𝑧 would have more 0s than 1s.
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Closure Properties

 A closure property of regular languages is a 
property that, when applied to a regular language, 
results in another regular language.

❖Union and intersection are examples of closure 
properties.

 We will demonstrate several useful closure 
properties of regular languages.

 Closure properties can also be useful for proving 
that languages aren’t regular.
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Closure under Union

Theorem 4.4: If 𝑀 and 𝑁 are regular languages, then 
𝑀 ∪𝑁 is a regular language.

Proof: Say that 𝑅 and 𝑆 are regular expressions where 
𝐿 𝑅 = 𝑀 and 𝐿 𝑆 = 𝑁.  Construct a regular expression 
𝑅 + 𝑆 .  This matches 𝑀 ∪ 𝑁.  Since a regular 

expression exists for 𝑀 ∪𝑁, 𝑀 ∪ 𝑁 is a regular language.

Note: The proofs for concatenation and Kleene closure 
are similar.
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Closure under Complementation

 If 𝐿 ⊆ Σ∗, then the complement of 𝐿, denoted ത𝐿, is 
Σ∗ − 𝐿.

 Theorem 4.5: If 𝐿 is a regular language over Σ, then 
ത𝐿 is also a regular language.

 Proof sketch for Theorem 4.5:

1. Construct a DFA for 𝐿

2. This can be transformed into a DFA for ത𝐿 by 
making all accepting states non-accepting and 
vice versa.

3. This can be proven correct by induction.
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Closure under Intersection

Theorem 4.8: If 𝑀 and 𝑁 are regular languages, then 
𝑀 ∩𝑁 is a regular language.

Proof: 𝑀 ∩𝑁 = ഥ𝑀 ∪ ഥ𝑁.

The book contains a more direct proof. The basic idea 
is to construct a DFA with states labeled 𝑝, 𝑞 where 
𝑝 tracks the state of a DFA for 𝑀 and 𝑞 tracks the 
state of a DFA for 𝑁.
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Closure under Difference

 𝑀 −𝑁 ≡ 𝑥 | 𝑥 ∈ 𝑀 ∧ 𝑥 ∉ 𝑁

 Theorem 4.10: If 𝑀 and 𝑁 are regular, then so is 
𝑀 −𝑁.

 Proof: 𝑀 −𝑁 = 𝑀 ∩ ഥ𝑁.
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Closure under Reversal

 The reversal of 𝐿, written 𝐿𝑅 is 𝑥 | 𝑥𝑅 ∈ 𝐿 (𝑥𝑅 is 
the string 𝑥 written backwards).

 Theorem 4.11: If 𝐿 is regular, then so is 𝐿𝑅.
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Proof Sketch for Theorem 4.11

 Start with a DFA for 𝐿.

 Construct an 𝜀-NFA for 𝐿𝑅 as follows:

1. Reverse all of the transitions in the DFA

2. Make the DFA’s start state the only accepting 
state.

3. Create a new start state with 𝜀-transitions to all 
of the original accepting states.

 This can be proven correct by induction.

 (The book proves Theorem 4.11 by reasoning 
about regular expressions.)
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Example: Reversal of a DFA

 A DFA for 𝐿:
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 An NFA with 𝜀-
transitions for 𝐿𝑅:       

  

 

 

  
 

 

     

  

q0
′



Homomorphisms

 A homomorphism maps symbols in an alphabet Σ to 
strings over a different alphabet, Δ.

 Example:

❖Σ = 0, 1 , Δ = a, b

❖ℎ 0 = ab, ℎ 1 = 𝜀

 Homomorphisms can be extended to strings:

❖ℎ 𝜀 = 𝜀

❖ℎ 𝑥𝑎 = ℎ 𝑥 ℎ 𝑎 , for string 𝑥 and symbol 𝑎

 Homomorphisms can be extended to languages:

❖ If 𝐿 is a language, ℎ 𝐿 = 𝑥∈𝐿ڂ ℎ 𝑥
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Homomorphism Example

 Σ = 0, 1 , Δ = a, b

 ℎ 0 = ab, ℎ 1 = 𝜀

 Homomorphism of a string:

❖ℎ 0011 = abab

 Homomorphism of a language:

❖ℎ 𝟏𝟎∗𝟏 = 𝐚𝐛 ∗
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Closure under Homomorphism

Theorem 4.14: If 𝐿 is a regular language over Σ, and 
ℎ: Σ → Δ∗ is a homomorphism, then ℎ 𝐿 is also a 
regular language.

Proof:

 Let 𝐿 = 𝐿 𝑅 be the language defined by some 
regular expression 𝑅.

 Replace each symbol 𝑎 in 𝑅 by ℎ 𝑎 .  Call the 
resulting regular expression ℎ 𝑅 .

 We will prove 𝐿 ℎ 𝑅 = ℎ 𝐿 .
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Proof that 𝐿 ℎ 𝑅 = ℎ 𝐿

 Let 𝐸 be a subexpression of 𝑅.

 Claim: 𝐿 ℎ 𝐸 = ℎ 𝐿 𝐸 .

 We will prove this by induction on the number of 
operators in 𝐸.

 Base case: 𝐸 is 𝜀, ∅, or 𝐚, where 𝑎 ∈ Σ.

❖The only interesting case is where 𝐸 is a single-

character regular expression, so ℎ 𝐿 𝐸 = ℎ 𝑎 .

❖ℎ 𝐸 is a regular expression for the same string 

ℎ 𝑎 , so ℎ 𝐿 𝐸 = 𝐿 ℎ 𝐸 .
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Proof that 𝐿 ℎ 𝑅 = ℎ 𝐿 , continued

 Inductive step: 𝐸 has at least one operator, and 
therefore has the form 𝐹 + 𝐺, 𝐹𝐺, or 𝐹∗.

 Proof for +:
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= 𝐿 ℎ 𝐹 + ℎ 𝐺 , by the definition of ℎ for reg. exps

= 𝐿 ℎ 𝐹 ∪ 𝐿 ℎ 𝐺 , by the definition of the + operator.

𝐿 ℎ 𝐸

= ℎ 𝐿 𝐹 ∪ 𝐿 𝐺 , since 𝐿 𝐸 = 𝐿 𝐹 ∪ 𝐿 𝐺 .

= ℎ 𝐿 𝐹 ∪ ℎ 𝐿 𝐺 , since ℎ is applied to individual strings.

ℎ 𝐿 𝐸



Proof that 𝐿 ℎ 𝑅 = ℎ 𝐿 ,continued

 We have shown the following properties are true for 
the + operator:

❖ℎ 𝐿 𝐸 = ℎ 𝐿 𝐹 ∪ ℎ 𝐿 𝐺

❖𝐿 ℎ 𝐸 = 𝐿 ℎ 𝐹 ∪ 𝐿 ℎ 𝐺

 To conclude the proof for the + operator, we note 

that ℎ 𝐿 𝐹 = 𝐿 ℎ 𝐹 and ℎ 𝐿 𝐺 = 𝐿 ℎ 𝐺 by 

the inductive hypothesis.  So, ℎ 𝐿 𝐸 = 𝐿 ℎ 𝐸 .

 The proofs for concatenation and Kleene closure are 
similar.
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Inverse Homomorphisms

 If ℎ is a homomorphism from alphabet Σ to 
alphabet Δ, and 𝐿 is a language in Δ, then ℎ−1 𝐿 is 
the set of strings 𝑤 in Σ∗ such that ℎ 𝑤 is in 𝐿.
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Strings over Σ Strings over Δ

ℎ

ℎ

ℎ

A language 𝐿 over Δ∗

𝐿 may contain strings 
that ℎ can’t map to.



Inverse Homomorphism: Example

It can be difficult to determine ℎ−1 𝐿 !

Example:

 Σ = 0,1 , Δ = a, b .

 Let ℎ 0 = aa, ℎ 1 = aba.

 𝐿 = 𝐚𝐛 + 𝐛𝐚 ∗𝐚.

What is ℎ−1 𝐿 ?

What strings over 0, 1 can ℎ map to a string in 𝐿?
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Inverse Homomorphism: Example

What is ℎ−1 𝐿 ?

 No string in 𝐿 begins with aa, so no string starting with 0 
(over 0, 1 ) can be mapped to a string in 𝐿.

 Strings starting with 1 will always be mapped to strings that 
start with a, because ℎ 1 = aba.

 Strings in 𝐿 that can start with a:
❖ aba
❖ abab...
❖ abba…
❖ a

 So, ℎ−1 𝐿 = 1 .
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• Σ = 0,1 , Δ = a, b
• ℎ 0 = aa, ℎ 1 = aba
• 𝐿 = 𝐚𝐛 + 𝐛𝐚 ∗𝐚

1 maps to this

No string starting with 1 maps to these



Closure Under Inverse Homomorphism

Theorem 4.16: If 𝐿 is a regular language, then ℎ−1 𝐿 is 
also regular.

Proof:

 Let 𝑀 = 𝑄, Δ, 𝛿, 𝑞0, 𝐹 be a DFA accepting 𝐿.

 Let ℎ: Σ → Δ∗.

 Define 𝑀′ = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹 be a DFA accepting ℎ−1 𝐿 .
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Closure Under Inverse Homomorphism

𝑀′ = 𝑄, Σ, 𝛿′, 𝑞0, 𝐹

 On an input 𝑎 ∈ Σ, 𝑀′ simulates the behavior of 𝑀
on ℎ 𝑎 .

 Formally, 𝛿′ 𝑞, 𝑎 = መ𝛿 𝑞, ℎ 𝑎 .

 Exercise: Prove by induction on 𝑥 that 𝑀′ accepts 
𝑥 if and only if 𝑀 accepts h 𝑥 .
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Symbol in Σ String over Δ



Example. 𝐿 = 𝐚𝐛 + 𝐛𝐚 ∗𝐚, ℎ 0 = aa, ℎ 1 = aba.
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Closure Under Inverse Homomorphism

𝑀: 𝑀′:

    

    

     

   

 

 
 

 

   

This can be a good strategy for figuring out ℎ−1(𝐿).

    

    

     

 

 

  

 

 

   

𝐿 𝑀′ = 1



Decision Properties

 A property is a yes/no question about one or more 
languages. Some examples:

❖Is 𝐿 empty?

❖Is 𝐿 finite?

❖Are 𝐿1 and 𝐿2 equivalent?

 A property is a decision property for regular 
languages if an algorithm exists that can answer the 
question (for regular languages).
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Decision Properties

 The book focuses largely on efficiency issues when 
discussing decision properties.

 Efficiency is more of a COMP 550 topic (not a 
prerequisite), so these slides approach decision 
properties slightly differently.

 We will consider the three properties from the 
previous slide: emptiness, finiteness, and equivalence.
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Equivalence

 We want an algorithm that takes two languages, 𝐿1
and 𝐿2, and determines if they are the same.

The algorithm:

1. Convert 𝐿1 and 𝐿2 to DFAs.

2. Convert 𝐿1 and 𝐿2 to minimal DFAs. (See next slide)

3. Determine if the minimal DFAs are the same.
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Minimal DFAs

 Section 4.4 of the textbook gives an algorithm that 
takes a DFA and outputs a DFA that accepts the 
same language, but has a minimal number of states.

 This minimal DFA is unique.

❖This means that if two different DFAs define the 
same language, both will be converted to the 
same minimal DFA.

 We will be skipping this algorithm—it takes a long 
time to explain and won’t be used later in the class. 
You just need to know that it exists.
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Emptiness and Finiteness

Theorem:

The set of strings accepted by a DFA 𝑀 with 𝑛 states is:

 nonempty if and only if 𝑀 accepts a string of length 
less than 𝑛;

 infinite if and only if 𝑀 accepts a string of length 𝑘, 
where 𝑛 ≤ 𝑘 < 2𝑛.

(This approach is different from the book.)
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Proof of “Nonempty” Claim

“…nonempty if and only if 𝑀 accepts a string of length 
less than 𝑛”

 “If”: Obvious

 “Only if”: Let 𝑤 be the length of the shortest string 
accepted by 𝑀.

❖If 𝑤 < 𝑛 we’re done.

❖If 𝑤 ≥ 𝑛, then by the Pumping Lemma 𝑤 = 𝑥𝑦𝑧, 
and 𝑥𝑧 ∈ 𝐿 𝑀 .  Contradiction.
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We claimed that 𝑤 was the 
shortest string accepted by 𝑀.



Proof of “Infinite” Claim

“…infinite if and only if 𝑀 accepts a string of length 
𝑘, where 𝑛 ≤ 𝑘 < 2𝑛”

 “If”: If 𝑤 ∈ 𝐿 𝑀 and 𝑛 ≤ 𝑛 < 2𝑛, then 𝐿 𝑀 is 
infinite by the Pumping Lemma.

 “Only if”: Assume 𝐿 𝑀 is infinite.

❖Then, there exists some 𝑤 where 𝑤 ≥ 𝑛.  If 
such a string has a length under 2𝑛, we’re done.

❖Otherwise…
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Proof of “Infinite” Claim, continued

“…infinite if and only if 𝑀 accepts a string of length 𝑘, where 
𝑛 ≤ 𝑘 < 2𝑛”

…otherwise, all strings with a length greater than 𝑛 are 
longer than 2𝑛.  Assume this is the case.

Let 𝑤 be the shortest such string.  By the Pumping Lemma, 
𝑤 = 𝑥𝑦𝑧, 𝑦 ≥ 1, and 𝑥𝑧 ∈ 𝐿 𝑀 .

 If 𝑥𝑧 ≥ 2𝑛, we’ve contradicted the assumption that 𝑤 is 
the shortest string longer than 2𝑛.

 If 𝑥𝑧 < 2𝑛, then 𝑛 ≤ 𝑥𝑧 < 2𝑛.  This contradicts the 
assumption that the shortest string longer than 𝑛 is longer 
than 2𝑛.
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Decision Algorithms

 Algorithm for “nonemptiness”:

❖See if any string with length at most 𝑛 is in 𝐿 𝑀 .

❖Can be done using breadth- or depth-first search 
to find paths from the start state to a final state.

 Algorithm for “infiniteness”:

❖See if any string with length 𝑘 , where 𝑛 ≤ 𝑘 < 2𝑛
is in 𝐿 𝑀 .

❖More efficient to check for “reachable cycles”.

❖Can use depth-first search, but it’s less efficient.
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Another Equivalence Algorithm

We can now build another algorithm for testing 
equivalence:

 Let 𝐿1 = 𝐿 𝑀1 and 𝐿2 = 𝐿 𝑀2

❖𝑀1 and 𝑀2 are DFAs

 Create 𝑀3, where 𝐿 𝑀3 = 𝐿1 ∩ 𝐿2 ∪ 𝐿1 ∩ 𝐿2

❖Note that 𝐿 𝑀3 is nonempty if and only if 
𝐿1 ≠ 𝐿2.

 Test whether 𝐿3 is empty using the 
“nonemptiness” algorithm.

Jim Anderson (modified by Nathan Otterness) 44


