Properties of Regular Languages

COMP 455 - 002, Spring 2019

Jim Anderson (modified by Nathan Otterness)

What Languages Aren't Regular?

The tool used for proving that a language is *not* regular is the *Pumping Lemma*.

2

The Pumping Lemma

Theorem 4.1 (the *Pumping Lemma for regular languages*): Let *L* be a regular language. Then there exists a constant *n* (which depends on *L*) such that for every $w \in L$, where $|w| \ge n$, there exists strings *x*, *y*, and *z* such that

i.
$$w = xyz$$
,

- ii. $|xy| \leq n$,
- iii. $|y| \ge 1$, and
- iv. for all $k \ge 0$, $xy^k z \in L$.

Proof of the Pumping Lemma

Theorem 4.1: Let *L* be a regular language. Then there exists a constant *n* (which depends on *L*) such that for every $w \in L$, where $|w| \ge n$, there exists strings *x*, *y*, and *z* such that (i) w = xyz, (ii) $|xy| \le n$, (iii) $|y| \ge 1$, and (iv) for all $k \ge 0$, $xy^kz \in L$.

- ▶ Since *L* is regular, it is accepted by some DFA *M*.
- Let n = the number of states in M.
- ▶ Pick any $w \in L$, where |w| > n.
- By the pigeonhole principle, *M* must repeat a state when processing the first *n* symbols in *w*.

Proof of the Pumping Lemma

Theorem 4.1: Let *L* be a regular language. Then there exists a constant *n* (which depends on *L*) such that for every $w \in L$, where $|w| \ge n$, there exists strings *x*, *y*, and *z* such that (i) w = xyz, (ii) $|xy| \le n$, (iii) $|y| \ge 1$, and (iv) for all $k \ge 0$, $xy^kz \in L$.

M must repeat a state, *q*, when processing the first *n* symbols of input *w*.

Define strings *x*, *y*, and *z* as in this figure:

Proof of the Pumping Lemma

Theorem 4.1: Let *L* be a regular language. Then there exists a constant *n* (which depends on *L*) such that for every $w \in L$, where $|w| \ge n$, there exists strings *x*, *y*, and *z* such that (i) w = xyz, (ii) $|xy| \le n$, (iii) $|y| \ge 1$, and (iv) for all $k \ge 0$, $xy^kz \in L$.

The second occurrence of state *q* must occur within the first *n* symbols of *w*, so $|xy| \le n$. Also, $|y| \ge 1$.

It must be possible to repeat the "y-loop" 0 or more times, and the resulting string will still be accepted. Therefore, $xy^k z \in L$, for any $k \ge 0$.

Using the Pumping Lemma

- ▶ To show that a language *L* is *not* regular, show that the conditions of the Pumping Lemma do not hold.
- Formally, the Pumping Lemma says:

$$\exists n \\ :: \left(\forall w: w \in L \land |w| \ge n \\ :: \left(\exists x, y, z: xyz = w \land |xy| \le n \land |y| \ge 1 \\ :: \left(\forall k: k \ge 0 \ :: xy^k z \in L \right) \right) \right)$$

Using the Pumping Lemma

- ▶ To show that a language *L* is *not* regular, show that the conditions of the Pumping Lemma do not hold.
- The negation of the Pumping Lemma is: $\forall n$

$$:: \left(\exists w : w \in L \land |w| \ge n \\ :: \left(\forall x, y, z : xyz = w \land |xy| \le n \land |y| \ge 1 \\ :: \left(\exists k : k \ge 0 \ :: xy^k z \notin L \right) \right) \right)$$

Using the Pumping Lemma

$\forall n \\ \because \left(\exists w \colon w \in L \land |w| \ge n \right)$

 $:: \left(\forall x, y, z : xyz = w \land |xy| \le n \land |y| \ge 1 \right.$

 $:: \left(\exists k : k \ge 0 \; :: xy^k z \notin L \right) \right)$

No matter what *n* is...

We can find a string *w* longer than *n* in *L*...

Where no matter how *w* is divided into substrings *x*, *y*, and *z* (with some constraints)...

We can find a value *k* for which $xy^k z$ is not in *L*.

Show that this statement is true for *L* to show that *L* is *not* a regular language!

Using the Pumping Lemma: Example

- ► Consider the language 0^{i^2} , where $i \ge 1$.
- We want to prove that this language is *not* regular.
- We need to show that $\forall n :: (\exists w : w \in L \land |w| \ge n ::$

 $(\forall x, y, z: xyz = w \land |xy| \le n \land |y| \ge 1 :: (\exists k: k \ge 0 :: xy^k z \notin L)))$ is true for *L*.

The proof is like a game with an adversary:
 The adversary makes the "∀" choices.
 We make the "∃" choices.

Using the Pumping Lemma: Example

$$\blacktriangleright L = \left\{ 0^{i^2} \mid i \ge 1 \right\}$$

- Assume L is regular (this will be a proof by contradiction).
- Select any *n*.
- Let $w = 0^{n^2}$.
- Select any *xyz* where w = xyz, $|xy| \le n$, and $|y| \ge 1$.
- ▶ This implies that $1 \le |y| \le n$.
- Let k = 2. This means that $xy^k z$ has $n^2 + |y| 0$ s.

 $\forall n \\ :: \left(\exists w : w \in L \land |w| \ge n \\ :: \left(\forall x, y, z : xyz = w \land |xy| \le n \land |y| \ge 1 \\ :: \left(\exists k : k \ge 0 \ :: xy^k z \notin L \right) \right) \right)$

Using the Pumping Lemma: Example

- (Reminder) $L = \{0^{i^2} | i \ge 1\}$
- Let k = 2. This means that $xy^k z$ has $n^2 + |y| 0$ s.
- ▶ w has n^2 0s, and any entry in *L* longer than w must have at least $(n + 1)^2$ 0s.

$$n^{2} < n^{2} + 1 \le n^{2} + |y| \le n^{2} + n < n^{2} + 2n + 1.$$

The length of
 $xy^{2}z$ if $|y| = 1$. The length of
 $xy^{2}z$ if $|y| = n$. The length of
 $xy^{2}z$ if $|y| = n$. The length of
 $xy^{2}z$ if $|y| = n$. If $n^{2} + 2n + 1$.

▶ So, $xy^k z \notin L$, contradicting the Pumping Lemma.

Using the Pumping Lemma: 2nd Example

Consider the language L = {x | x contains an equal number of 0s and 1s}
Is L regular?

Using the Pumping Lemma: 2nd Example

- $\blacktriangleright L = \{x \mid x \text{ contains an equal number of 0s and 1s}\}$
- ▶ Define $w = 0^n 1^n$ for an arbitrary $n. (w \in L)$
- No matter how *w* is divided into *x*, *y*, and *z*, *y* must consist solely of 0s because $|xy| \le n$ and $y \ne \varepsilon$.
- Therefore, xy^0z has fewer 0s than 1s and is not in *L*.
 - In this case, k = 0.
 - ♦ This proof would also work with any k ≥ 2, because $xy^k z$ would have more 0s than 1s.

Closure Properties

- A closure property of regular languages is a property that, when applied to a regular language, results in another regular language.
 - Union and intersection are examples of closure properties.
- We will demonstrate several useful closure properties of regular languages.
- Closure properties can also be useful for proving that languages *aren't* regular.

Closure under Union

Theorem 4.4: If *M* and *N* are regular languages, then $M \cup N$ is a regular language.

Proof: Say that *R* and *S* are regular expressions where L(R) = M and L(S) = N. Construct a regular expression (R + S). This matches $M \cup N$. Since a regular expression exists for $M \cup N$, $M \cup N$ is a regular language.

Note: The proofs for concatenation and Kleene closure are similar.

Closure under Complementation

- ► If $L \subseteq \Sigma^*$, then the **complement** of *L*, denoted \overline{L} , is $\Sigma^* L$.
- Theorem 4.5: If *L* is a regular language over Σ , then \overline{L} is also a regular language.
- Proof sketch for Theorem 4.5:
 - 1. Construct a DFA for *L*
 - 2. This can be transformed into a DFA for \overline{L} by making all accepting states non-accepting and vice versa.
 - 3. This can be proven correct by induction.

Closure under Intersection

Theorem 4.8: If *M* and *N* are regular languages, then $M \cap N$ is a regular language.

Proof: $M \cap N = \overline{\overline{M} \cup \overline{N}}$.

The book contains a more direct proof. The basic idea is to construct a DFA with states labeled [p,q] where p tracks the state of a DFA for M and q tracks the state of a DFA for N.

Closure under Difference

- $\blacktriangleright M N \equiv \{x \mid x \in M \land x \notin N\}$
- **Theorem 4.10**: If *M* and *N* are regular, then so is M N.
- ▶ **Proof**: $M N = M \cap \overline{N}$.

Closure under Reversal

- ▶ The **reversal** of *L*, written L^R is $\{x \mid x^R \in L\}$ (x^R is the string *x* written backwards).
- **Theorem 4.11**: If *L* is regular, then so is L^R .

Proof Sketch for Theorem 4.11

- Start with a DFA for *L*.
- Construct an ε -NFA for L^R as follows:
 - 1. Reverse all of the transitions in the DFA
 - 2. Make the DFA's start state the only accepting state.
 - 3. Create a new start state with ε -transitions to all of the original accepting states.
- This can be proven correct by induction.
- (The book proves Theorem 4.11 by reasoning about regular expressions.)

Example: Reversal of a DFA

Start q_0 q_1 q_2

An NFA with ε -transitions for L^R :

► A DFA for *L*:

Homomorphisms

- A homomorphism maps symbols in an alphabet Σ to strings over a different alphabet, Δ.
- Example:
 - $\bigstar \Sigma = \{0, 1\}, \Delta = \{a, b\}$
 - $h(0) = ab, h(1) = \varepsilon$
- Homomorphisms can be extended to strings:
 - $\bigstar h(\varepsilon) = \varepsilon$
 - h(xa) = h(x)h(a),for string x and symbol a

Homomorphism Example

- ► $\Sigma = \{0, 1\}, \Delta = \{a, b\}$
- ► $h(0) = ab, h(1) = \varepsilon$
- Homomorphism of a string:
 \$\$h(0011) = abab
- Homomorphism of a language:
 * h(10*1) = (ab)*

Closure under Homomorphism

Theorem 4.14: If *L* is a regular language over Σ , and $h: \Sigma \rightarrow \Delta^*$ is a homomorphism, then h(L) is also a regular language.

Proof:

- Let L = L(R) be the language defined by some regular expression R.
- Replace each symbol a in R by h(a). Call the resulting regular expression h(R).
- We will prove L(h(R)) = h(L).

Proof that L(h(R)) = h(L)

▶ Let *E* be a subexpression of *R*.

• Claim: L(h(E)) = h(L(E)).

We will prove this by induction on the number of operators in *E*.

Base case: *E* is ε , \emptyset , or **a**, where $a \in \Sigma$.

♦ The only interesting case is where *E* is a singlecharacter regular expression, so $h(L(E)) = \{h(a)\}$.

♦ *h*(*E*) is a regular expression for the same string h(a), so h(L(E)) = L(h(E)).

Proof that L(h(R)) = h(L), continued

- Inductive step: *E* has at least one operator, and therefore has the form *F* + *G*, *FG*, or *F*^{*}.
- Proof for +:
 - L(h(E))
 - = L(h(F) + h(G)), by the definition of *h* for reg. exps
 - $= L(h(F)) \cup L(h(G))$, by the definition of the + operator.
 - h(L(E))
 - $= h(L(F) \cup L(G))$, since $L(E) = L(F) \cup L(G)$.
 - $= h(L(F)) \cup h(L(G))$, since *h* is applied to individual strings.

Proof that L(h(R)) = h(L), continued

We have shown the following properties are true for the + operator:

$$h(L(E)) = h(L(F)) \cup h(L(G))$$

$$L(h(E)) = L(h(F)) \cup L(h(G))$$

- To conclude the proof for the + operator, we note that h(L(F)) = L(h(F)) and h(L(G)) = L(h(G)) by the inductive hypothesis. So, h(L(E)) = L(h(E)).
- The proofs for concatenation and Kleene closure are similar.

Inverse Homomorphisms

 \blacktriangleright If *h* is a homomorphism from alphabet Σ to alphabet Δ , and *L* is a language in Δ , then $h^{-1}(L)$ is the set of strings *w* in Σ^* such that h(w) is in *L*.

Inverse Homomorphism: Example

It can be difficult to determine $h^{-1}(L)$! **Example**:

►
$$\Sigma = \{0,1\}, \Delta = \{a, b\}.$$

• Let
$$h(0) = aa, h(1) = aba$$
.

$$\blacktriangleright L = (\mathbf{ab} + \mathbf{ba})^* \mathbf{a}.$$

What is $h^{-1}(L)$?

What strings over {0, 1} *can h map to a string in L*?

Inverse Homomorphism: Example

What is $h^{-1}(L)$?

- Σ = {0,1}, Δ = {a, b}
 h(0) = aa, h(1) = aba
 L = (ab + ba)*a
- No string in *L* begins with aa, so no string starting with 0 (over {0, 1}) can be mapped to a string in *L*.
- Strings starting with 1 will always be mapped to strings that start with a, because h(1) = aba.
- Strings in *L* that can start with a:
 aba
 1 maps to this
 aba...
 abba...
 No string starting with 1 maps to these
 So, h⁻¹(L) = {1}.

Closure Under Inverse Homomorphism

Theorem 4.16: If *L* is a regular language, then $h^{-1}(L)$ is also regular.

Proof:

Let $M = (Q, \Delta, \delta, q_0, F)$ be a DFA accepting *L*.

• Let $h: \Sigma \to \Delta^*$.

• Define $M' = (Q, \Sigma, \delta', q_0, F)$ be a DFA accepting $h^{-1}(L)$.

Closure Under Inverse Homomorphism

$$M' = (Q, \Sigma, \delta', q_0, F)$$

► On an input $a \in \Sigma$, M' simulates the behavior of M on h(a).

Formally,
$$\delta'(q, a) = \hat{\delta}(q, h(a))$$
.
Symbol in Σ String over Δ

Exercise: Prove by induction on |x| that M' accepts x if and only if M accepts h(x).

Closure Under Inverse Homomorphism

Example. $L = (ab + ba)^*a$, h(0) = aa, h(1) = aba.

This can be a good strategy for figuring out $h^{-1}(L)$.

Decision Properties

- A property is a yes/no question about one or more languages. Some examples:
 - ✤ Is *L* empty?
 - ✤ Is *L* finite?
 - $Are L_1$ and L_2 equivalent?
- A property is a decision property for regular languages if an *algorithm* exists that can answer the question (for regular languages).

Decision Properties

- The book focuses largely on *efficiency issues* when discussing decision properties.
- Efficiency is more of a COMP 550 topic (not a prerequisite), so these slides approach decision properties slightly differently.
- We will consider the three properties from the previous slide: *emptiness, finiteness,* and *equivalence*.

Equivalence

- We want an algorithm that takes two languages, L₁ and L₂, and determines if they are the same.
 The algorithm:
- 1. Convert L_1 and L_2 to DFAs.
- 2. Convert L_1 and L_2 to *minimal DFAs*. (See next slide)
- 3. Determine if the minimal DFAs are the same.

Minimal DFAs

- Section 4.4 of the textbook gives an algorithm that takes a DFA and outputs a DFA that accepts the same language, but has a minimal number of states.
- ▶ This *minimal DFA* is unique.
 - This means that if two different DFAs define the same language, both will be converted to the same minimal DFA.
- We will be skipping this algorithm it takes a long time to explain and won't be used later in the class. You just need to know that it exists.

Emptiness and Finiteness

Theorem:

The set of strings accepted by a DFA *M* with *n* states is:

- nonempty if and only if *M* accepts a string of length less than *n*;
- ▶ infinite if and only if *M* accepts a string of length *k*, where $n \le k < 2n$.

(This approach is different from the book.)

Proof of "Nonempty" Claim

"...nonempty if and only if *M* accepts a string of length less than *n*"

/ "If": Obvious

- "Only if": Let w be the length of the shortest string accepted by M.
 - ♦ If |w| < n we're done.

If |w| ≥ n, then by the Pumping Lemma w = xyz, and xz ∈ L(M). Contradiction. We claimed that we

We claimed that *w* was the shortest string accepted by *M*.

Proof of "Infinite" Claim

"...infinite if and only if *M* accepts a string of length *k*, where $n \le k < 2n$ "

- ▶ "If": If $w \in L(M)$ and $n \leq |n| < 2n$, then L(M) is infinite by the Pumping Lemma.
- "Only if": Assume L(M) is infinite.
 - ◆ Then, there exists some *w* where |*w*| ≥ *n*. If such a string has a length under 2*n*, we're done.
 ◆ Otherwise...

Proof of "Infinite" Claim, continued

"...infinite if and only if *M* accepts a string of length *k*, where $n \le k < 2n$ "

... otherwise, all strings with a length greater than n are longer than 2n. Assume this is the case.

Let *w* be the shortest such string. By the Pumping Lemma, w = xyz, $|y| \ge 1$, and $xz \in L(M)$.

- ▶ If $|xz| \ge 2n$, we've contradicted the assumption that *w* is the shortest string longer than 2n.
- ▶ If |xz| < 2n, then $n \le xz < 2n$. This contradicts the assumption that the shortest string longer than *n* is longer than 2*n*.

Decision Algorithms

- Algorithm for "nonemptiness":
 - *See if any string with length at most |n| is in L(M).
 - Can be done using breadth- or depth-first search to find paths from the start state to a final state.
- Algorithm for "infiniteness":
 - ♦ See if any string with length |k|, where $n \le k < 2n$ is in L(M).
 - More efficient to check for "reachable cycles".
 - Can use depth-first search, but it's less efficient.

Another Equivalence Algorithm

We can now build another algorithm for testing equivalence:

• Let
$$L_1 = L(M_1)$$
 and $L_2 = L(M_2)$

A M_1 and M_2 are DFAs

► Create M_3 , where $L(M_3) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$

♦ Note that $L(M_3)$ is nonempty if and only if $L_1 \neq L_2$.

Test whether L₃ is empty using the "nonemptiness" algorithm.