
Pushdown Automata
COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1



Pushdown Automata (PDAs)

 A pushdown automaton (PDA) is essentially a finite 
automaton with a stack.

 Example PDA accepting 𝐿 = 0𝑛1𝑛 | 𝑛 ≥ 0 :

Jim Anderson (modified by Nathan Otterness) 2

    

  

     

          

            

         

                  

► Initially, the symbol 𝑍0 is on 
the stack.

► Acceptance can be by final 
state or empty stack.



Example PDA Execution

Jim Anderson (modified by Nathan Otterness) 3

    

  

     

          

            

         

                  

Input string: 0011

Stack

𝑍0

Current input

𝑍1

𝑍1



Formal Definition of a PDA

 A PDA can be defined by a 7-tuple 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 .

❖𝑄: A finite set of states

❖Σ: The input alphabet

❖Γ: The stack alphabet

❖𝛿: The transition function: 𝑄 × Σ ∪ 𝜀 × Γ → 2𝑄×Γ
∗

❖𝑞0: The start state

❖𝑍0 ∈ Γ: The initial stack symbol

❖𝐹: The set of accepting states

Jim Anderson (modified by Nathan Otterness) 4

Takes a state, an input symbol 
or 𝜀, and a stack symbol.

Returns a set of (state, 
stack symbol string) pairs.



Moves in a PDA

𝛿 𝑞, 𝑎, 𝑍 = { 𝑝1, 𝛾1, … , 𝑝𝑚, 𝛾𝑚 ≡

If:

 The current state is 𝑞, and

 The current input symbol is 𝑎, and

 The symbol 𝑍 is on the top of the stack

…

Jim Anderson (modified by Nathan Otterness) 5



Moves in a PDA

𝛿 𝑞, 𝑎, 𝑍 = { 𝑝1, 𝛾1), … , 𝑝𝑚, 𝛾𝑚 ≡

If the current state is 𝑞, the current input symbol is 𝑎, 
and the symbol 𝑍 is on the top of the stack,

Then choose a value 𝑖, (nondeterministic!)

 Enter state 𝑝𝑖,

 Replace the symbol on top of the stack with 𝛾𝑖, and

 Advance to the next input symbol.

Jim Anderson (modified by Nathan Otterness) 6



𝜀-Transitions in a PDA

𝛿 𝑞, 𝜀, 𝑍 = { 𝑝1, 𝛾1, … , 𝑝𝑚, 𝛾𝑚 ≡

 The rules here are identical for the states and the 
stack, but no input is consumed.

❖This adds further nondeterminism.

Jim Anderson (modified by Nathan Otterness) 7



Example: PDA Move Notation

 𝑀 = 𝑞0, 𝑞1, 𝑞2 , 0, 1 , 𝑍0, 𝑍1 , 𝛿, 𝑞0, 𝑍0, 𝑞2

 𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑍1𝑍0

 𝛿 𝑞0, 0, 𝑍1 = 𝑞0, 𝑍1𝑍1

 𝛿 𝑞0, 𝜀, 𝑍0 = 𝑞2, 𝜀 , 𝑞1, 𝑍0

 𝛿 𝑞0, 𝜀, 𝑍1 = 𝑞1, 𝑍1

 𝛿 𝑞1, 1, 𝑍1 = 𝑞1, 𝜀

 𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞2, 𝜀

Jim Anderson (modified by Nathan Otterness) 8

    

  

     

          

            

         

                  



Instantaneous Description

 An instantaneous description (ID) describes the 
“global state” of a PDA.

 An instantaneous description is given by 𝑞, 𝑤, 𝛾 :

❖𝑞: The current state

❖𝑤: The remaining input

❖𝛾: The current contents of the stack

 We write 𝑞, 𝑎𝑤, 𝑍𝛼 ├
𝑀

𝑝, 𝑤, 𝛽𝛼 if 𝛿 𝑞, 𝑎, 𝑍

contains 𝑝, 𝛽 .

 We can also write ├
𝑀

𝑖
, ├
𝑀

∗
, ├, ├

𝑖
, ├
∗

.

Jim Anderson (modified by Nathan Otterness) 9



Instantaneous Description Example

𝑞0, 0011, 𝑍0 ├ 𝑞0, 011, 𝑍1𝑍0

├ 𝑞0, 11, 𝑍1𝑍1𝑍0

├ 𝑞1, 11, 𝑍1𝑍1𝑍0

├ 𝑞1, 1, 𝑍1𝑍0

├ 𝑞1, 𝜀, 𝑍0

├ 𝑞2, 𝜀, 𝜀

Jim Anderson (modified by Nathan Otterness) 10

    

  

     

          

            

         

                  



Formalizing Graphical Notation

Jim Anderson (modified by Nathan Otterness) 11

    

          

        

  

     

          

        

       

              

    

  

     

          

            

         

                  

Current symbol on 
top of the stack.

What to replace the 
top symbol with.



The Language of a PDA

Let 𝑀 be a PDA: 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹

𝑀 defines two (possibly different) languages:

 The language accepted by final state:

❖𝐿 𝑀 ≡ 𝑤 | 𝑞0, 𝑤, 𝑍0 ├
∗
𝑝, 𝜀, 𝛾 , 𝑝 ∈ 𝐹, 𝛾 ∈ Γ∗

 The language accepted by empty stack:

❖𝑁 𝑀 ≡ 𝑤 | 𝑞0, 𝑤, 𝑍0 ├
∗
𝑝, 𝜀, 𝜀 , 𝑝 ∈ 𝑄

Jim Anderson (modified by Nathan Otterness) 12



More PDA Examples

 𝐿 = 𝑥𝑥𝑅 | 𝑥 ∈ 𝟎 + 𝟏 ∗

Jim Anderson (modified by Nathan Otterness) 13

      

         

       

       

       

       

      
      

      

     

         

                

      



More PDA Examples

 𝐿 is the language consisting of strings with an 
equal number of 0s and 1s.

Jim Anderson (modified by Nathan Otterness) 14

  

         

      
      
       
       

       

     

         

This accepts by empty stack. (You 
could also convert it to accept by 
final state, instead.)



Converting Empty Stack → Final State

Theorem 6.9: If 𝐿 = 𝑁(𝑃𝑁) for some PDA 𝑃𝑁, then
𝐿 = 𝐿(𝑃𝐹) for some PDA 𝑃𝐹.

Proof:

 Let 𝑃𝑁 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, ∅

 Then, 𝑃𝐹 = 𝑄 ∪ 𝑝0, 𝑝𝑓 , Σ, Γ ∪ Χ0 , 𝛿𝐹 , 𝑝0, 𝑋0, 𝑝𝑓 , 

where…

Jim Anderson (modified by Nathan Otterness) 15

• 𝑃𝑁: Accepts by empty stack
• 𝑃𝐹: Accepts by final state

Accepting states are unnecessary 
when  accepting by empty stack.



Converting Empty Stack → Final State

 𝛿𝐹 𝑝0, 𝜀, Χ0 = 𝑞0, 𝑍0𝑋0
❖𝑃𝐹 starts by pushing 𝑃𝑁’s start symbol onto the 

stack. 𝑃𝐹 will find its own start symbol (𝑋0) on 
top of the stack only when 𝑃𝑁’s stack is empty.

 For all 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ 𝜀 , and Υ ∈ Γ, 𝛿𝐹 𝑞, 𝑎, Υ
contains all pairs in 𝛿𝑁 𝑞, 𝑎, Υ .

❖𝑃𝐹 just simulates 𝑃𝑁 after initializing the stack.

 For all 𝑞 ∈ 𝑄, 𝛿𝐹 𝑞, 𝜀, 𝑋0 contains 𝑝𝑓 , 𝜀 .

❖𝑃𝐹 can accept by final state whenever 𝑃𝑁 would 
by empty stack.

Jim Anderson (modified by Nathan Otterness) 16

𝑃𝑁 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, ∅

𝑃𝐹 = 𝑄 ∪ 𝑝0, 𝑝𝑓 , Σ, Γ ∪ Χ0 , 𝛿𝐹 , 𝑝0, Χ0, 𝑝𝑓



Converting Empty Stack → Final State

 The behavior of 𝑃𝐹 (just showing the stack):

Jim Anderson (modified by Nathan Otterness) 17

X0

Z0

X0 X0 X0 X0 X0 X0 X0

Z0 Z0 Z0 Z0
… … … …

Push 𝑃𝑁’s
start symbol

Simulate 𝑃𝑁

If 𝑃𝑁 empties its stack,
move to the final state



Converting Final State → Empty Stack

Theorem 6.11: If 𝐿 = 𝐿 𝑃𝐹 for some PDA 𝑃𝐹, then 
𝐿 = 𝑁 𝑃𝑁 for some PDA 𝑃𝑁.

Proof:

 Let 𝑃𝐹 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹

 Then, 𝑃𝑁 = 𝑄 ∪ 𝑝0, 𝑝 , Σ, Γ ∪ Χ0 , 𝛿𝑁 , 𝑝0, 𝑋0, ∅ , 
where…

Jim Anderson (modified by Nathan Otterness) 18

• 𝑃𝐹: Accepts by final state
• 𝑃𝑁: Accepts by empty stack



Converting Final State → Empty Stack

 𝛿𝑁 𝑝0, 𝜀, 𝑋0 = 𝑞0, 𝑍0𝑋0 .

❖ 𝑃𝑁 starts by pushing 𝑃𝐹’s start symbol onto the stack. 𝑋0
ensures that 𝑃𝑁 doesn’t prematurely clear the stack.

 For all 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝜀}, and Υ ∈ Γ, 𝛿𝐹 𝑞, 𝑎, Υ contains all 
pairs in 𝛿𝑁 𝑞, 𝑎, Υ .

❖ 𝑃𝑁 simulates 𝑃𝐹 after initializing the stack.

 For all 𝑞 ∈ 𝐹, Υ ∈ Γ ∪ 𝑋0, 𝛿𝑁 𝑞, 𝜀, Υ contains 𝑝, 𝜀 .

❖ If 𝑃𝐹 can accept by final state, 𝑃𝑁 can begin emptying the 
stack.

 For all Υ ∈ Γ ∪ 𝑋0, 𝛿𝑁 𝑝, 𝜀, Υ = 𝑝, 𝜀 .

❖ 𝑃𝑁 continues to empty its stack until it is completely 
empty.

Jim Anderson (modified by Nathan Otterness) 19

𝑃𝐹 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹
𝑃𝑁 = 𝑄 ∪ 𝑝0, 𝑝 , Σ, Γ ∪ Χ0 , 𝛿𝑁, 𝑝0, Χ0, ∅



Converting Final State → Empty Stack

 The behavior of 𝑃𝑁 (just showing the stack):

Jim Anderson (modified by Nathan Otterness) 20

X0

Z0

X0 X0 X0 X0 X0 X0

Z0 Z0 Z0 Z0
… … … …

Push 𝑃𝐹’s start 
symbol on the 
stack.

Simulate 𝑃𝐹 If 𝑃𝐹 enters a final state,
go to state 𝑝 and empty 
the stack.



Converting CFGs to PDAs

Given a CFG 𝐺, we will construct a PDA that simulates leftmost 
derivations in 𝐺.

Main ideas:

 Each left-sentential form of 𝐺 is of the form 𝑥𝐴𝛼, where:

❖ 𝑥 is all terminals,

❖ 𝐴 is the variable that will be replaced in the next derivation 
step, and

❖ 𝛼 is some string that can include both variables and 
terminals.

 If you look at the “state” of the PDA at this point,

❖ 𝐴𝛼 will be on its stack, and

❖ input 𝑥 will have already been consumed.

Jim Anderson (modified by Nathan Otterness) 21



Converting CFGs to PDAs

Apply the production 𝐴 → 𝑦𝐶𝛽 like this:

Jim Anderson (modified by Nathan Otterness) 22

A 

C

y



C
Pop off terminals in 𝑦

while consuming
corresponding input 

symbols

  

Replace 𝐴 (on top of the stack) 
with all of the terminals and 

variables it produces.



Example PDA Execution for a CFG

Jim Anderson (modified by Nathan Otterness) 23

Productions:
• 𝑆 → 𝑆𝑆 𝜀 𝑎𝑆𝑎 | 𝑏𝐴
• 𝐴 → 𝑐

PDA transition function:
• 𝛿 𝑞, 𝜀, 𝑆 = 𝑞, 𝑆𝑆 , 𝑞, 𝜀 , 𝑞, 𝑎𝑆𝑎 , 𝑞, 𝑏𝐴
• 𝛿 𝑞, 𝜀, 𝐴 = 𝑞, 𝑐
• 𝛿 𝑞, 𝑑, 𝑑 = 𝑞, 𝜀 , where 𝑑 ∈ 𝑎, 𝑏, 𝑐

A LM derivation:  𝑆 ⇒ 𝑎𝑆𝑎 ⇒ 𝑎𝑎𝑆𝑎𝑎 ⇒ 𝑎𝑎𝑏𝐴𝑎𝑎 ⇒ 𝑎𝑎𝑏𝑐𝑎𝑎.
The PDA’s stack when processing the input 𝑎𝑎𝑏𝑐𝑎𝑎:

consume
a

S
consume

b

A

consume c, a, a
(one at a time)

(Empty)

b

c

a

a

S

a a

S

a

a

consume
a a

S

a

a

a

A

a

a

a

a

S



Formal Definition of a PDA for a CFG

Define a PDA 𝑃 accepting the language defined by 
CFG 𝐺:

 𝑃 = 𝑞 , 𝑇, 𝑉 ∪ 𝑇, 𝛿, 𝑞, 𝑆, ∅

 𝛿 is defined by:

❖Rule 1: For each variable 𝐴:
𝛿 𝑞, 𝜀, 𝐴 = 𝑞, 𝛽 | 𝐴 → 𝛽 is a production

❖Rule 2: For each terminal 𝑎:
𝛿 𝑞, 𝑎, 𝑎 = 𝑞, 𝜀

 Note: this means that any CFG can be accepted by 
a PDA (by empty stack) with only one state.

Jim Anderson (modified by Nathan Otterness) 24

Reminder:
• PDA definition: 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹
• CFG definition: 𝑉, 𝑇, 𝑆, 𝑃



Proving CFG → PDA Correctness

Theorem 6.13: 𝑁 𝑃 = 𝐿 𝐺 , where 𝑃 and 𝐺 are 
defined as before.

Proof: We will show that 𝑤 is in 𝑁 𝑃 if and only if it 
is in 𝐿 𝐺 .

“If”: If 𝑤 is in 𝐿 𝐺 then it has a LM derivation
𝑆 = 𝛾1

𝑙𝑚
𝛾2

𝑙𝑚
…

𝑙𝑚
𝛾𝑛 = 𝑤.

We will show by induction on 𝑖 that 

𝑞, 𝑤, 𝑆 ├
∗
𝑞, 𝑦𝑖 , 𝛼𝑖 , where 𝛾𝑖 = 𝑥𝑖𝛼𝑖, and 𝑥𝑖𝑦𝑖 = 𝑤.

Jim Anderson (modified by Nathan Otterness) 25

Shorthand for the language 
of 𝑃 accepted by empty stack.



Proving CFG → PDA Correctness

Base case: 𝑖 = 1, so 𝛾1 = 𝑆.  This means 𝑥1 = 𝜀, 𝑦1 = 𝑤, 

and 𝛼1 = 𝑆.  So, 𝑞, 𝑤, 𝑆 ├
∗
𝑞1, 𝑦1, 𝛼1 .

Inductive step:  Assume 𝑞, 𝑤, 𝑆 ├
∗
𝑞, 𝑦𝑖 , 𝛼𝑖 by the 

inductive hypothesis.  We need to show that 

𝑞, 𝑤, 𝑆 ├
∗
𝑞, 𝑦𝑖+1, 𝛼𝑖+1 .

We need to show that 𝑃 can make moves that simulate 
the next step.
Jim Anderson (modified by Nathan Otterness) 26

Reminder: After simulating 
the derivation up to 𝛾𝑖,

𝑦𝑖 is the unconsumed input 
and 𝛼𝑖 is the stack contents.



Proving CFG → PDA Correctness

This follows from the definition of 𝛿:

 𝛼𝑖 is of the form 𝐴…, where 𝐴 is a variable.

 The derivation step 𝛾𝑖 ⇒ 𝛾𝑖+1 involves replacing 𝐴
by some string 𝛽.

 By Rule 1 in the definition of 𝛿, we can replace 𝐴
by 𝛽 on top of the stack.

 By Rule 2 in the definition of 𝛿, any leading 
terminals in 𝛽 can be popped off the stack and the 
corresponding input consumed.

Jim Anderson (modified by Nathan Otterness) 27



Proving CFG → PDA Correctness

“Only if”: We want to prove that if 𝑤 is in 𝑁 𝑀 , then 𝑤 is 
in 𝐿 𝐺 . To do so, we prove something more general:

Claim: If 𝑞, 𝑥, 𝐴 ├
∗
𝑞, 𝜀, 𝜀 , then 𝐴⇒

𝐺

∗
𝑥.

In words: Consider running 𝑃 when 𝐴 is on top of the stack, 
and continue running until 𝐴 (and anything that replaced it) 
has been popped off the stack.  If 𝑥 is the string of input 
symbols consumed while doing this, then 𝑥 is derivable 
from 𝐴.

Example: From the example PDA, 𝑞, 𝑎𝑏𝑐𝑎, 𝑆 ├
∗
𝑞, 𝜀, 𝜀 and 

𝑆 ⇒
∗

𝐺
𝑎𝑏𝑐𝑎.

Jim Anderson (modified by Nathan Otterness) 28



Proving CFG → PDA Correctness

Jim Anderson (modified by Nathan Otterness) 29

Productions:
• 𝑆 → 𝑆𝑆 𝜀 𝑎𝑆𝑎 | 𝑏𝐴
• 𝐴 → 𝑐

Revisiting the example from before:

consume
a

S
consume

b

A

consume 𝑐

b

c

a

a

S

a a

S

a

a

consume
a

a

S

a

a

a

A

a

a

a

a

S

𝑞, 𝑎𝑏𝑐𝑎, 𝑆 ├
∗
𝑞, 𝜀, 𝜀 and 𝑆 ⇒

∗

𝐺
𝑎𝑏𝑐𝑎

a

a

consume 𝑎 a …

We can see the derivation for 

𝑆 ⇒
∗

𝐺
𝑎𝑏𝑐𝑎 starting here, where 

𝑆 is on top of the stack.

Here, 𝑆 and everything that 
replaced it has been popped 
off, and 𝑎𝑏𝑐𝑎 was consumed.



Proving CFG → PDA Correctness

Claim: If 𝑞, 𝑥, 𝐴 ├
∗
𝑞, 𝜀, 𝜀 , then 𝐴 ⇒

∗

𝐺
𝑥.

We will prove this by induction on the number of 
moves made by 𝑃.

Base case: 𝑃 makes one move. 𝐴 can be popped off 
the stack directly only if 𝐴 → 𝜀 is a production (in 

which case 𝑥 = 𝜀). In this case, the claim that 𝐴 ⇒
∗

𝐺
𝜀

follows.

Jim Anderson (modified by Nathan Otterness) 30



Proving CFG → PDA Correctness

Claim: If 𝑞, 𝑥, 𝐴 ├
∗
𝑞, 𝜀, 𝜀 , then 𝐴 ⇒

∗

𝐺
𝑥.

Inductive step: Consider 𝑛 moves, and assume that 
the claim is true for fewer than 𝑛 moves.

The first move must be defined because of a 
production of the form 𝐴 → 𝑌1𝑌2…𝑌𝑘, where each 𝑌𝑖
is either a variable or terminal.

If 𝒀𝟏 is a terminal symbol, then the only thing that 𝑃
can do is pop it off the stack and consume the 
corresponding symbol in the input.

Jim Anderson (modified by Nathan Otterness) 31

Claim:

𝑞, 𝑥, 𝐴 ├
∗
𝑞, 𝜀, 𝜀 , then 𝐴⇒

∗

𝐺
𝑥



Proving CFG → PDA Correctness

Inductive step, continued:

The first move must be defined because of a 
production of the form 𝐴 → 𝑌1𝑌2…𝑌𝑘, where each 𝑌𝑖
is either a variable or terminal.

If 𝐘𝟏 is a variable, then consider the behavior of 𝑃
until 𝑌1, or whatever ends up replacing it, is erased 
from the stack.  If 𝑦1 is the string of input symbols 
consumed while doing this, then by the inductive 

hypothesis 𝑌1 ⇒
∗
𝑦1.

In turn, this argument can be applied to 𝑌2…𝑌𝑘.

Jim Anderson (modified by Nathan Otterness) 32

Claim:

𝑞, 𝑥, 𝐴 ├
∗
𝑞, 𝜀, 𝜀 , then 𝐴⇒

∗

𝐺
𝑥



Proving CFG → PDA Correctness

From the previous slide, it follows that 𝑥 = 𝑥1𝑥2…𝑥𝑘, 
where 𝑥𝑖 = 𝑌𝑖 if 𝑌𝑖 is a terminal and 𝑥𝑖 = 𝑦𝑖 if 𝑌𝑖 is a 
variable.  By concatenating these various derivations, 

we have 𝐴 ⇒
∗
𝑥.

Jim Anderson (modified by Nathan Otterness) 33

Claim:

𝑞, 𝑥, 𝐴 ├
∗
𝑞, 𝜀, 𝜀 , then 𝐴⇒

∗

𝐺
𝑥



Converting PDAs to CFGs

Theorem 6.14: If 𝐿 = 𝑁 𝑃 for some PDA 𝑃, then
𝐿 = 𝐿 𝐺 for some CFG 𝐺.

Proof:

Let 𝑃 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, ∅ .

Define 𝐺 = 𝑉, Σ, 𝑅, 𝑆 such that 𝑉 contains 𝑞𝑋𝑝 for 
all 𝑞, 𝑝 ∈ 𝑄, and all 𝑋 ∈ Γ.

𝑅 is defined on the next slide…

Jim Anderson (modified by Nathan Otterness) 34

These symbols will end up generating all 
strings that cause 𝑋 to be popped from 

the stack while moving from state 𝑞 to 𝑝.



Converting PDAs to CFGs

𝑅 is defined as follows:

 𝑆 → 𝑞0𝑍0𝑝 , for all 𝑝 ∈ 𝑄.

 If 𝛿 𝑞, 𝑎, 𝑋 contains 𝑟, 𝑌1𝑌2…𝑌𝑘 , then 𝑅 contains the 
rule 𝑞𝑋𝑟𝑘 → 𝑎 𝑟𝑌1𝑟1 𝑟1𝑌2𝑟2 … 𝑟𝑘−1𝑌𝑘𝑟𝑘 .

❖𝑎 is an input symbol or 𝜀

❖𝑋 and each 𝑌𝑖 are stack symbols

❖ 𝑟1, 𝑟2, … 𝑟𝑘 can be any list of states, so we need to 
add a production rule for all possible lists of 𝑘 states.

 If 𝛿 𝑞, 𝑎, 𝑋 contains 𝑟, 𝜀 , then 𝑅 contains the
rule 𝑞𝑋𝑟 → 𝑎.

Jim Anderson (modified by Nathan Otterness) 35



Intuition Behind PDA→CFG Method

A leftmost derivation in 𝐺 of a string 𝑤 simulates 𝑃
with 𝑤 as an input.

𝑆 ⇒
∗

𝑙𝑚
00 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1 [𝑞1𝑍0𝑞1] ⇒

∗

𝑙𝑚
00011

(This comes from the example in the following slides).

Jim Anderson (modified by Nathan Otterness) 36



Intuition Behind PDA→CFG Method

A leftmost derivation in 𝐺 of a string 𝑤 simulates 𝑃
with 𝑤 as an input.

𝑆 ⇒
∗

𝑙𝑚
00 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1 [𝑞1𝑍0𝑞1] ⇒

∗

𝑙𝑚
00011

Jim Anderson (modified by Nathan Otterness) 37

The input 
consumed by 𝑃

𝑃’s current state
The state 𝑃 will be in after 
𝑋 or the symbols that 
replace 𝑋 have been 

erased from the stack.



Intuition Behind PDA→CFG Method

A leftmost derivation in 𝐺 of a string 𝑤 simulates 𝑃
with 𝑤 as an input.

𝑆 ⇒
∗

𝑙𝑚
00 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1 [𝑞1𝑍0𝑞1] ⇒

∗

𝑙𝑚
00011

Jim Anderson (modified by Nathan Otterness) 38

𝑃’s current stack: 
𝑋𝑋𝑍0



Converting PDA→CFG: Example

 We will convert the following PDA 𝑃 to a CFG.

 𝑁 𝑃 = 0𝑖1𝑗 | 𝑖 ≥ 𝑗 ≥ 1 .

❖𝑃 = q0, q1 , 0, 1 , 𝑋, 𝑍0 , 𝛿, 𝑞0, 𝑍0, ∅

❖𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0

❖𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋

❖𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀

❖𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀

❖𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀

❖𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀

Jim Anderson (modified by Nathan Otterness) 39

    

             
       

     

         

      

      



Converting PDA→CFG: Example

The variables in the CFG created from this example 
PDA will be:

𝑉 = { 𝑞0𝑋𝑞0 , 𝑞0𝑋𝑞1 , 𝑞1𝑋𝑞0 , 𝑞1𝑋𝑞1 ,
𝑞0𝑍0𝑞0 , 𝑞0𝑍0𝑞1 , 𝑞1𝑍0𝑞0 , 𝑞1𝑍0𝑞1 }

Jim Anderson (modified by Nathan Otterness) 40



Converting PDA→CFG: Example

 Production rules from the start state 𝑆:

❖𝑆 → 𝑞0𝑍0𝑞0

❖𝑆 → 𝑞0𝑍0𝑞1

Jim Anderson (modified by Nathan Otterness) 41

𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0
𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋
𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀



Converting PDA→CFG: Example

 Production rules from 𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0 :

❖ 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞0
❑𝑟1 = 𝑞0 and 𝑟2 = 𝑞0

❖ 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞1
❑𝑟1 = 𝑞0 and 𝑟2 = 𝑞1

❖ 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞0
❑𝑟1 = 𝑞1 and 𝑟2 = 𝑞0

❖ 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1
❑𝑟1 = 𝑞1 and 𝑟2 = 𝑞1

Jim Anderson (modified by Nathan Otterness) 42

𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0
𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋
𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀



Converting PDA→CFG: Example

 Production rules from 𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0 :

❖ 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞0
❑𝑟1 = 𝑞0 and 𝑟2 = 𝑞0

❖ 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞1
❑𝑟1 = 𝑞0 and 𝑟2 = 𝑞1

❖ 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞0
❑𝑟1 = 𝑞1 and 𝑟2 = 𝑞0

❖ 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1
❑𝑟1 = 𝑞1 and 𝑟2 = 𝑞1

Jim Anderson (modified by Nathan Otterness) 43

𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0
𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋
𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀

These four rules are due to the 
number of possible lists of 𝑟1, … , 𝑟𝑘. 

In this case 𝑘 = 2, and we have 
two states, so we end up with four 
possible lists containing two states.



Converting PDA→CFG: Example

 Production rules from 𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋 :

❖ 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞0
❑𝑟1 = 𝑞0 and 𝑟2 = 𝑞0

❖ 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞1
❑𝑟1 = 𝑞0 and 𝑟2 = 𝑞1

❖ 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞0
❑𝑟1 = 𝑞1 and 𝑟2 = 𝑞0

❖ 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1
❑𝑟1 = 𝑞1 and 𝑟2 = 𝑞1

Jim Anderson (modified by Nathan Otterness) 44

𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0
𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋
𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀



Converting PDA→CFG: Example

 Production rule from 𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀 :

❖ 𝑞0𝑋𝑞1 → 1

 Production rule from 𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀 :

❖ 𝑞1𝑋𝑞1 → 1

 Production rule from 𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀 :

❖ 𝑞1𝑋𝑞1 → 𝜀

 Production rule from 𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀 :

❖ 𝑞1𝑍0𝑞1 → 𝜀

Jim Anderson (modified by Nathan Otterness) 45

𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0
𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋
𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀



Converting PDA→CFG: Example

 We now have production rules for every variable 
except for 𝑞1𝑍0𝑞0 and [𝑞1𝑋𝑞0].

❖These variables have no production rules—if they 
are ever produced we could never replace them 
with terminals.

❖Intuitively, this makes sense because the original 
PDA can’t possibly transition from 𝑞1 to 𝑞0.

❑Remember that 𝑞1𝑋𝑞0 corresponds to 𝑃 transitioning 
from 𝑞1 to 𝑞0 while popping 𝑋 off the stack.

Jim Anderson (modified by Nathan Otterness) 46

    

             
       

     

         

      

      



Converting PDA→CFG: Example

 𝑆 → 𝑞0𝑍0𝑞0

 𝑆 → 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1

 𝑞0𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 𝜀

 𝑞1𝑍0𝑞1 → 𝜀

Jim Anderson (modified by Nathan Otterness) 47

This technique can result in many useless
productions, which are either unreachable 
or will never lead to a terminal string.



Converting PDA→CFG: Example

 𝑆 → 𝑞0𝑍0𝑞0

 𝑆 → 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1

 𝑞0𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 𝜀

 𝑞1𝑍0𝑞1 → 𝜀

Jim Anderson (modified by Nathan Otterness) 48

We know that 𝑞1𝑍0𝑞0 and 𝑞1𝑋𝑞0 can never 
lead to terminals due to having no productions, 
so any production of these variables is useless.



Converting PDA→CFG: Example

 𝑆 → 𝑞0𝑍0𝑞0

 𝑆 → 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1

 𝑞0𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 𝜀

 𝑞1𝑍0𝑞1 → 𝜀

Jim Anderson (modified by Nathan Otterness) 49

𝑞0𝑍0𝑞0 has only one other production, which 
also produces itself, meaning that 𝑞0𝑍0𝑞0 can 
never be entirely replaced with terminals.



Converting PDA→CFG: Example

 𝑆 → 𝑞0𝑍0𝑞0

 𝑆 → 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞0

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞0 𝑞0𝑋𝑞1

 𝑞0𝑋𝑞0 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞0

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1

 𝑞0𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 𝜀

 𝑞1𝑍0𝑞1 → 𝜀

Jim Anderson (modified by Nathan Otterness) 50

𝑞0𝑋𝑞0 has only one remaining production, 
which only produces itself. So, 𝑞0𝑋𝑞0 can never 
be replaced with terminals and is also useless.



Converting PDA→CFG: Example

After removing all of the useless productions, we end up 
with the following production rules in the grammar:

 𝑆 → 𝑞0𝑍0𝑞1

 𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1

 𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1

 𝑞0𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 1

 𝑞1𝑋𝑞1 → 𝜀

 𝑞1𝑍0𝑞1 → 𝜀

Jim Anderson (modified by Nathan Otterness) 51



Converting PDA→CFG: Example

Remember that the language of the PDA and CFG is 

0𝑖1𝑗 | 𝑖 ≥ 𝑗 ≥ 1 .
Example string in the language: 001.

Jim Anderson (modified by Nathan Otterness) 52

𝛿 𝑞0, 0, 𝑍0 = 𝑞0, 𝑋𝑍0
𝛿 𝑞0, 0, 𝑋 = 𝑞0, 𝑋𝑋
𝛿 𝑞0, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 1, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑋 = 𝑞1, 𝜀
𝛿 𝑞1, 𝜀, 𝑍0 = 𝑞1, 𝜀

𝑆 → 𝑞0𝑍0𝑞1
𝑞0𝑍0𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1
𝑞0𝑋𝑞1 → 0 𝑞0𝑋𝑞1 𝑞1𝑋𝑞1
𝑞0𝑋𝑞1 → 1
𝑞1𝑋𝑞1 → 1
𝑞1𝑋𝑞1 → 𝜀
𝑞1𝑍0𝑞1 → 𝜀

Leftmost derivation in the 
constructed grammar:
• 𝑆 ⇒ 𝑞0𝑍0𝑞1
• ⇒ 0 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1
• ⇒ 00 𝑞0𝑋𝑞1 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1
• ⇒ 001 𝑞0𝑋𝑞1 𝑞1𝑍0𝑞1
• ⇒ 001 𝑞1𝑍0𝑞1
• ⇒ 001

Sequence of moves in the 
original PDA:
• 𝑞0, 001, 𝑍0
• ├ 𝑞0, 01, 𝑋𝑍0
• ├ 𝑞0, 1, 𝑋𝑋𝑍0
• ├ 𝑞1, 𝜀, 𝑋𝑍0
• ├ 𝑞1, 𝜀, 𝑍0
• ├ 𝑞1, 𝜀, 𝜀



Proving PDA→CFG Correctness

We will prove that our construction is correct by first proving 
that the variables mean what we say they do.

Claim: 𝑞𝑋𝑝 ⇒
∗

𝐺
𝑤 if and only if 𝑞, 𝑤, 𝑋 ├

𝑃

∗
𝑝, 𝜀, 𝜀 .

 “We can derive 𝑤 from 𝑞𝑋𝑝 if and only if we can move 
from state 𝑞 to 𝑝 while consuming 𝑤 and popping 𝑋 from 
the stack.”

 Special case: 𝑞0𝑍0𝑝 ⇒
∗
𝑤 if and only if 𝑞0, 𝑤, 𝑍0 ├

∗
𝑝, 𝜀, 𝜀 .

 Because 𝑆 ⇒ 𝑞0𝑍0𝑝 (by our construction), this implies
𝑤 ∈ 𝐿 𝐺 if and only if 𝑤 ∈ 𝑁 𝑃 .

Jim Anderson (modified by Nathan Otterness) 53

Remember that this is the 
condition for determining 𝑤’s 
membership in the language 

of a PDA by empty stack.



Proving PDA→CFG Correctness

Claim (again): 𝑞𝑋𝑝 ⇒
∗

𝐺
𝑤 if and only if 𝑞, 𝑤, 𝑋 ├

𝑃

∗
𝑝, 𝜀, 𝜀 .

“If”: We show by induction on the number of PDA 

moves that 𝑞, 𝑤, 𝑋 ├
𝑖
𝑝, 𝜀, 𝜀 implies 𝑞𝑋𝑝 ⇒

∗
𝑤.

Base case: 𝑖 = 1.  This means that 𝑤 ∈ Σ ∪ 𝜀 .

𝛿 𝑞, 𝑤, 𝑋 must contain 𝑝, 𝜀 . Therefore, 𝑞𝑋𝑝 → 𝑤 is a 
production due to our construction of the CFG.

Jim Anderson (modified by Nathan Otterness) 54

The only way the PDA can 
accept a string in one step is if 

the string is a single symbol or 𝜀.



Proving PDA→CFG Correctness

𝑞𝑋𝑝 ⇒
∗

𝐺
𝑤 if and only if 𝑞,𝑤, 𝑋 ├

𝑃

∗
𝑝, 𝜀, 𝜀

“If”, Inductive step: 𝑖 steps, where 𝑖 > 1.

 𝑞, 𝑎𝑥, 𝑋 ├ 𝑟0, 𝑥, 𝑌1…𝑌𝑘 ├
∗
𝑝, 𝜀, 𝜀

❖ Here, 𝑤 = 𝑎𝑥, where 𝑎 ∈ Σ ∪ 𝜀

❖ This means that 𝑟0, 𝑌1…𝑌𝑘 ∈ 𝛿 𝑞, 𝑎, 𝑋 , so the CFG will 
have a production 𝑞𝑋𝑟𝑘 → 𝑎 𝑟0𝑌1𝑟1 … 𝑟𝑘−1𝑌𝑘𝑟𝑘 , where

❑ 𝑟𝑘 = 𝑝, and

❑ 𝑟1, 𝑟2…𝑟𝑘−1 are any states in 𝑄.

Jim Anderson (modified by Nathan Otterness) 55



Proving PDA→CFG Correctness

“If”, Inductive step, continued

 𝑞, 𝑎𝑥, 𝑋 ├ 𝑟0, 𝑥, 𝑌1…𝑌𝑘 ├
∗
𝑝, 𝜀, 𝜀

❖ We have a production 𝑞𝑋𝑟𝑘 → 𝑎 𝑟0𝑌1𝑟1 … 𝑟𝑘−1𝑌𝑘𝑟𝑘 , where

❑ 𝑟𝑘 = 𝑝, and

❑ 𝑟1, 𝑟2…𝑟𝑘−1 are any states in 𝑄.

 For each 𝑌𝑖 in 𝑌1…𝑌𝑘:

❖ Let 𝑟𝑖 be the state of the PDA when 𝑌𝑖 is popped off the stack.

❖ Let 𝑤𝑖 be the input consumed when popping 𝑌𝑖 off the stack.

❑ In this example, 𝑥 = 𝑤1…𝑤𝑘

❖ Putting the above points another way, 𝑟𝑖−1, 𝑤𝑖 , 𝑌𝑖 ├
∗

𝑟𝑖 , 𝜀, 𝜀 .

 Any set of moves going from 𝑟𝑖−1 to 𝑟𝑖 will take fewer than 𝑛 moves, so the 
inductive hypothesis tells us that 𝑟𝑖−1𝑌𝑖𝑟𝑖 ⇒

∗
𝑤𝑖.

 Therefore, 𝑎 𝑟0𝑌1𝑟1 … 𝑟𝑘−1𝑌𝑘𝑟𝑘 ⇒
∗
𝑎𝑤1…𝑤𝑘 = 𝑎𝑥 = 𝑤.

Jim Anderson (modified by Nathan Otterness) 56



Proving PDA→CFG Correctness

Claim (again): 𝑞𝑋𝑝 ⇒
∗

𝐺
𝑤 if and only if 𝑞, 𝑤, 𝑋 ├

𝑃

∗
𝑝, 𝜀, 𝜀 .

“Only if”: We show by induction on the number of 

derivation steps that 𝑞𝑋𝑝 ⇒
𝑖
𝑤 implies 𝑞, 𝑤, 𝑋 ├

∗
𝑝, 𝜀, 𝜀 .

Base case: 𝑖 = 1. 𝑞𝑋𝑝 → 𝑤, where 𝑤 ∈ Σ ∪ 𝜀 .

From the construction of the CFG, we know that 𝛿 𝑞, 𝑤, 𝑋
must contain 𝑝, 𝜀 .

Jim Anderson (modified by Nathan Otterness) 57



Proving PDA→CFG Correctness

“Only if” claim: 𝑞𝑋𝑝 ⇒
𝑖
𝑤 implies 𝑞, 𝑤, 𝑋 ├

∗
𝑝, 𝜀, 𝜀

Inductive step: 𝑖 > 1.

𝑞𝑋𝑟𝑘 ⇒ 𝑎 𝑟0𝑌1𝑟1 … 𝑟𝑘−1𝑌𝑘𝑟𝑘
𝑖−1

𝑤.

Let 𝑤 = 𝑎𝑤1𝑤2…𝑤𝑘, where 𝑟𝑖−1𝑌𝑖𝑟𝑖 ⇒
∗
𝑤𝑗 and 1 ≤ 𝑖 ≤ 𝑘.

By the inductive hypothesis, 𝑟𝑖−1, 𝑤𝑖 , 𝑌𝑖 ├
∗
𝑟𝑖 , 𝜀, 𝜀 ,

and 1 ≤ 𝑖 ≤ 𝑘.

Therefore, 𝑟𝑖−1, 𝑤𝑖 , 𝑌𝑖𝑌𝑖+1…𝑌𝑘 ├
∗
𝑟𝑖 , 𝜀, 𝑌𝑖+1…𝑌𝑘

From the first step of the derivation, 
𝑞, 𝑤, 𝑋 ├ 𝑟0, 𝑤1…𝑤𝑘 , 𝑌1…𝑌𝑘 .  So, 𝑞,𝑤, 𝑋 ├

∗
𝑝, 𝜀, 𝜀 .

Jim Anderson (modified by Nathan Otterness) 58

𝑟𝑘 = 𝑝



Deterministic PDAs

A PDA 𝑃 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 is deterministic if and 
only if:

1. 𝛿 𝑞, 𝑎, 𝑋 has at most one member for any 𝑞 ∈ 𝑄, 
𝑎 ∈ Σ ∪ 𝜀 , and 𝑋 ∈ Γ.

2. If 𝛿 𝑞, 𝑎, 𝑋 is nonempty for some 𝑎 ∈ Σ, then 
𝛿 𝑞, 𝜀, 𝑋 must be empty.

 Deterministic PDAs (DPDAs) are useful in parsing.

 Unlike DFAs, which are just as powerful as NFAs, 
DPDAs are less powerful than nondeterministic PDAs.

Jim Anderson (modified by Nathan Otterness) 59

There is at most one 
possible transition for 
every combination of 
state, input symbol, 
and stack symbol.



Regular Languages and DPDAs

Theorem 6.17: If 𝐿 is a regular language, then
𝐿 = 𝐿 𝑃 for some DPDA 𝑃.

Proof sketch: A DFA is a special case of a DPDA in 
which the stack is not used, i.e., all moves “replace” 
𝑍0 by 𝑍0, where 𝑍0 is the start symbol.

Jim Anderson (modified by Nathan Otterness) 60



DPDAs Accepting by Empty Stack

It is impossible for a DPDA that accepts by empty 
stack to accept both a string 𝑥 and a string 𝑥𝑦, where 
𝑦 ≠ 𝜀.

A language 𝐿 has the prefix property if there are no 
two different strings 𝑥 and 𝑦 in 𝐿 such that 𝑥 is a 
prefix of 𝑦.

Theorem 6.19: A language 𝐿 is 𝑁 𝑃 for some DPDA 
𝑃 if and only if 𝐿 has the prefix property and 𝐿 is 
𝐿 𝑃′ for some DPDA 𝑃′.

Jim Anderson (modified by Nathan Otterness) 61

The DPDA would need 
to empty its stack while 
reading 𝑥, so it would 

fail when trying to 
process more input on 

an empty stack.



Relationships Between DPDAs and CFLs

Theorem: The languages accepted by DPDAs by final 
state properly include the regular languages, but are 
properly included in the context-free languages.

Proof sketch: Regular language inclusion (not 
necessarily proper inclusion) is implied by Theorem 6.17 
(a regular language must be accepted by some DPDA).

Jim Anderson (modified by Nathan Otterness) 62

“Proper” inclusion:
The superset must have 

some elements not 
present in the subset.



DPDA Inclusion Proof Sketch, Continued

The fact that regular languages are properly included 
in the languages of DPDAs is because the language 
𝑤2𝑤𝑅 | 𝑤 ∈ 𝟎 + 𝟏 ∗ is accepted by a DPDA by final 

state, but is not a regular language.

 The “2” tells the DPDA when to start looking for 𝑤𝑅, 
enabling it to be deterministic.

Jim Anderson (modified by Nathan Otterness) 63



DPDA Inclusion Proof Sketch, Continued

The fact that the language of DPDAs is properly 
included by context-free languages is because the 
language 𝑤𝑤𝑅 | 𝑤 ∈ 𝟎 + 𝟏 ∗ is accepted by a PDA 
but not by any DPDA.

 We will not prove in class that it’s impossible for a 
DPDA to accept this, but the intuition is that the 
DPDA can’t “know” when 𝑤 ends and 𝑤𝑅 begins.

Jim Anderson (modified by Nathan Otterness) 64



DPDAs and Ambiguous Grammars

Theorem 6.20: If 𝐿 = 𝑁 𝑃 for some DPDA 𝑃, then 𝐿
has an unambiguous CFG.

Proof sketch:

A CFG is ambiguous if and only if multiple leftmost 
derivations are possible.

If we apply the previous PDA→CFG construction to a 
DPDA, we will end up with production rules where 
multiple derivations of the same string aren’t possible.

Jim Anderson (modified by Nathan Otterness) 65



DPDAs and Ambiguous Grammars

Theorem 6.21: If 𝐿 = 𝐿 𝑃 for some DPDA 𝑃, then 𝐿
has an unambiguous CFG.

Proof sketch:

Define 𝐿$ = 𝑥$ | 𝑥 ∈ 𝐿 , and $ is a new symbol not in 
𝐿’s alphabet.  This means that 𝐿$ has the prefix property.

We can modify 𝑃 to accept 𝐿$ by final state.  Therefore, 
by Theorem 6.19, 𝐿$ = 𝑁 𝑃′ for some DPDA 𝑃′.

Jim Anderson (modified by Nathan Otterness) 66

If a string 𝑤 contained a 
prefix in 𝐿$, 𝑤 and the prefix 

would both need to end 
with $, which is not possible 
under our definition of 𝐿$.



DPDAs and Ambiguous Grammars

Theorem 6.21: If 𝐿 = 𝐿 𝑃 for some DPDA 𝑃, then 𝐿 has 
an unambiguous CFG.
Proof sketch, continued:

We know by Theorem 6.20 that, 𝐿$ has an unambiguous 
CFG 𝐺, because 𝐿$ = 𝑁 𝑃′ for some DPDA 𝑃′.

However, in 𝐺, $ is a terminal symbol.  To fix this, 
define a grammar 𝐺′ that is the same as 𝐺 except $ is a 
variable and the production $ → 𝜀 is included.

Now, 𝐺′ is unambiguous, and 𝐿 = 𝐿 𝐺′ .

Jim Anderson (modified by Nathan Otterness) 67


