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Simplification of CFGs

We can simplify CFGs by removing:

 Useless symbols.

❖𝑋 is generating if 𝑋 ֜
∗
𝑤, where 𝑤 ∈ 𝑇∗.

❖𝑋 is reachable if 𝑆 ֜
∗
𝛼𝑋𝛽 (𝑆 is the start symbol).

❖𝑋 is useful only if it is both reachable and generating.

 𝜺-productions, of the form 𝐴 → 𝜀.

❖If 𝜀 is in the language, we will still need one
𝜀-production.

 Unit productions, of the form 𝐴 → 𝐵.
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Finding Generating Variables

Theorem 7.4: The following algorithm correctly finds 
all generating variables.
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old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝑤 exists, and 𝑤 ∈ 𝑇∗ ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ 𝑇 ∪ old_vars ∗ ;

return new_vars;



Finding Generating Variables

Proof of Theorem 7.4:

We want to show that 𝑋 is added to new_vars if and only 

if 𝑋 ֜
∗
𝑤 for some 𝑤 ∈ 𝑇∗.

“Only if”: We must show that if 𝑋 is added to new_vars

then 𝑋 ֜
∗
𝑤.

This can be proven by induction on the number of 
iterations of the algorithm (specifics are left as an 
exercise).
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old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝑤 exists, and 𝑤 ∈ 𝑇∗ ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ 𝑇 ∪ old_vars ∗ ;

return new_vars;



Finding Generating Variables

Proof of Theorem 7.4:

We want to show that 𝑋 is added to new_vars if and only 

if 𝑋 ֜
∗
𝑤 for some 𝑤 ∈ 𝑇∗.

“If”: We must show that if 𝑋 ֜
∗
𝑤, then 𝑋 is eventually 

added to new_vars.

This can be proven by induction on the length of the 
derivation (specifics are left as an exercise).
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old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝑤 exists, and 𝑤 ∈ 𝑇∗ ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ 𝑇 ∪ old_vars ∗ ;

return new_vars;



Finding Reachable Variables

Theorem 7.5: There exists an iterative algorithm that 
will correctly find all reachable symbols.

This is similar to the previous algorithm, except this 
time you’ll start with a set containing the start 
symbol and look for new reachable symbols in each 
iteration.
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old_vars := ∅;
new_vars := 𝑆 ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪
𝐴 | 𝐴 is produced by something in old_vars ;

return new_vars;



Eliminating Useless Symbols

Theorem 7.2: (Abbreviated) Every nonempty CFL is 
generated by a CFG with no useless symbols.

Proof:

Let 𝐿 be the language of some CFG 𝐺, where 𝐿 ≠ ∅.

Define:

𝐺 𝐺1 𝐺2

Jim Anderson (modified by Nathan Otterness) 7

Remove
Non-generating

using Theorem 7.4

Remove
Non-reachable

using Theorem 7.5

This order 
matters!



Eliminating Useless Symbols
Proof, continued:

Assume 𝐺2 contains a useless variable, 𝑋.

 By Theorem 7.5, 𝑆֜
𝐺2

∗
𝛼𝑋𝛽.

❖ In other words, we know that 𝑋 is reachable in 𝐺2.

 Any production in 𝐺2 must be a production in 𝐺1, so 
𝑆֜
𝐺1

∗
𝛼𝑋𝛽 must be a production in 𝐺1.

 By Theorem 7.4, 𝑆֜
𝐺1

∗
𝛼𝑋𝛽֜

𝐺1

∗
𝑤.

❖ In other words, we know that 𝑋 is producing in 𝐺1.

 Every symbol in this derivation is reachable from 𝑆, so 
none will be eliminated by Theorem 7.5. So, 𝑆֜

𝐺2

∗
𝛼𝑋𝛽֜

𝐺2

∗
𝑤.  

This contradicts the assumption that 𝑋 was useless in 𝐺2.
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𝐺

Remove
non−generating

𝐺1

Remove
unreachable

𝐺2

It should be intuitively clear 
that removing useless 

symbols won’t change the 
language of a grammar.



Eliminating Useless Symbols: Example
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𝑆 → 𝐴𝐵 | 𝑎
𝐴 → 𝑎

𝑆 → 𝐴𝐵 | 𝑎
𝐴 → 𝑎

𝑆 → 𝑎
𝐴 → 𝑎

Remove Unreachable

Remove Non-generating

𝑆 → 𝐴𝐵 | 𝑎
𝐴 → 𝑎

𝑆 → 𝑎
𝐴 → 𝑎

𝑆 → 𝑎

Remove Non-generating

Remove Unreachable

Incorrect order: Correct order:

Note that these are 
not the same!



Removing Nullable Symbols

A symbol 𝐴 is nullable if 𝐴 ֜
∗
𝜀.

Theorem 7.7: There exists an algorithm that will 
correct identify all nullable symbols.

We will not prove this—it should be intuitively 
similar to what we’ve done before.
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old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝜀 exists ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ old_vars∗ ;

return new_vars;



Removing 𝜀-Productions

Theorem 7.9, reworded: If 𝐿 = 𝐿 𝐺 for a CFG 𝐺, 
then there exists a CFG 𝐺1 with no 𝜀-Productions 
such that 𝐿 𝐺1 = 𝐿 𝐺 − 𝜀 .

Proof:

To construct 𝑮𝟏: If 𝐴 → 𝑋1…𝑋𝑘 is in 𝑃, then add all 
productions of the form 𝐴 → 𝛼1…𝛼𝑘 to 𝑃1, where:

1. If 𝑋𝑖 is not nullable, then 𝛼𝑖 = 𝑋𝑖,

2. If 𝑋𝑖 is nullable, then 𝛼𝑖 is either 𝑋𝑖 or 𝜀, and

3. Not all 𝛼𝑖’s are 𝜀.
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This requires adding 
two production rules 
for each nullable 𝑋𝑖.



Removing 𝜀-Productions: Example

CFG 𝑃:

 𝑆 → 𝐴𝐵𝐶

 𝐴 → 𝜀

 𝐵 → 𝑏 | 𝜀

 𝐶 → 𝑐

𝐴 and 𝐵 are nullable.  CFG 𝑃1:

 𝑆 → 𝐴𝐵𝐶 𝐵𝐶 𝐴𝐶 | 𝐶

 𝐵 → 𝑏

 𝐶 → 𝑐
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𝐴 is now useless in 𝑃1.  (If you want 
to eliminate both 𝜀-productions and 
useless symbols, you must remove 

𝜀-productions first.



Removing 𝜀-Productions: Proof

Proof, continued:

Claim: For all 𝐴 ∈ 𝑉 and 𝑤 ∈ 𝑇∗, 𝐴֜
𝐺1

∗
𝑤 if and only if 

𝑤 ≠ 𝜀 and 𝐴֜
𝐺

∗
𝑤.

“If”: Assume 𝐴֜
𝐺

𝑖
𝑤 and 𝑤 ≠ 𝜀. We prove by 

induction on 𝑖 that 𝐴֜
𝐺1

∗
𝑤.

Base case: 𝑖 = 1 (one derivation step)

𝐴 → 𝑤 must be a production in 𝑃. Because 𝑤 ≠ 𝜀,
𝐴 → 𝑤 is also a production in 𝐺1.
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𝐺1: The CFG without 𝜀-
productions producing 

𝐿 𝐺 − 𝜀 .



Removing 𝜀-Productions: Proof
Inductive step: 𝑖 > 1 (more than one derivation step)

Assume 𝐴֜
𝐺
𝑌1…𝑌𝑚 ֜

𝐺

𝑖−1
𝑤. Then 𝑌𝑗֜

𝐺

∗
𝑤𝑗 and

𝑤 = 𝑤1…𝑤𝑚.

If 𝑤𝑗 ≠ 𝜀, then 𝑌𝑗֜
𝐺1

∗
𝑤𝑗, by the induction hypothesis.

If 𝑤𝑗 = 𝜀, then 𝑌𝑗 is nullable.

Therefore, 𝐴 → 𝛽1…𝛽𝑚 is in the productions of 𝐺1, where

 𝛽𝑗 = 𝑌𝑗 if 𝑤𝑗 ≠ 𝜀,

 𝛽𝑗 = 𝜀 if 𝑤𝑗 = 𝜀.

And we have the following derivation in 𝐺1:

𝐴 ֜ 𝛽1𝛽2…𝛽𝑚 ֜
∗
𝑤1𝛽2…𝛽𝑚 ֜

∗
𝑤1𝑤2…𝑤𝑚 = 𝑤.
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Claim: For all 𝐴 ∈ 𝑉 and 𝑤 ∈ 𝑇∗, 

𝐴֜
𝐺1

∗
𝑤 if and only if 𝑤 ≠ 𝜀 and 𝐴֜

𝐺

∗
𝑤.



Removing 𝜀-Productions: Proof

“Only if”: Assume 𝐴֜
𝐺1

𝑖
𝑤.  Then, 𝑤 ≠ 𝜀.

We will prove by induction on 𝑖 that 𝐴֜
𝐺

∗
𝑤.

Base case: 𝑖 = 1.

𝐴 → 𝑤 is in the productions of 𝐺1.  Therefore, 𝐴 → 𝛼
is in the productions of 𝐺 where 𝑤 = 𝛼 with nullable 
symbols replaced by 𝜀.
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Claim: For all 𝐴 ∈ 𝑉 and 𝑤 ∈ 𝑇∗, 

𝐴֜
𝐺1

∗
𝑤 if and only if 𝑤 ≠ 𝜀 and 𝐴֜

𝐺

∗
𝑤.



Removing 𝜀-Productions: Proof

“Only if”, continued:

We must show that the derivation 𝐴֜
𝐺
𝛼֜

𝐺

∗
𝑤 exists in 𝐺.

Inductive step: Suppose that 𝐴֜
𝐺1
𝑋1…𝑋𝑘 ֜

𝐺1

𝑖−1
𝑤.

Then, 𝐴 → 𝛽 is in the productions of 𝐺, where
𝑋1…𝑋𝑘 = 𝛽 with some nullable symbols removed.

As in the base case, 𝐴֜
𝐺

∗
𝑋1…𝑋𝑘.  And, by the inductive 

hypothesis, we can show that 𝑋1…𝑋𝑘֜
𝐺

∗
𝑤.
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This is where nullable 
symbols are replaced by 𝜀.

“Assume the derivation with 
𝑖 − 1 steps is correct…” etc.



Removing Unit Productions

Theorem 7.13 (reworded): If 𝐿 = 𝐿 𝐺 for a CFG 𝐺, 
then there exists a CFG 𝐺1 with no unit productions 
such that 𝐿 = 𝐿 𝐺1 .

Proof: Let 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆

To construction 𝐺1, first add all non-unit productions 
in 𝑃 to 𝑃1.

Next, if 𝐴 ֜
∗

𝐺
𝐵 and 𝐵 → 𝛼 is a non-unit production in 

𝑃, then add 𝐴 → 𝛼 to 𝑃1.
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We can find all pairs of 𝐴, 𝐵 where 

𝐴֜
𝐺

∗
𝐵 using an iterative algorithm like 

before (see Section 7.1.4 of the book).



Removing Unit Productions: Example

Consider the CFG 𝐺 with the following productions:

 𝑆 → 𝐴 | 𝑏

 𝐴 → 𝐴𝐴𝑎

After removing the unit production 𝑆 → 𝐴, this 
becomes:

 𝑆 → 𝐴𝐴𝑎 | 𝑏

 𝐴 → 𝐴𝐴𝑎
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Removing Unit Productions: Proof

Claim: 𝐿 𝐺1 ⊆ 𝐿 𝐺

Proof:

If 𝐴 → 𝛼 is in 𝑃1, then 𝐴֜
𝐺

∗
𝛼.  Therefore, 𝐴֜

𝐺1

∗
𝛼 implies 

𝐴֜
𝐺

∗
𝛼.
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𝐺: The grammar containing unit productions.
𝐺1: The grammar with unit productions removed.



Removing Unit Productions: Proof

Claim: 𝐿 𝐺 ⊆ 𝐿 𝐺1

Proof:

Suppose 𝑤 ∈ 𝐿 𝐺 .

Let 𝑆 = 𝛼0֜
𝐺
𝛼1֜

𝐺
…֜

𝐺
𝛼𝑛 = 𝑤 be a leftmost derivation.

If 𝛼𝑖֜
𝐺
𝛼𝑖+1 is due to a non-unit production, then 𝛼𝑖֜

𝐺1
𝛼𝑖+1.
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𝐺: The grammar containing unit productions.
𝐺1: The grammar with unit productions removed.



Removing Unit Productions: Proof

Claim: 𝐿 𝐺 ⊆ 𝐿 𝐺1

Consider the following leftmost derivation with unit 
productions in 𝐺: 𝛼𝑖−1֜

𝐺
𝛼𝑖֜

𝐺
𝛼𝑖+1֜

𝐺
…֜

𝐺
𝛼𝑗֜

𝐺
𝛼𝑗+1.

Unit productions just replace the symbol at the same 
(leftmost) position, so 𝛼𝑖−1 ֜ 𝛼𝑗+1 will also hold by 

some production in 𝑃1 − 𝑃.
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𝐺: The grammar containing unit productions.
𝐺1: The grammar with unit productions removed.

Non-unit 
production

Non-unit 
production

Unit 
productions



Putting it all Together

Theorem 7.14: If 𝐿 is the language of a CFG 𝐺, and 𝐿
contains at least one string other than 𝜀, then there exists 
a CFG 𝐺1 with no 𝜀-productions, unit productions, or 
useless symbols such that 𝐿 𝐺1 = 𝐿 − 𝜀 .

(See the book for a formal proof.)

The order in which we apply the previous results is 
important.
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Putting it all Together

The order of previous results:

 We saw on slide 12 that eliminating 𝜀-productions 
may cause some symbols to become useless, so we 
must eliminate 𝜀-productions before removing useless 
symbols.

 In the same example on slide 12, removing 𝜀-
productions also introduced a unit production (𝑆 →
𝐶), so 𝜀-productions must be eliminated before unit 
productions.
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Putting it all Together

Finally, unit productions must be eliminated before 
useless symbols.  Consider this example:

So, the only viable order is: 1) Eliminate 𝜀-productions, 
2) Eliminate unit productions, and 3) Eliminate useless 
symbols.
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𝑆 → 𝐴𝐵
𝐴 → 𝐵
𝐵 → 𝐶
𝐶 → 𝑏

𝑆 → 𝐴𝐵
𝐴 → 𝑏
𝐵 → 𝑏
𝐶 → 𝑏

Remove useless 
symbols

Remove unit 
productions

𝐶 is now useless, 
but is still in the 

grammar



Chomsky Normal Form (CNF)

 A CFG is in Chomsky Normal Form if all of its 
productions are of the form 𝐴 → 𝐵𝐶 or 𝐴 → 𝑎, and 
it contains no useless symbols.

Theorem 7.16 (reworded): Any CFL that doesn’t 
include 𝜀 can be generated by a CFG in CNF.

Proof: Let 𝐿 = 𝐿 𝐺 for some CFG 𝐺, where 𝜀 ∉ 𝐿.  
Use Theorem 7.14 to convert 𝐺 into 𝐺1 = 𝑉, 𝑇, 𝑃, 𝑆 , 
where 𝐺1 contains no 𝜀-productions, unit 
productions, or useless symbols.
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Converting to Chomsky Normal Form

Proof (continued):

If 𝐴 → 𝑋 is a production, then 𝑋 ∈ 𝑇 (which is already in 
the correct form).

Otherwise, consider 𝐴 → 𝑋1𝑋2…𝑋𝑚, where 𝑚 ≥ 2.

 If 𝑋𝑖 is a terminal, introduce a new variable 𝐶𝑎 and a 
new production 𝐶𝑎 → 𝑎, then replace 𝑋𝑖 by 𝐶𝑎.

 Call the resulting grammar 𝐺2 (after making all such 
replacements).

Claim: 𝐿 𝐺1 = 𝐿 𝐺2 .  (The proof is left as an exercise.)
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Otherwise 𝐴 → 𝑋 would be 
a unit production, and have 

been eliminated already.



Converting to Chomsky Normal Form

The remaining problem is that we need to replace 
productions of the form 𝐴 → 𝐵1𝐵2…𝐵𝑚 (where
𝑚 ≥ 3).

Replace such a production by:

𝐴 → 𝐵1𝐷1, 𝐷1 → 𝐵2𝐷2, …, 𝐷𝑚−1 → 𝐵𝑚−1𝐵𝑚, using 
newly added 𝐷𝑖 variables.

Call the resulting grammar 𝐺3.

Claim: 𝐿 𝐺3 = 𝐿 𝐺2 . (The proof is left as an 
exercise.)
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Conversion to CNF: Example
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𝑆 → 𝑏𝐴 | 𝑎𝐵
𝐴 → 𝑏𝐴𝐴 | 𝑎𝑆 | 𝑎
𝐵 → 𝑎𝐵𝐵 | 𝑏𝑆 | 𝑏

𝑆 → 𝐶𝑏𝐴 | 𝐶𝑎𝐵
𝐴 → 𝐶𝑏𝐴𝐴 | 𝐶𝑎𝑆 | 𝑎
𝐵 → 𝐶𝑎𝐵𝐵 | 𝐶𝑏𝑆 | 𝑏
𝐶𝑎 → 𝑎
𝐶𝑏 → 𝑏

Replace 𝐴 → 𝐶𝑏𝐴𝐴 by:
𝐴 → 𝐶𝑏𝐷1, 𝐷1 → 𝐴𝐴

Replace 𝐵 → 𝐶𝑎𝐵𝐵 by:
𝐵 → 𝐶𝑎𝐷2, 𝐷2 → 𝐵𝐵

𝑆 → 𝐶𝑏𝐴 | 𝐶𝑎𝐵
𝐴 → 𝐶𝑏𝐷1 | 𝐶𝑎𝑆 | 𝑎
𝐵 → 𝐶𝑎𝐷2 | 𝐶𝑏𝑆 | 𝑏
𝐷1 → 𝐴𝐴
𝐷2 → 𝐵𝐵
𝐶𝑎 → 𝑎
𝐶𝑏 → 𝑏

Starting CFG with no 𝜀-productions, 
unit productions, or useless symbols.

CFG in 
CNF.



The Pumping Lemma for CFLs

Theorem 7.18 (the Pumping Lemma for CFLs):
Let 𝐿 be any CFL.  Then there exists a value 𝑛 such 
that for all 𝑧 ∈ 𝐿, where 𝑧 ≥ 𝑛, there exist strings
𝑢, 𝑣, 𝑤, 𝑥, 𝑦 such that:

1. 𝑧 = 𝑢𝑣𝑤𝑥𝑦,

2. 𝑣𝑥 ≥ 1,

3. 𝑣𝑤𝑥 ≤ 𝑛, and

4. For all 𝑖 ≥ 0, 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
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Proof of the Pumping Lemma for CFLs

If 𝐿 is a CFL, let 𝐺 be a CFG generating 𝐿 − 𝜀 .

Claim: Let 𝑧 ∈ 𝐿 − 𝜀 . If a parse tree for 𝑧 in 𝐺 has
no path longer than 𝑛, then 𝑧 ≤ 2𝑛−1.  (This is Theorem 
7.17 in the book.)

Proof, by induction on 𝑛:

Base case: 𝑛 = 1. String 𝑧 = 𝑎.   Tree:   𝑆 𝑧 = 1 = 2𝑛−1

𝑎
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The Pumping Lemma only 
applies to strings longer 

than 𝑛, so removing 𝜀
doesn’t matter.



Proof of the Pumping Lemma for CFLs

Inductive step: 𝑛 > 1.

Suppose that a tree exists with some path of length 𝑛, 
but no path exceeding a length 𝑛.  It looks like this:
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𝑆

𝐴 𝐵

≤ 2𝑛−2 ≤ 2𝑛−2

𝑇1 𝑇2

≤ 2𝑛−1



Proof of the Pumping Lemma for CFLs

 Let 𝑚 equal the number of variables in the CFG 𝐺.

 Let 𝑛 = 2𝑚.

 Suppose 𝑧 ∈ 𝐿 𝐺 , where 𝑧 ≥ 𝑛.

❖Note: 𝑧 > 2𝑚−1

 We claim that any parse tree for 𝑧 has a path of 
length ≥ 𝑚 + 1.

❖To see this, suppose all paths in a tree are shorter 
than 𝑚 + 1 (no path is > 𝑚). Then, 𝑧 ≤ 2𝑚−1, 
contradicting the claim that 𝑧 > 2𝑚−1.
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.



Proof of the Pumping Lemma for CFLs

 As stated on the previous slide, any parse tree for 𝑧
has a path of length ≥ 𝑚 + 1.

 Such a path has at least 𝑚 + 2 nodes, 𝑚 + 1 of which 
are variables.
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝑧

Some path from the start 
symbol to a terminal in 𝑧

must contain 𝑚 + 1 variables.

The CNF grammar requires 
replacing variables with a 

terminal at the end of the path.



Proof of the Pumping Lemma for CFLs

 Since the CFG contains 𝑚 variables, but the path in 
𝑧’s parse tree contains 𝑚 + 1 variables, at least one 
variable must be repeated in the path.

 If 𝐴 is the repeated variable, the path looks like this:
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝑧

𝐴

𝐴



Proof of the Pumping Lemma for CFLs

 Consider the subtrees rooted at each occurrence 
of 𝐴:

Jim Anderson (modified by Nathan Otterness) 35

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝑧

𝐴

𝐴

𝑢 𝑣 𝑤 𝑥 𝑦



Proof of the Pumping Lemma for CFLs

A subtree rooted at 𝐴 has 
(at least) two possible 
yields: 𝑤𝑤𝑥 and 𝑤.
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
𝑆

𝐴

𝐴

𝑢 𝑣 𝑤 𝑥 𝑦

𝑣𝑤𝑥 = yield of first subtree of 𝐴
𝑤 = yield of second subtree of 𝐴



Proof of the Pumping Lemma for CFLs

We can replace the possible 
subtrees rooted at 𝐴 with each 
other to generate different strings.
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
𝑆

𝑢

𝑤

𝑦

This tree has a yield 𝑢𝑤𝑦 = 𝑢𝑣0𝑤𝑥0𝑦
This string must also be in 𝐿.

𝐴



Proof of the Pumping Lemma for CFLs
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
𝑆

𝐴

𝐴

𝑢 𝑣 𝑥 𝑦

We can replace the possible 
subtrees rooted at 𝐴 with each 
other to generate different strings.

𝑣 𝑤 𝑥

This tree has a yield 𝑢𝑣𝑣𝑤𝑥𝑥𝑦 = 𝑢𝑣2𝑤𝑥2𝑦
This string must also be in 𝐿.

𝐴
Note that this introduces 
another occurrence of 𝐴.



Proof of the Pumping Lemma for CFLs
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• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0, 

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝐴

𝐴

𝑢 𝑣 𝑥 𝑦

𝑣 𝑤 𝑥

𝐴

𝐴

𝐴

𝑣 𝑥

𝑣 𝑥

…

We can repeat this process 
indefinitely to keep generating 
strings in 𝐿 of the form 𝑢𝑣𝑖𝑤𝑥𝑖𝑦.

So, 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿 for all 𝑖 ≥ 0.



Application of the CFL Pumping Lemma

 𝐿 = 𝑎𝑖𝑏𝑖𝑐𝑖 | 𝑖 ≥ 1 .

 Let the string 𝑧 = 𝑎𝑛𝑏𝑛𝑐𝑛, for an arbitrary 𝑛 > 0. Clearly, 𝑧 ∈ 𝐿 for any 𝑛.

 Let 𝑧 = 𝑢𝑣𝑤𝑥𝑦, 𝑣𝑥 ≥ 1, and 𝑣𝑤𝑥 ≤ 𝑛. This means:

❖ 𝑣𝑥 is all 𝑎’s, 𝑏’s, or 𝑐’s, or

❖ 𝑣𝑥 is all 𝑎’s and 𝑏’s or all 𝑏’s and 𝑐’s

❖ (The key point is that 𝑣𝑥 can not possibly contain 𝑎’s, 𝑏’s, and 𝑐’s all 
at the same time.)

 If 𝑣𝑥 contains only one type of symbol, 𝑢𝑣0𝑤𝑥0𝑦 will contain too few of 
that symbol.

 If 𝑣𝑥 contains two types of symbols, 𝑢𝑣0𝑤𝑥0𝑦 will contain too many of 
the symbol not in 𝑣𝑥.

 Therefore, 𝑢𝑣0𝑤𝑥0𝑦 ∉ 𝐿, and the Pumping Lemma for CFLs does not 
hold for 𝐿.
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Application of the CFL Pumping Lemma
 𝐿 = 𝑤𝑤| 𝑤 ∈ 𝟎 + 𝟏 ∗ .

 Let 𝑧 = 0𝑛1𝑛0𝑛1𝑛. Clearly, 𝑧 ∈ 𝐿 for any 𝑛.

 Let 𝑧 = 𝑢𝑣𝑤𝑥𝑦, 𝑣𝑥 ≥ 1, and 𝑣𝑤𝑥 ≤ 𝑛. This means:

❖ 𝑣𝑥 is all 0s or all 1s

❖ 𝑣𝑥 is some 0s followed by some 1s

❖ 𝑣𝑥 is some 1s followed by some 0s.

 If 𝑣𝑥 contains only 0s or only 1s, 𝑢𝑣0𝑤𝑥0𝑦 will contain too few 0s or 1s in 
one half of the string.

 If 𝑣𝑥 contained 0s followed by 1s, then either the first or second half of 
𝑢𝑣0𝑤𝑥0𝑦 will contain fewer 0s and 1s than the other half.

 If 𝑣𝑥 contained 1s followed by 0s (𝑣𝑥 is in the middle of 𝑧), then 𝑢𝑣0𝑤𝑥0𝑦
will have more 0s in the first group of 0s than the second group of 0s.  
(The number of 1s will also be similarly imbalanced.)

 In any of these cases, 𝑢𝑣0𝑤𝑥0𝑦 ∉ 𝐿.
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Closure of CFLs under Substitution

 Recall that a homomorphism maps characters in 
some alphabet Σ to strings over another alphabet Δ.

 A homomorphism is actually a special case of 
substitution, which maps characters in one alphabet to 
any string in a language over another alphabet.

 Consider this example substitution 𝑓:

❖Σ = 0,1 , Δ = 𝑎, 𝑏 , 𝑓 0 = 𝐚 + 𝐛∗, 𝑓 1 = 𝐚∗𝐛.

❖𝑓 𝟎∗𝟏∗ = 𝐚 + 𝐛∗ ∗ 𝐚∗𝐛 ∗.

❖(Note that this particular example uses regular 
languages.)
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Closure of CFLs under Substitution

Theorem 7.23 (reworded): The CFLs are closed under 
substitution and, by extension, homomorphism.

Proof:

The main idea is to replace all terminals in a CFG with start 
symbols of another CFG.

 Let 𝐿 be a CFL, and 𝐿 ⊆ Σ∗.  For all 𝑎 ∈ Σ, let 𝐿𝑎 be a CFL.

 Let 𝐿 = 𝐿 𝐺 .  For all 𝑎 ∈ Σ, let 𝐿𝑎 = 𝐿 𝐺𝑎 .

 Assume these grammars have distinct variables.
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Closure under Substitution, Proof contd.

Let 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 , and for all 𝑎 ∈ Σ, 𝐺𝑎 = 𝑉𝑎, 𝑇𝑎, 𝑃𝑎 , 𝑆𝑎

Define 𝐺′ = 𝑉′, 𝑇′, 𝑃′, 𝑆′ , where:

 𝑉′ = 𝑎∈Σ𝑉𝑎ڂ ∪ 𝑉

 𝑇′ = 𝑎∈Σ𝑇𝑎ڂ

 𝑆′ = 𝑆

 𝑃′ = 𝑎∈Σ𝑃𝑎ڂ ∪ {𝐴 → 𝛼′ | 𝐴 → 𝛼 is in 𝑃, and
𝛼′ = 𝛼 with each 𝑎 ∈ Σ replaced by 𝑆𝑎}.

The language defined by substitution equals 𝐿 𝐺′ .  (The 
proof is left as an exercise—or see Theorem 7.23 in the book.)
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Union, Concatenation, and Closure

Theorem 7.24: CFLs are closed under Union, 
Concatenation, ∗-closure, and +-closure.

Proof:

Union: Let 𝐿1 and 𝐿2 be CFLs.  𝐿1 ∪ 𝐿2 = 𝑠 𝐿 , where 
𝐿 = 1, 2 (which is clearly a CFL), and 𝑠 is the 
substitution defined by 𝑠 1 = 𝐿1 and 𝑠 2 = 𝐿2.

The proofs for the others are similar.
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Notation similar to ∗, 
but meaning “1 or 
more repetitions”.



Closure under Reversal

Theorem 7.25: CFLs are closed under reversal.

Proof:

If 𝐿 = 𝐿 𝐺 , where 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 , then 𝐿𝑅 = 𝐿 𝐺𝑅 , 
where 𝐺𝑅 = 𝑉, 𝑇, 𝑃𝑅 , 𝑆 , and 𝑃𝑅 = {𝐴 → 𝛼𝑅 | A → 𝛼 is 
a production in 𝑃}.

(The full formal proof is left as an exercise.)
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The productions in 𝐺𝑅

are just the productions 
in 𝐺 written backwards.



(Lack of) Closure under Intersection

Theorem: CFLs are not closed under intersection.

Proof:

 𝐿1 = 𝑎𝑖𝑏𝑖𝑐𝑖 | 𝑖 ≥ 1 . We know 𝐿1 isn’t a CFL from 
earlier slides.

 𝐿2 = 𝑎𝑖𝑏𝑖𝑐𝑗 | 𝑖 ≥ 1, 𝑗 ≥ 1 . This is a CFL.

 𝐿3 = 𝑎𝑖𝑏𝑗𝑐𝑗 | 𝑖 ≥ 1, 𝑗 ≥ 1 . This is also a CFL.

 However, 𝐿1 = 𝐿2 ∩ 𝐿3.
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See example 7.26 in 
the book for CFGs.



(Lack of) Closure under Complementation

Corollary to the previous theorem: CFLs are not
closed under complementation.

Proof:

 CFLs are closed under union.

 𝐿1 ∩ 𝐿2 ≡ 𝐿1 ∪ 𝐿2.

 So, if CFLs are closed under complementation, 
they would be closed under intersection, too.
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Intersection with Regular Languages

Theorem 7.26: If 𝐿 is a CFL and 𝑅 is a regular language, then 
𝐿 ∩ 𝑅 is a CFL.

Proof:

Let 𝐿 be the language of some PDA 𝑃 = 𝑄𝑃, Σ, Γ, 𝛿𝑃, 𝑞𝑃 , 𝑍0, 𝐹𝑃 .

Let 𝑅 be the language of some DFA 𝐴 = 𝑄𝐴, Σ, 𝛿𝐴, 𝑞𝐴, 𝐹𝐴 .

Idea: Create a new PDA combining the states of 𝑃 and 𝐴, 
similar to combining two DFAs.
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Proof: Intersection with Reg. Languages

Let 𝑃′ = 𝑄𝑃 × 𝑄𝐴, Σ, Γ, 𝛿, 𝑞𝑃 , 𝑞𝐴 , 𝑍0, 𝐹𝑃 × 𝐹𝐴 , where:

 𝛿 𝑞, 𝑝 , 𝑎, 𝑋 contains 𝑟, 𝑠 , 𝛾 if and only if
𝛿𝐴 𝑝, 𝑎 = 𝑠 and 𝛿𝑃 𝑞, 𝑎, 𝑋 contains 𝑟, 𝛾 .

Claim: 𝑞𝑃 , 𝑞𝐴 , 𝑤, 𝑍0 ├
𝑖

𝑃′
𝑞, 𝑝 , 𝜀, 𝛾 if and only if 

𝑞𝑃 , 𝑤, 𝑍0 ├
𝑖

𝑃
𝑞, 𝜀, Y and 𝛿 𝑞𝐴, 𝑤 = 𝑝.

(This can be proven by induction on 𝑖.)
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Closure under Inverse Homomorphism

Theorem 7.30: CFLs are closed under inverse 
homomorphism.

Proof:

Consider 𝐿, where 𝐿 is the language of some PDA 𝑃.

𝑃 = 𝑄, Δ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 .

Let ℎ: Σ → Δ∗.

Construct a PDA 𝑃′ that accepts ℎ−1 𝐿 .
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Closure under Inverse Homomorphism

Proof, continued:

The key idea is the same as for regular languages: When 
processing an input 𝑎, 𝑃′ simulates 𝑃 on the input ℎ 𝑎 .

In A DFA, simulation required just a single state 
transition.

However, 𝑃, being a PDA, does more than just change 
state on input ℎ 𝑎 --it may change the stack contents or 
make nondeterministic choices.

Solution: Use a buffer to hold the symbols of ℎ 𝑎 .
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This buffer will really be 
part of 𝑃′’s (finite!) state.



Closure under Inverse Homomorphism

Conceptually:
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ℎ
ℎ 𝑎

Buffer

Input
𝑎

Original 
PDA state

Stack

Accept/Reject

The buffer must be large 
enough to hold the longest 

string produced by ℎ.



Closure under Inverse Homomorphism

Short example: ℎ 𝑎 = 01, and ℎ 𝑏 = 111
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ℎ

Buffer
Input 
string:
𝑎

Original 
PDA state

Stack

Accept/Reject

𝑏𝑎
11011 Etc.



Closure under Inverse Homomorphism

 We have a homomorphism ℎ: Σ → Δ∗.

 Recall that 𝑃 = 𝑄, Δ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹

 Let 𝑃′ = 𝑄′, Σ, Γ, 𝛿′, 𝑞0, 𝜀 , 𝑍0, 𝐹 × 𝜀 .

 States in 𝑄′ is a set of pairs 𝑞, 𝑥 such that

❖𝑞 is a state in 𝑄, and

❖𝑥 is the finite “buffer”—ℎ 𝑎 or a suffix of ℎ 𝑎
for some symbol 𝑎 ∈ Σ.
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Start in the original start 
state, with an empty buffer.

Accept in any of the original accepting 
states, if the buffer is empty.



Closure under Inverse Homomorphism

Transitions in 𝑃′:

 𝛿′ 𝑞, 𝑥 , 𝜀, 𝑋 contains all 𝑝, 𝑥 , 𝛾 such that 𝛿 𝑞, 𝜀, 𝑋

contains 𝑝, 𝛾 .

❖ “Simulate 𝜀-transitions”

 𝛿′ 𝑞, 𝑏𝑥 , 𝜀, 𝑋 contains all 𝑝, 𝑥 , 𝛾 such that 𝛿 𝑞, 𝑏, 𝑋
contains 𝑝, 𝛾 .

❖ “Simulate non-𝜀 transitions”

 𝛿′ 𝑞, 𝜀 , 𝑎, 𝑋 contains 𝑞, ℎ 𝑎 , 𝑋 for all 𝑎 ∈ Σ and 𝑋 ∈ Γ.

❖ “Load the buffer”
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Closure under Inverse Homomorphism

Claim: If 𝑞0, ℎ 𝑤 , 𝑍0 ├
𝑃

∗
𝑝, 𝜀, 𝛾 , then 

𝑞0, 𝜀 , 𝑤, 𝑍0 ├
𝑃′

∗
𝑝, 𝜀 , 𝜀, 𝛾 .

Proof sketch:

For each 𝑎 ∈ Σ, whatever sequence of moves 𝑃 makes 
on ℎ 𝑎 , 𝑃′ can make a corresponding sequence of 
moves on input 𝑎.
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Closure under Inverse Homomorphism

Claim: If 𝑞0, 𝜀 , 𝑤, 𝑍0 ├
𝑃′

∗
𝑝, 𝜀 , 𝜀, 𝛾 , then 

𝑞0, ℎ 𝑤 , 𝑍0 ├
𝑃

∗
𝑝, 𝜀, 𝛾 .

Proof sketch:

𝑃′ can only process 𝑤 one character at a time. For each 
character 𝑎, 𝑃′ does what 𝑃 does on ℎ 𝑎 .

The first claim implied that 𝐿 𝑃′ ⊇ ℎ−1 𝐿 𝑃 .

This claim implies that 𝐿 𝑃′ ⊆ ℎ−1 𝐿 𝑃 .
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Decision Properties of CFLs

As with regular languages, we’ll focus less on 
efficiency and more on simplicity than what’s done 
in the book.

 Theorem: There exist algorithms to determine if a 
CFL is (a) empty, (b) finite, or (c) infinite.
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Detecting if a CFL is Empty

Nonemptiness:

 Use the iterative algorithm for detecting useless 

symbols to test if 𝐴 ֜
∗
𝑤 for all 𝐴 ∈ 𝑉. 

 The CFL is nonempty if and only if 𝑆 ֜
∗
𝑤 for some 

terminal string 𝑤.
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Detecting if a CFL is Finite or Infinite

Assume 𝐿 does not contain 𝜀.  (If 𝜀 ∈ 𝐿, then consider 
𝐿 − 𝜀 instead.)

Suppose 𝐿 = 𝐿 𝐺 , where 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 is in CNF 
(and therefore has no useless symbols).

Consider the directed graph 𝑉, 𝐸 , where 𝐴, 𝐵 ∈ 𝐸 if 
𝐴 → 𝐵𝐶 or 𝐴 → 𝐶𝐵 is in 𝑃 for some variable 𝐶.

Claim: 𝐿 is finite if and only if 𝑉, 𝐸 has no cycles.
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𝐿 − 𝜀 will be finite if 
and only if 𝐿 is finite.



Detecting if a CFL is Finite or Infinite

Claim (again): 𝐿 is finite if and only if 𝑉, 𝐸 has no cycles.

“Only if”: A cycle has the form 𝐴0, 𝐴1, …, 𝐴𝑛, 𝐴0.

Therefore, we have 𝐴0 ֜ 𝛼1𝐴1𝛽1 ֜ 𝛼2𝐴2𝛽2 ֜ ⋯ ֜ 𝛼𝑛𝐴𝑛𝛽𝑛 ֜
𝛼𝑛+1𝐴0𝛽𝑛+1, where 𝛼𝑖𝛽𝑖 = 𝑖.

Since 𝐺 has no useless symbols:

 𝛼𝑛+1 ֜
∗
𝑤,

 𝛽𝑛+1 ֜
∗
𝑥,

 𝑆 ֜
∗
𝑦𝐴0𝑧, and

 𝐴0 ֜
∗
𝑣,

where 𝑤, 𝑥, 𝑦, 𝑧, and 𝑣 are terminal strings.
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This is due to the grammar 
being in CNF—we can 

only produce 𝑖 symbols in 
𝑖 derivation steps.



Detecting if a CFL is Finite or Infinite

“Only if” proof, continued:

From:

 𝛼𝑛+1 ֜
∗
𝑤

 𝛽𝑛+1 ֜
∗
𝑥

 𝑆 ֜
∗
𝑦𝐴0𝑧

 𝐴0 ֜
∗
𝑣

we have:

𝑆 ֜
∗
𝑦𝐴0𝑥 ֜

∗
𝑦𝑤𝐴0𝑥𝑧 ֜

∗
𝑦𝑤2𝐴0𝑥

2𝑧 ֜
∗
…֜

∗
𝑦𝑤𝑖𝐴0𝑥

𝑖𝑧 ֜
∗
𝑦𝑤𝑖𝑣𝑥𝑖𝑧.

Therefore, 𝐿 is infinite.
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Detecting if a CFL is Finite or Infinite

Claim (again): 𝐿 is finite if and only if 𝑉, 𝐸 has no cycles.

“If”: Suppose 𝑉, 𝐸 has no cycles.

 Definition: The rank of 𝐴 ∈ 𝑉 is the longest path beginning 
from 𝐴.  If a graph has no cycles, then all ranks are finite.

 Claim: If 𝐴 has a rank 𝑟, then 𝐴 derives no terminal string of 
length exceeding 2𝑟.

❖This can be proven by induction on 𝑟, similarly to some 
claims prior to the Pumping Lemma.

 Since 𝑉, 𝐸 has no cycles, 𝑆 has a finite rank.  Therefore, the 
longest string derivable from 𝑆 has a finite length, so 𝐿 must 
be finite.
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Membership: CYK Algorithm

We want to know if a string 𝑥 is in 𝐿.

 Let 𝐿 − 𝜀 = 𝐿 𝐺 for a CFG 𝐺 in CNF.

 Let 𝑥 = 𝑛.

 Let 𝑥𝑖𝑗 be a substring of 𝑥 of length 𝑗 beginning at 

position 𝑖.

 Inductively determine all variables 𝐴 such that 

𝐴 ֜
∗
𝑥𝑖𝑗.

 𝑥 ∈ 𝐿 if and only if 𝑆 ֜
∗
𝑥1𝑛.
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Membership: CYK Algorithm

Base case: 𝑗 = 1. 𝐴 ֜
∗
𝑥𝑖𝑗 if and only if 𝐴 → 𝑥𝑖𝑗.

Inductive step: 𝑗 > 1. 𝐴 ֜
∗
𝑥𝑖𝑗 if and only if there 

exists 𝐴 → 𝐵𝐶 and 𝑘, 1 ≤ 𝑘 < 𝑗, such that 𝐵 ֜
∗
𝑥𝑖𝑘 and 

𝐶 ֜
∗
𝑥𝑖+𝑘 𝑗−𝑘.
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𝑗 = 1, so 𝑥𝑖𝑗 = 𝑥𝑖1.  𝑥𝑖1
has a length of 1, so 

it’s a terminal symbol.



Membership: CYK Algorithm
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for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

The time complexity is 𝑂 𝑛3 .

Pseudocode for determining the sets of variables, 𝑉𝑖𝑗, 

that can produce the substring 𝑥𝑖𝑗:



CYK Algorithm: Example
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𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1
2
3
4
5

i →

j


b                a                a b            a



CYK Algorithm: Example
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𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2
3
4
5

i →

j


b                a                a b            a



CYK Algorithm: Example
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𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3
4
5

i →

j


b                a                a b            a



CYK Algorithm: Example
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𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3  B B
4
5

i →

j


b                a                a b            a



CYK Algorithm: Example
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𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3  B B
4  S, A, C
5

i →

j


b                a                a b            a
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𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3  B B
4  S, A, C
5 S, A, C

i →

j


b                a                a b            a

𝑆 ∈ 𝑉1𝑛, so 𝑥 ∈ 𝐿.


