Properties of Context-Free Languages

COMP 455 - 002, Spring 2019

Simplification of CFGs

We can simplify CFGs by removing:

Useless symbols.

- **♦** *X* is **generating** if *X* $\stackrel{*}{\Rightarrow}$ *w*, where *w* ∈ *T*^{*}.
- **♦** *X* is **reachable** if *S* $\stackrel{*}{\Rightarrow} \alpha X \beta$ (*S* is the start symbol).
- *X* is **useful** only if it is both reachable and generating. *ε*-productions, of the form A → ε.

If ε is in the language, we will still need *one* ε-production.

▶ Unit productions, of the form $A \rightarrow B$.

Finding Generating Variables

Theorem 7.4: The following algorithm correctly finds all generating variables.

```
old_vars := \emptyset;
new_vars := \{A \mid A \rightarrow w \text{ exists, and } w \in T^*\};
while old_vars \neq new_vars:
old_vars = new_vars;
new_vars = old_vars \cup \{A \mid A \rightarrow \alpha, \alpha \in (T \cup \text{old_vars})^*\};
return new_vars;
```

Finding Generating Variables

```
old_vars := \emptyset;

new_vars := {A \mid A \rightarrow w exists, and w \in T^*};

while old_vars \neq new_vars:

old_vars = new_vars;

new_vars = old_vars \cup {A \mid A \rightarrow \alpha, \alpha \in (T \cup old_vars)^*};

return new_vars;
```

Proof of Theorem 7.4:

We want to show that *X* is added to new_vars if and only if $X \Rightarrow w$ for some $w \in T^*$.

"Only if": We must show that if *X* is added to new_vars then $X \Rightarrow w$.

This can be proven by induction on the number of iterations of the algorithm (specifics are left as an exercise).

Finding Generating Variables

old_vars := \emptyset ; new_vars := { $A \mid A \rightarrow w$ exists, and $w \in T^*$ }; while old_vars \neq new_vars: old_vars = new_vars; new_vars = old_vars \cup { $A \mid A \rightarrow \alpha, \alpha \in (T \cup old_vars)^*$ }; return new_vars;

Proof of Theorem 7.4:

We want to show that *X* is added to new_vars if and only if $X \stackrel{*}{\Rightarrow} w$ for some $w \in T^*$.

"If": We must show that if $X \stackrel{*}{\Rightarrow} w$, then X is eventually added to new_vars.

This can be proven by induction on the length of the derivation (specifics are left as an exercise).

Finding Reachable Variables

Theorem 7.5: There exists an iterative algorithm that will correctly find all *reachable* symbols.

This is similar to the previous algorithm, except this time you'll start with a set containing the start symbol and look for new reachable symbols in each

iteration.

```
old_vars := Ø;
new_vars := {S};
while old_vars ≠ new_vars:
    old_vars = new_vars;
    new_vars = old_vars ∪
    {A | A is produced by something in old_vars};
return new_vars;
```

Eliminating Useless Symbols

Theorem 7.2: (Abbreviated) Every nonempty CFL is generated by a CFG with no useless symbols.

Proof:

Let *L* be the language of some CFG *G*, where $L \neq \emptyset$. Define:

This order

Eliminating Useless Symbols

Proof, continued:

Assume G_2 contains a useless variable, *X*.

► By Theorem 7.5, $S \stackrel{*}{\Rightarrow}_{G_2} \alpha X \beta$.

* In other words, we know that *X* is reachable in G_2 .

• Any production in G_2 must be a production in G_1 , so $S \underset{G_1}{\Rightarrow} \alpha X \beta$ must be a production in G_1 .

► By Theorem 7.4,
$$S \stackrel{*}{\underset{G_1}{\Rightarrow}} \alpha X \beta \stackrel{*}{\underset{G_1}{\Rightarrow}} w$$
.

* In other words, we know that *X* is producing in G_1 .

• Every symbol in this derivation is reachable from *S*, so none will be eliminated by Theorem 7.5. So, $S \Rightarrow_{G_2} \alpha X \beta \Rightarrow_{G_2} w$. This contradicts the assumption that *X* was useless in G_2 .

It should be intuitively clear that removing useless symbols won't change the language of a grammar.

 $\xrightarrow{\text{non-generating}} G_1 \xrightarrow{\text{unreachable}} G_2$

Remove

Remove

Eliminating Useless Symbols: Example

Removing Nullable Symbols

A symbol *A* is *nullable* if $A \stackrel{*}{\Rightarrow} \varepsilon$.

Theorem 7.7: There exists an algorithm that will correct identify all nullable symbols.

We will not prove this — it should be intuitively similar to what we've done before.

```
old_vars := \emptyset;

new_vars := {A \mid A \rightarrow \varepsilon exists};

while old_vars \neq new_vars:

old_vars = new_vars;

new_vars = old_vars \cup {A \mid A \rightarrow \alpha, \alpha \in old_vars*};

return new_vars;
```

Removing *ε*-Productions

Theorem 7.9, reworded: If L = L(G) for a CFG G, then there exists a CFG G_1 with no ε -Productions such that $L(G_1) = L(G) - \{\varepsilon\}$.

Proof:

To construct G_1 : If $A \to X_1 \dots X_k$ is in P, then add all productions of the form $A \to \alpha_1 \dots \alpha_k$ to P_1 , where:

- 1. If X_i is *not* nullable, then $\alpha_i = X_i$,
- 2. If X_i is nullable, then α_i is *either* X_i or ε , and
- 3. Not all α_i 's are ε .

This requires adding two production rules for each nullable X_i .

Removing *ɛ*-Productions: Example

CFG P:

- $\blacktriangleright S \rightarrow ABC$
- $\blacktriangleright A \to \varepsilon$
- $\blacktriangleright B \to b \mid \varepsilon$
- $\blacktriangleright C \rightarrow c$

A and B are nullable. CFG P_1 :

 $\blacktriangleright S \rightarrow ABC \mid BC \mid AC \mid C$

 $\blacktriangleright B \rightarrow b$

 $\blacktriangleright C \rightarrow c$

A is now useless in P_1 . (If you want to eliminate both ε -productions and useless symbols, you must remove ε -productions *first*.

Proof, continued:

Claim: For all $A \in V$ and $w \in T^*$, $A \underset{G_1}{\Rightarrow} w$ if and only if $w \neq \varepsilon$ and $A \underset{C}{\Rightarrow} w$. "If": Assume $A \stackrel{\iota}{\Rightarrow} w$ and $w \neq \varepsilon$. We prove by induction on *i* that $A \Rightarrow w$. **Base case**: i = 1 (one derivation step) $A \rightarrow w$ must be a production in *P*. Because $w \neq \varepsilon$, $A \rightarrow w$ is also a production in G_1 .

 G_1 : The CFG without ε productions producing $L(G) - \{\varepsilon\}.$

Inductive step: *i* > 1 (more than one derivation step)

Assume $A \underset{G}{\Rightarrow} Y_1 \dots Y_m \underset{G}{\stackrel{i=1}{\Rightarrow}} w$. Then $Y_j \underset{G}{\stackrel{*}{\Rightarrow}} w_j$ and $w = w_1 \dots w_m$. If $w_j \neq \varepsilon$, then $Y_j \underset{G_1}{\stackrel{*}{\Rightarrow}} w_j$, by the induction hypothesis. If $w_j = \varepsilon$, then Y_j is nullable. Therefore, $A \rightarrow \beta_1 \dots \beta_m$ is in the productions of G_1 , where $\triangleright \beta_i = Y_i$ if $w_i \neq \varepsilon$,

$$\blacktriangleright \beta_j = \varepsilon \text{ if } w_j = \varepsilon.$$

And we have the following derivation in G_1 : $A \Rightarrow \beta_1 \beta_2 \dots \beta_m \stackrel{*}{\Rightarrow} w_1 \beta_2 \dots \beta_m \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_m = w.$

Jim Anderson (modified by Nathan Otterness)

"Only if": Assume
$$A \stackrel{i}{\underset{G_1}{\Rightarrow}} w$$
. Then, $w \neq \varepsilon$.

We will prove by induction on *i* that $A \stackrel{*}{\Rightarrow} w$.

Base case: i = 1.

 $A \rightarrow w$ is in the productions of G_1 . Therefore, $A \rightarrow \alpha$ is in the productions of *G* where $w = \alpha$ with nullable symbols replaced by ε .

Claim: For all $A \in V$ and $w \in T^*$, $A \stackrel{*}{\Rightarrow}_{G_1} w$ if and **only if** $w \neq \varepsilon$ and $A \stackrel{*}{\Rightarrow}_{G} w$.

This is where nullable symbols are replaced by ε .

"Only if", continued: We must show that the derivation $A \Rightarrow \alpha \Rightarrow w$ exists in *G*. Inductive step: Suppose that $A \underset{G_1}{\Rightarrow} X_1 \dots X_k \underset{G_1}{\Rightarrow} w$. Then, $A \rightarrow \beta$ is in the productions of *G*, where $X_1 \dots X_k = \beta$ with some nullable symbols removed. As in the base case, $A \Rightarrow X_1 \dots X_k$. And, by the inductive hypothesis, we can show that $X_1 \dots X_k \stackrel{\rightarrow}{\Rightarrow} w$. "Assume the derivation with i - 1 steps is correct..." etc.

Removing Unit Productions

Theorem 7.13 (reworded): If L = L(G) for a CFG G, then there exists a CFG G_1 with no unit productions such that $L = L(G_1)$.

Proof: Let G = (V, T, P, S)

To construction G_1 , first add all non-unit productions in *P* to P_1 .

Next, if $A \stackrel{r}{\Rightarrow} B$ and $B \rightarrow \alpha$ is a non-unit production in

P, then add $A \rightarrow \alpha$ to P_1 .

We can find all pairs of (A, B) where $A \stackrel{*}{\Rightarrow}_{G} B$ using an iterative algorithm like before (see Section 7.1.4 of the book).

Removing Unit Productions: Example

Consider the CFG *G* with the following productions:

- $\blacktriangleright S \rightarrow A \mid b$
- $\blacktriangleright A \rightarrow AAa$

After removing the unit production $S \rightarrow A$, this becomes:

- $\blacktriangleright S \rightarrow AAa \mid b$
- $\blacktriangleright A \rightarrow AAa$

Removing Unit Productions: Proof

Claim: $L(G_1) \subseteq L(G)$ **Proof**: *G*: The grammar containing unit productions. G_1 : The grammar with unit productions removed.

If $A \to \alpha$ is in P_1 , then $A \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$. Therefore, $A \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$ implies $A \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$.

Removing Unit Productions: Proof

Claim: $L(G) \subseteq L(G_1)$ **Proof**:

Suppose $w \in L(G)$.

Let $S = \alpha_0 \underset{G}{\Rightarrow} \alpha_1 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} \alpha_n = w$ be a leftmost derivation.

If $\alpha_i \underset{G}{\Rightarrow} \alpha_{i+1}$ is due to a *non-unit* production, then $\alpha_i \underset{G_1}{\Rightarrow} \alpha_{i+1}$.

G: The grammar containing unit productions. G_1 : The grammar with unit productions removed.

Removing Unit Productions: Proof

Claim: $L(G) \subseteq L(G_1)$

G: The grammar containing unit productions. G_1 : The grammar with unit productions removed.

Consider the following leftmost derivation *with* unit productions in $G: \alpha_{i-1} \underset{G}{\Rightarrow} \alpha_i \underset{G}{\Rightarrow} \alpha_{i+1} \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} \alpha_j \underset{G}{\Rightarrow} \alpha_{j+1}$.

Unit productions just replace the symbol at the same (leftmost) position, so $\alpha_{i-1} \Rightarrow \alpha_{j+1}$ will also hold by some production in $P_1 - P$.

Putting it all Together

Theorem 7.14: If *L* is the language of a CFG *G*, and *L* contains at least one string other than ε , then there exists a CFG *G*₁ with no ε -productions, unit productions, or useless symbols such that $L(G_1) = L - {\varepsilon}$.

(See the book for a formal proof.)

The *order* in which we apply the previous results is important.

Putting it all Together

The order of previous results:

- We saw on slide 12 that eliminating ε-productions may cause some symbols to become useless, so we must eliminate ε-productions before removing useless symbols.
- In the same example on slide 12, removing εproductions also introduced a unit production (S → C), so ε-productions must be eliminated before unit productions.

Putting it all Together

Finally, unit productions must be eliminated before useless symbols. Consider this example:

So, the only viable order is: **1**) Eliminate *ε*-productions, **2**) Eliminate unit productions, and **3**) Eliminate useless symbols.

Chomsky Normal Form (CNF)

► A CFG is in *Chomsky Normal Form* if all of its productions are of the form A → BC or A → a, and it contains no useless symbols.

Theorem 7.16 (reworded): Any CFL that doesn't include ε can be generated by a CFG in CNF.

Proof: Let L = L(G) for some CFG *G*, where $\varepsilon \notin L$. Use Theorem 7.14 to convert *G* into $G_1 = (V, T, P, S)$, where G_1 contains no ε -productions, unit productions, or useless symbols.

Converting to Chomsky Normal Form

Proof (continued):

If $A \rightarrow X$ is a production, then $X \in T$ (which is already in the correct form).

Otherwise, consider $A \rightarrow X_1 X_2 \dots X_m$, where $m \ge 2$.

- ▶ If X_i is a terminal, introduce a new variable C_a and a new production $C_a \rightarrow a$, then replace X_i by C_a .
- Call the resulting grammar G₂ (after making all such replacements).

Claim: $L(G_1) = L(G_2)$. (The proof is left as an exercise.)

Otherwise $A \rightarrow X$ would be a unit production, and have been eliminated already.

Converting to Chomsky Normal Form

The remaining problem is that we need to replace productions of the form $A \rightarrow B_1 B_2 \dots B_m$ (where $m \ge 3$).

Replace such a production by:

 $A \rightarrow B_1 D_1, D_1 \rightarrow B_2 D_2, ..., D_{m-1} \rightarrow B_{m-1} B_m$, using newly added D_i variables.

Call the resulting grammar G_3 . **Claim**: $L(G_3) = L(G_2)$. (The proof is left as an exercise.)

Conversion to CNF: Example

Starting CFG with no ε -productions, unit productions, or useless symbols.

Replace $A \rightarrow C_b A A$ by: $A \rightarrow C_b D_1, D_1 \rightarrow A A$

Replace $B \rightarrow C_a BB$ by: $B \rightarrow C_a D_2, D_2 \rightarrow BB$

 $S \rightarrow C_b A \mid C_a B$ $A \rightarrow C_b D_1 \mid C_a S \mid a$ $B \rightarrow C_a D_2 \mid C_b S \mid b$ $D_1 \rightarrow A A$ $D_2 \rightarrow B B$ $C_a \rightarrow a$ $C_b \rightarrow b$

CFG in CNF.

The Pumping Lemma for CFLs

Theorem 7.18 (the Pumping Lemma for CFLs): Let *L* be any CFL. Then there exists a value *n* such that for all $z \in L$, where $|z| \ge n$, there exist strings u, v, w, x, y such that:

- 1. z = uvwxy,
- $2. \quad |vx| \ge 1,$
- 3. $|vwx| \le n$, and
- 4. For all $i \ge 0$, $uv^i wx^i y \in L$.

If *L* is a CFL, let *G* be a CFG generating $L - \{\varepsilon\}$.

Claim: Let $z \in L - \{\varepsilon\}$. If a parse tree for z in G has

The Pumping Lemma only applies to strings longer than *n*, so removing *ε* doesn't matter. no path longer than n, then $|z| \leq 2^{n-1}$. (This is Theorem

Proof, by induction on *n*:

 $|z| = 1 = 2^{n-1}$ **Base case**: n = 1. String z = a. Tree: *S*

Jim Anderson (modified by Nathan Otterness)

7.17 in the book.)

30

Inductive step: n > 1.

Suppose that a tree exists with some path of length n, but no path exceeding a length n. It looks like this:

- ▶ Let *m* equal the number of variables in the CFG *G*.
- Let $n = 2^m$.
- Suppose $z \in L(G)$, where $|z| \ge n$. Note: $|z| > 2^{m-1}$
- ▶ We claim that any parse tree for *z* has a path of length $\ge m + 1$.
 - ★ To see this, suppose all paths in a tree are shorter than m + 1 (no path is > m). Then, $|z| \le 2^{m-1}$, contradicting the claim that $|z| > 2^{m-1}$.

- $|vx| \ge 1$
- $|vwx| \leq n$
- For all $i \ge 0$,
 - $uv^iwx^iy \in L.$

- ► As stated on the previous slide, any parse tree for *z* has a path of length $\ge m + 1$.
- Such a path has at least m + 2 nodes, m + 1 of which are variables.

Ζ

z = uvwxy

• $|vx| \ge 1$

• $|vwx| \le n$

• For all $i \ge 0$, $uv^i wx^i y \in L$.

The CNF grammar requires replacing variables with a terminal at the end of the path.

Some path from the start symbol to a terminal in zmust contain m + 1 variables.

- Since the CFG contains *m* variables, but the path in *z*'s parse tree contains *m* + 1 variables, *at least one variable must be repeated in the path*.
- ▶ If *A* is the repeated variable, the path looks like this:

Z

• $|vx| \ge 1$

• $|vwx| \le n$

• For all $i \ge 0$, $uv^i w x^i y \in L$.

Consider the subtrees rooted at each occurrence of A:

z = uvwxy $|vx| \ge 1$ ightarrow $|vwx| \leq n$ \bullet For all $i \ge 0$, \bullet $uv^iwx^iy \in L.$

z = uvwxy

 $|vwx| \leq n$

 $|vx| \ge 1$

 \bullet

 \bullet
Proof of the Pumping Lemma for CFLs

- $|vx| \ge 1$
- $|vwx| \le n$
- For all $i \ge 0$, $uv^i w x^i y \in L$.

Proof of the Pumping Lemma for CFLs

This tree has a yield $uvvwxxy = uv^2wx^2y$ This string must also be in *L*. z = uvwxy

 $|vx| \ge 1$

 \bullet

Proof of the Pumping Lemma for CFLs

. . .

z = uvwxy

- $|vx| \ge 1$
- $|vwx| \le n$
- For all $i \ge 0$, $uv^i wx^i y \in L$.

We can repeat this process indefinitely to keep generating strings in *L* of the form uv^iwx^iy .

So, $uv^i wx^i y \in L$ for all $i \ge 0$.

Application of the CFL Pumping Lemma

- $\blacktriangleright L = \{a^i b^i c^i \mid i \ge 1\}.$
- Let the string $z = a^n b^n c^n$, for an arbitrary n > 0. Clearly, $z \in L$ for any n.
- ▶ Let z = uvwxy, $|vx| \ge 1$, and $|vwx| \le n$. This means:
 - * vx is all a's, b's, or c's, or
 - * vx is all a's and b's or all b's and c's
 - (The key point is that vx can not possibly contain a's, b's, and c's all at the same time.)
- If vx contains only one type of symbol, uv⁰wx⁰y will contain too few of that symbol.
- If vx contains two types of symbols, uv⁰wx⁰y will contain too many of the symbol not in vx.
- ► Therefore, $uv^0wx^0y \notin L$, and the Pumping Lemma for CFLs does not hold for *L*.

Application of the CFL Pumping Lemma

- ► $L = \{ww | w \in (\mathbf{0} + \mathbf{1})^*\}.$
- ► Let $z = 0^n 1^n 0^n 1^n$. Clearly, $z \in L$ for any n.
- ▶ Let z = uvwxy, $|vx| \ge 1$, and $|vwx| \le n$. This means:
 - * vx is all 0s or all 1s
 - * vx is some 0s followed by some 1s
 - * vx is some 1s followed by some 0s.
- If vx contains only 0s or only 1s, uv⁰wx⁰y will contain too few 0s or 1s in one half of the string.
- If vx contained 0s followed by 1s, then either the first or second half of uv⁰wx⁰y will contain fewer 0s and 1s than the other half.
- If vx contained 1s followed by 0s (vx is in the middle of z), then uv⁰wx⁰y will have more 0s in the first group of 0s than the second group of 0s. (The number of 1s will also be similarly imbalanced.)
- In any of these cases, $uv^0wx^0y \notin L$.

Closure of CFLs under Substitution

- Recall that a homomorphism maps characters in some alphabet Σ to strings over another alphabet Δ.
- A homomorphism is actually a special case of substitution, which maps characters in one alphabet to any string in a language over another alphabet.
- Consider this example substitution *f*:
 - ***** Σ = {0,1}, Δ = {a, b}, f(0) = **a** + **b**^{*}, f(1) = **a**^{*}**b**. ***** f(**0**^{*}**1**^{*}) = (**a** + **b**^{*})^{*}(**a**^{*}**b**)^{*}.
 - (Note that this particular example uses regular languages.)

Closure of CFLs under Substitution

Theorem 7.23 (reworded): The CFLs are closed under substitution and, by extension, homomorphism. **Proof**:

The main idea is to replace all terminals in a CFG with start symbols of another CFG.

- ▶ Let *L* be a CFL, and $L \subseteq \Sigma^*$. For all $a \in \Sigma$, let L_a be a CFL.
- ► Let L = L(G). For all $a \in \Sigma$, let $L_a = L(G_a)$.

Assume these grammars have distinct variables.

Closure under Substitution, Proof contd.

Let G = (V, T, P, S), and for all $a \in \Sigma$, $G_a = (V_a, T_a, P_a, S_a)$ Define G' = (V', T', P', S'), where: $\blacktriangleright V' = (\bigcup_{a \in \Sigma} V_a) \cup V$ $\blacktriangleright T' = \bigcup_{a \in \Sigma} T_a$ $\triangleright S' = S$ $\triangleright P' = \bigcup_{a \in \Sigma} P_a \cup \{A \to \alpha' \mid A \to \alpha \text{ is in } P, \text{ and } \}$ $\alpha' = \alpha$ with each $\alpha \in \Sigma$ replaced by S_{α} . The language defined by substitution equals L(G'). (The proof is left as an exercise - or see Theorem 7.23 in the book.)

Union, Concatenation, and Closure

Theorem 7.24: CFLs are closed under Union, Concatenation, *-closure, and +-closure

Notation similar to *, but meaning "1 or more repetitions".

Union: Let L_1 and L_2 be CFLs. $L_1 \cup L_2 = s(L)$, where $L = \{1, 2\}$ (which is clearly a CFL), and s is the substitution defined by $s(1) = L_1$ and $s(2) = L_2$.

The proofs for the others are similar.

Closure under Reversal

Theorem 7.25: CFLs are closed under reversal.

Proof:

If L = L(G), where G = (V, T, P, S), then $L^R = L(G^R)$, where $G^R = (V, T, P^R, S)$, and $P^R = \{A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ is} a \text{ production in } P\}$.

(The full formal proof is left as an exercise.)

The productions in G^R are just the productions in *G* written backwards.

(Lack of) Closure under Intersection

Theorem: CFLs are *not* closed under intersection. **Proof**:

- ► $L_1 = \{a^i b^i c^i \mid i \ge 1\}$. We know L_1 isn't a CFL from earlier slides.
- L₂ = {aⁱbⁱc^j | i ≥ 1, j ≥ 1}. This *is* a CFL.
 L₃ = {aⁱb^jc^j | i ≥ 1, j ≥ 1}. This is also a CFL.
 However, L₁ = L₂ ∩ L₃.

See example 7.26 in the book for CFGs.

(Lack of) Closure under Complementation

Corollary to the previous theorem: CFLs are *not* closed under complementation.

Proof:

CFLs are closed under union.

 $\blacktriangleright L_1 \cap L_2 \equiv \overline{\overline{L_1} \cup \overline{L_2}}.$

So, if CFLs are closed under complementation, they would be closed under intersection, too.

Intersection with Regular Languages

Theorem 7.26: If *L* is a CFL and *R* is a regular language, then $L \cap R$ is a CFL.

Proof:

Let *L* be the language of some PDA $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$. Let *R* be the language of some DFA $A = (Q_A, \Sigma, \delta_A, q_A, F_A)$.

Idea: Create a new PDA combining the states of *P* and *A*, similar to combining two DFAs.

Proof: Intersection with Reg. Languages

Let
$$P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A)$$
, where:
 $\delta((q, p), a, X)$ contains $((r, s), \gamma)$ if and only if $\delta_A(p, a) = s$ and $\delta_P(q, a, X)$ contains (r, γ) .

Claim:
$$((q_P, q_A), w, Z_0)_{P'}^{i} ((q, p), \varepsilon, \gamma)$$
 if and only if
 $(q_P, w, Z_0)_{P}^{i} (q, \varepsilon, Y)$ and $\delta(q_A, w) = p$.
(This can be proven by induction on *i*.)

Theorem 7.30: CFLs are closed under inverse homomorphism.

Proof:

Consider *L*, where *L* is the language of some PDA *P*. $P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F).$ Let $h: \Sigma \to \Delta^*$. Construct a PDA *P*' that accepts $h^{-1}(L)$.

Proof, continued:

The key idea is the same as for regular languages: When processing an input a, P' simulates P on the input h(a). In A DFA, simulation required just a single state

transition.

However, *P*, being a PDA, does more than just change state on input h(a)--it may change the stack contents or make nondeterministic choices.

Solution: Use a *buffer* to hold the symbols of h(a).

This buffer will really be part of *P*''s (*finite!*) state.

Short example: h(a) = 01, and h(b) = 111

- ► We have a homomorphism $h: \Sigma \to \Delta^*$.
- Recall that $P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F)$
- Let $P' = (Q', \Sigma, \Gamma, \delta', (q_0, \varepsilon), Z_0, F \times \{\varepsilon\}).$
- States in Q' is a set of pairs (q, x) such that
 - $\mathbf{*} q$ is a state in Q, and
 - x is the finite "buffer" − h(a) or a suffix of h(a) for some symbol $a \in \Sigma$.

Start in the original start state, with an empty buffer.

Accept in any of the original accepting states, if the buffer is empty.

Transitions in *P*':

- ► $\delta'((q, x), \varepsilon, X)$ contains all $((p, x), \gamma)$ such that $\delta(q, \varepsilon, X)$ contains (p, γ) .
 - * "Simulate ε -transitions"
- ► $\delta'((q, bx), \varepsilon, X)$ contains all $((p, x), \gamma)$ such that $\delta(q, b, X)$ contains (p, γ) .
 - "Simulate non- ε transitions"

► $\delta'((q, \varepsilon), a, X)$ contains ((q, h(a)), X) for all $a \in \Sigma$ and $X \in \Gamma$.

"Load the buffer"

Jim Anderson (modified by Nathan Otterness)

Claim: If
$$(q_0, h(w), Z_0) \stackrel{*}{\vdash} (p, \varepsilon, \gamma)$$
, then $((q_0, \varepsilon), w, Z_0) \stackrel{*}{\vdash} ((p, \varepsilon), \varepsilon, \gamma)$.

Proof sketch:

For each $a \in \Sigma$, whatever sequence of moves *P* makes on h(a), *P'* can make a corresponding sequence of moves on input *a*.

Claim: If
$$((q_0, \varepsilon), w, Z_0)_{P'}^*$$
 $((p, \varepsilon), \varepsilon, \gamma)$, then $(q_0, h(w), Z_0)_{P}^*$ (p, ε, γ) .

Proof sketch:

P' can only process *w* one character at a time. For each character *a*, *P*' does what *P* does on h(a).

The first claim implied that $L(P') \supseteq h^{-1}(L(P))$. This claim implies that $L(P') \subseteq h^{-1}(L(P))$.

Decision Properties of CFLs

As with regular languages, we'll focus less on efficiency and more on simplicity than what's done in the book.

Theorem: There exist algorithms to determine if a CFL is (a) empty, (b) finite, or (c) infinite.

Detecting if a CFL is Empty

Nonemptiness:

- ► Use the iterative algorithm for detecting useless symbols to test if $A \Rightarrow w$ for all $A \in V$.
- ► The CFL is nonempty if and only if $S \stackrel{*}{\Rightarrow} w$ for some terminal string *w*.

Assume *L* does not contain ε . (If $\varepsilon \in L$, then consider $L - \{\varepsilon\}$ instead.)

Suppose L = L(G), where G = (V, T, P, S) is in CNF (and therefore has no useless symbols).

Consider the directed graph (V, E), where (A, B) $\in E$ if $A \rightarrow BC$ or $A \rightarrow CB$ is in P for some variable C.

Claim: *L* is finite if and only if (*V*, *E*) has no cycles.

Jim Anderson (modified by Nathan Otterness)

 $L - \{\varepsilon\}$ will be finite if and only if *L* is finite.

Claim (again): *L* is finite if and only if (*V*, *E*) has no cycles. **"Only if"**: A cycle has the form $A_0, A_1, ..., A_n, A_0$. Therefore, we have $A_0 \Rightarrow \alpha_1 A_1 \beta_1 \Rightarrow \alpha_2 A_2 \beta_2 \Rightarrow \cdots \Rightarrow \alpha_n A_n \beta_n \Rightarrow \alpha_{n+1} A_0 \beta_{n+1}$, where $|\alpha_i \beta_i| = i$.

Since *G* has no useless symbols:

$$\alpha_{n+1} \stackrel{*}{\Rightarrow} w,$$

$$\beta_{n+1} \stackrel{*}{\Rightarrow} x,$$

$$S \stackrel{*}{\Rightarrow} yA_0z, \text{ and }$$

$$A_0 \stackrel{*}{\Rightarrow} v,$$

where *w*, *x*, *y*, *z*, and *v* are terminal strings.

This is due to the grammar being in CNF – we can only produce *i* symbols in *i* derivation steps.

"Only if" proof, continued:

From:

 $\alpha_{n+1} \Rightarrow w$ $\beta_{n+1} \stackrel{*}{\Rightarrow} x$ $S \stackrel{*}{\Rightarrow} y A_0 z$ $A_0 \stackrel{*}{\Rightarrow} v$

we have:

$$S \stackrel{*}{\Rightarrow} yA_0x \stackrel{*}{\Rightarrow} ywA_0xz \stackrel{*}{\Rightarrow} yw^2A_0x^2z \stackrel{*}{\Rightarrow} \dots \stackrel{*}{\Rightarrow} yw^iA_0x^iz \stackrel{*}{\Rightarrow} yw^ivx^iz.$$

Therefore, *L* is infinite.

Jim Anderson (modified by Nathan Otterness)

Claim (again): *L* is finite if and only if (*V*, *E*) has no cycles. **"If"**: Suppose (*V*, *E*) has no cycles.

- ▶ **Definition**: The *rank* of $A \in V$ is the longest path beginning from *A*. If a graph has no cycles, then all ranks are finite.
- Claim: If A has a rank r, then A derives no terminal string of length exceeding 2^r.
 - This can be proven by induction on *r*, similarly to some claims prior to the Pumping Lemma.
- Since (V, E) has no cycles, S has a finite rank. Therefore, the longest string derivable from S has a finite length, so L must be finite.

Membership: CYK Algorithm

We want to know if a string *x* is in *L*.

- ► Let $L {\varepsilon} = L(G)$ for a CFG G in CNF.
- Let |x| = n.
- Let x_{ij} be a substring of x of length j beginning at position i.
- ► Inductively determine all variables *A* such that $\stackrel{*}{A \Rightarrow} x_{ij}$.

▶ $x \in L$ if and only if $S \stackrel{*}{\Rightarrow} x_{1n}$.

Membership: CYK Algorithm

Base case: j = 1. $A \stackrel{*}{\Rightarrow} x_{ij}$ if and only if $A \rightarrow x_{ij}$. **Inductive step**: j > 1. $A \stackrel{*}{\Rightarrow} x_{ij}$ if and only if there exists $A \rightarrow BC$ and $k, 1 \le k < j$, such that $B \stackrel{*}{\Rightarrow} x_{ik}$ and $C \stackrel{*}{\Rightarrow} x_{i+k \ j-k}$.

j = 1, so $x_{ij} = x_{i1}$. x_{i1}

has a length of 1, so

Membership: CYK Algorithm

Pseudocode for determining the sets of variables, V_{ij} , that can produce the substring x_{ij} :

```
for i := 1 to n:

V_{i1} := \{A \mid A \to x_{i1}\}

for j := 2 to n:

for i := 1 to n - j + 1:

V_{ij} := \emptyset;

for k := 1 to j - 1:

V_{ij} := V_{ij} \cup \{A \mid A \to BC, B \in V_{ik'} C \in V_{i+k j-k}\}
```

The time complexity is $O(n^3)$.

Jim Anderson (modified by Nathan Otterness)

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$ x = baaba (n = 5)

for i := 1 to n: $V_{i1} := \{A \mid A \rightarrow x_{i1} \}$

 $\begin{array}{l} \mbox{for } j := 2 \mbox{ to } n: \\ \mbox{for } i := 1 \mbox{ to } n - j + 1: \\ V_{ij} := \varnothing; \\ \mbox{for } k := 1 \mbox{ to } j - 1: \\ V_{ij} := V_{ij} \cup \{A \ | \ A \to BC, \ B \in V_{ik'} \ C \in V_{i+k \ j-k} \} \end{array}$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$ x = baaba (n = 5)

for i := 1 **to** n: V_{i1} := {A | A → x_{i1} }

 $\begin{array}{l} \mbox{for } j := 2 \mbox{ to } n: \\ \mbox{for } i := 1 \mbox{ to } n - j + 1: \\ V_{ij} := \varnothing; \\ \mbox{for } k := 1 \mbox{ to } j - 1: \\ V_{ij} := V_{ij} \cup \{A \mid A \rightarrow BC, B \in V_{ik'} C \in V_{i+k \ j-k} \} \end{array}$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$ x = baaba (n = 5)

For i := 1 to n:

$$V_{i1} := \{A \mid A \to x_{i1}\}$$

for j := 2 to n: for i := 1 to n - j + 1: $V_{ij} := \emptyset;$ for k := 1 to j - 1: $V_{ij} := V_{ij} \cup \{A \mid A \to BC, B \in V_{ik'} C \in V_{i+k j-k}\}$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$ x = baaba (n = 5)

for i := 1 to n: $V_{i1} := \{A \mid A \rightarrow x_{i1} \}$

for j := 2 to n: for i := 1 to n - j + 1: $V_{ij} := \emptyset;$ for k := 1 to j - 1: $V_{ij} := V_{ij} \cup \{A \mid A \to BC, B \in V_{ik'} C \in V_{i+k j-k}\}$

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$ x = baaba (n = 5)

for i := 1 to n: $V_{i1} := \{A \mid A \rightarrow x_{i1} \}$

for j := 2 to n: for i := 1 to n − j + 1: $V_{ij} := \emptyset;$ for k := 1 to j − 1: $V_{ij} := V_{ij} \cup \{A \mid A \to BC, B \in V_{ik'} C \in V_{i+k j-k}\}$
CYK Algorithm: Example

 $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$ x = baaba (n = 5)

for i := 1 to n:

$$V_{i1} := \{A \mid A \rightarrow x_{i1}\}$$

for j := 2 **to** n: **for** i := 1 **to** n − j + 1: $V_{ij} := \emptyset;$ **for** k := 1 **to** j − 1: $V_{ij} := V_{ij} \cup \{A \mid A \to BC, B \in V_{ik'} C \in V_{i+k j-k}\}$

Jim Anderson (modified by Nathan Otterness)