
Properties of
Context-Free Languages

COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Simplification of CFGs

We can simplify CFGs by removing:

 Useless symbols.

❖𝑋 is generating if 𝑋 ֜
∗
𝑤, where 𝑤 ∈ 𝑇∗.

❖𝑋 is reachable if 𝑆 ֜
∗
𝛼𝑋𝛽 (𝑆 is the start symbol).

❖𝑋 is useful only if it is both reachable and generating.

 𝜺-productions, of the form 𝐴 → 𝜀.

❖If 𝜀 is in the language, we will still need one
𝜀-production.

 Unit productions, of the form 𝐴 → 𝐵.

Jim Anderson (modified by Nathan Otterness) 2

Finding Generating Variables

Theorem 7.4: The following algorithm correctly finds
all generating variables.

Jim Anderson (modified by Nathan Otterness) 3

old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝑤 exists, and 𝑤 ∈ 𝑇∗ ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ 𝑇 ∪ old_vars ∗ ;

return new_vars;

Finding Generating Variables

Proof of Theorem 7.4:

We want to show that 𝑋 is added to new_vars if and only

if 𝑋 ֜
∗
𝑤 for some 𝑤 ∈ 𝑇∗.

“Only if”: We must show that if 𝑋 is added to new_vars

then 𝑋 ֜
∗
𝑤.

This can be proven by induction on the number of
iterations of the algorithm (specifics are left as an
exercise).

Jim Anderson (modified by Nathan Otterness) 4

old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝑤 exists, and 𝑤 ∈ 𝑇∗ ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ 𝑇 ∪ old_vars ∗ ;

return new_vars;

Finding Generating Variables

Proof of Theorem 7.4:

We want to show that 𝑋 is added to new_vars if and only

if 𝑋 ֜
∗
𝑤 for some 𝑤 ∈ 𝑇∗.

“If”: We must show that if 𝑋 ֜
∗
𝑤, then 𝑋 is eventually

added to new_vars.

This can be proven by induction on the length of the
derivation (specifics are left as an exercise).

Jim Anderson (modified by Nathan Otterness) 5

old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝑤 exists, and 𝑤 ∈ 𝑇∗ ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ 𝑇 ∪ old_vars ∗ ;

return new_vars;

Finding Reachable Variables

Theorem 7.5: There exists an iterative algorithm that
will correctly find all reachable symbols.

This is similar to the previous algorithm, except this
time you’ll start with a set containing the start
symbol and look for new reachable symbols in each
iteration.

Jim Anderson (modified by Nathan Otterness) 6

old_vars := ∅;
new_vars := 𝑆 ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪
𝐴 | 𝐴 is produced by something in old_vars ;

return new_vars;

Eliminating Useless Symbols

Theorem 7.2: (Abbreviated) Every nonempty CFL is
generated by a CFG with no useless symbols.

Proof:

Let 𝐿 be the language of some CFG 𝐺, where 𝐿 ≠ ∅.

Define:

𝐺 𝐺1 𝐺2

Jim Anderson (modified by Nathan Otterness) 7

Remove
Non-generating

using Theorem 7.4

Remove
Non-reachable

using Theorem 7.5

This order
matters!

Eliminating Useless Symbols
Proof, continued:

Assume 𝐺2 contains a useless variable, 𝑋.

 By Theorem 7.5, 𝑆֜
𝐺2

∗
𝛼𝑋𝛽.

❖ In other words, we know that 𝑋 is reachable in 𝐺2.

 Any production in 𝐺2 must be a production in 𝐺1, so
𝑆֜
𝐺1

∗
𝛼𝑋𝛽 must be a production in 𝐺1.

 By Theorem 7.4, 𝑆֜
𝐺1

∗
𝛼𝑋𝛽֜

𝐺1

∗
𝑤.

❖ In other words, we know that 𝑋 is producing in 𝐺1.

 Every symbol in this derivation is reachable from 𝑆, so
none will be eliminated by Theorem 7.5. So, 𝑆֜

𝐺2

∗
𝛼𝑋𝛽֜

𝐺2

∗
𝑤.

This contradicts the assumption that 𝑋 was useless in 𝐺2.

Jim Anderson (modified by Nathan Otterness) 8

𝐺

Remove
non−generating

𝐺1

Remove
unreachable

𝐺2

It should be intuitively clear
that removing useless

symbols won’t change the
language of a grammar.

Eliminating Useless Symbols: Example

Jim Anderson (modified by Nathan Otterness) 9

𝑆 → 𝐴𝐵 | 𝑎
𝐴 → 𝑎

𝑆 → 𝐴𝐵 | 𝑎
𝐴 → 𝑎

𝑆 → 𝑎
𝐴 → 𝑎

Remove Unreachable

Remove Non-generating

𝑆 → 𝐴𝐵 | 𝑎
𝐴 → 𝑎

𝑆 → 𝑎
𝐴 → 𝑎

𝑆 → 𝑎

Remove Non-generating

Remove Unreachable

Incorrect order: Correct order:

Note that these are
not the same!

Removing Nullable Symbols

A symbol 𝐴 is nullable if 𝐴 ֜
∗
𝜀.

Theorem 7.7: There exists an algorithm that will
correct identify all nullable symbols.

We will not prove this—it should be intuitively
similar to what we’ve done before.

Jim Anderson (modified by Nathan Otterness) 10

old_vars := ∅;
new_vars := 𝐴 | 𝐴 → 𝜀 exists ;
while old_vars ≠ new_vars:

old_vars = new_vars;
new_vars = old_vars ∪ 𝐴 | 𝐴 → 𝛼, 𝛼 ∈ old_vars∗ ;

return new_vars;

Removing 𝜀-Productions

Theorem 7.9, reworded: If 𝐿 = 𝐿 𝐺 for a CFG 𝐺,
then there exists a CFG 𝐺1 with no 𝜀-Productions
such that 𝐿 𝐺1 = 𝐿 𝐺 − 𝜀 .

Proof:

To construct 𝑮𝟏: If 𝐴 → 𝑋1…𝑋𝑘 is in 𝑃, then add all
productions of the form 𝐴 → 𝛼1…𝛼𝑘 to 𝑃1, where:

1. If 𝑋𝑖 is not nullable, then 𝛼𝑖 = 𝑋𝑖,

2. If 𝑋𝑖 is nullable, then 𝛼𝑖 is either 𝑋𝑖 or 𝜀, and

3. Not all 𝛼𝑖’s are 𝜀.

Jim Anderson (modified by Nathan Otterness) 11

This requires adding
two production rules
for each nullable 𝑋𝑖.

Removing 𝜀-Productions: Example

CFG 𝑃:

 𝑆 → 𝐴𝐵𝐶

 𝐴 → 𝜀

 𝐵 → 𝑏 | 𝜀

 𝐶 → 𝑐

𝐴 and 𝐵 are nullable. CFG 𝑃1:

 𝑆 → 𝐴𝐵𝐶 𝐵𝐶 𝐴𝐶 | 𝐶

 𝐵 → 𝑏

 𝐶 → 𝑐

Jim Anderson (modified by Nathan Otterness) 12

𝐴 is now useless in 𝑃1. (If you want
to eliminate both 𝜀-productions and
useless symbols, you must remove

𝜀-productions first.

Removing 𝜀-Productions: Proof

Proof, continued:

Claim: For all 𝐴 ∈ 𝑉 and 𝑤 ∈ 𝑇∗, 𝐴֜
𝐺1

∗
𝑤 if and only if

𝑤 ≠ 𝜀 and 𝐴֜
𝐺

∗
𝑤.

“If”: Assume 𝐴֜
𝐺

𝑖
𝑤 and 𝑤 ≠ 𝜀. We prove by

induction on 𝑖 that 𝐴֜
𝐺1

∗
𝑤.

Base case: 𝑖 = 1 (one derivation step)

𝐴 → 𝑤 must be a production in 𝑃. Because 𝑤 ≠ 𝜀,
𝐴 → 𝑤 is also a production in 𝐺1.

Jim Anderson (modified by Nathan Otterness) 13

𝐺1: The CFG without 𝜀-
productions producing

𝐿 𝐺 − 𝜀 .

Removing 𝜀-Productions: Proof
Inductive step: 𝑖 > 1 (more than one derivation step)

Assume 𝐴֜
𝐺
𝑌1…𝑌𝑚 ֜

𝐺

𝑖−1
𝑤. Then 𝑌𝑗֜

𝐺

∗
𝑤𝑗 and

𝑤 = 𝑤1…𝑤𝑚.

If 𝑤𝑗 ≠ 𝜀, then 𝑌𝑗֜
𝐺1

∗
𝑤𝑗, by the induction hypothesis.

If 𝑤𝑗 = 𝜀, then 𝑌𝑗 is nullable.

Therefore, 𝐴 → 𝛽1…𝛽𝑚 is in the productions of 𝐺1, where

 𝛽𝑗 = 𝑌𝑗 if 𝑤𝑗 ≠ 𝜀,

 𝛽𝑗 = 𝜀 if 𝑤𝑗 = 𝜀.

And we have the following derivation in 𝐺1:

𝐴 ֜ 𝛽1𝛽2…𝛽𝑚 ֜
∗
𝑤1𝛽2…𝛽𝑚 ֜

∗
𝑤1𝑤2…𝑤𝑚 = 𝑤.

Jim Anderson (modified by Nathan Otterness) 14

Claim: For all 𝐴 ∈ 𝑉 and 𝑤 ∈ 𝑇∗,

𝐴֜
𝐺1

∗
𝑤 if and only if 𝑤 ≠ 𝜀 and 𝐴֜

𝐺

∗
𝑤.

Removing 𝜀-Productions: Proof

“Only if”: Assume 𝐴֜
𝐺1

𝑖
𝑤. Then, 𝑤 ≠ 𝜀.

We will prove by induction on 𝑖 that 𝐴֜
𝐺

∗
𝑤.

Base case: 𝑖 = 1.

𝐴 → 𝑤 is in the productions of 𝐺1. Therefore, 𝐴 → 𝛼
is in the productions of 𝐺 where 𝑤 = 𝛼 with nullable
symbols replaced by 𝜀.

Jim Anderson (modified by Nathan Otterness) 15

Claim: For all 𝐴 ∈ 𝑉 and 𝑤 ∈ 𝑇∗,

𝐴֜
𝐺1

∗
𝑤 if and only if 𝑤 ≠ 𝜀 and 𝐴֜

𝐺

∗
𝑤.

Removing 𝜀-Productions: Proof

“Only if”, continued:

We must show that the derivation 𝐴֜
𝐺
𝛼֜

𝐺

∗
𝑤 exists in 𝐺.

Inductive step: Suppose that 𝐴֜
𝐺1
𝑋1…𝑋𝑘 ֜

𝐺1

𝑖−1
𝑤.

Then, 𝐴 → 𝛽 is in the productions of 𝐺, where
𝑋1…𝑋𝑘 = 𝛽 with some nullable symbols removed.

As in the base case, 𝐴֜
𝐺

∗
𝑋1…𝑋𝑘. And, by the inductive

hypothesis, we can show that 𝑋1…𝑋𝑘֜
𝐺

∗
𝑤.

Jim Anderson (modified by Nathan Otterness) 16

This is where nullable
symbols are replaced by 𝜀.

“Assume the derivation with
𝑖 − 1 steps is correct…” etc.

Removing Unit Productions

Theorem 7.13 (reworded): If 𝐿 = 𝐿 𝐺 for a CFG 𝐺,
then there exists a CFG 𝐺1 with no unit productions
such that 𝐿 = 𝐿 𝐺1 .

Proof: Let 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆

To construction 𝐺1, first add all non-unit productions
in 𝑃 to 𝑃1.

Next, if 𝐴 ֜
∗

𝐺
𝐵 and 𝐵 → 𝛼 is a non-unit production in

𝑃, then add 𝐴 → 𝛼 to 𝑃1.

Jim Anderson (modified by Nathan Otterness) 17

We can find all pairs of 𝐴, 𝐵 where

𝐴֜
𝐺

∗
𝐵 using an iterative algorithm like

before (see Section 7.1.4 of the book).

Removing Unit Productions: Example

Consider the CFG 𝐺 with the following productions:

 𝑆 → 𝐴 | 𝑏

 𝐴 → 𝐴𝐴𝑎

After removing the unit production 𝑆 → 𝐴, this
becomes:

 𝑆 → 𝐴𝐴𝑎 | 𝑏

 𝐴 → 𝐴𝐴𝑎

Jim Anderson (modified by Nathan Otterness) 18

Removing Unit Productions: Proof

Claim: 𝐿 𝐺1 ⊆ 𝐿 𝐺

Proof:

If 𝐴 → 𝛼 is in 𝑃1, then 𝐴֜
𝐺

∗
𝛼. Therefore, 𝐴֜

𝐺1

∗
𝛼 implies

𝐴֜
𝐺

∗
𝛼.

Jim Anderson (modified by Nathan Otterness) 19

𝐺: The grammar containing unit productions.
𝐺1: The grammar with unit productions removed.

Removing Unit Productions: Proof

Claim: 𝐿 𝐺 ⊆ 𝐿 𝐺1

Proof:

Suppose 𝑤 ∈ 𝐿 𝐺 .

Let 𝑆 = 𝛼0֜
𝐺
𝛼1֜

𝐺
…֜

𝐺
𝛼𝑛 = 𝑤 be a leftmost derivation.

If 𝛼𝑖֜
𝐺
𝛼𝑖+1 is due to a non-unit production, then 𝛼𝑖֜

𝐺1
𝛼𝑖+1.

Jim Anderson (modified by Nathan Otterness) 20

𝐺: The grammar containing unit productions.
𝐺1: The grammar with unit productions removed.

Removing Unit Productions: Proof

Claim: 𝐿 𝐺 ⊆ 𝐿 𝐺1

Consider the following leftmost derivation with unit
productions in 𝐺: 𝛼𝑖−1֜

𝐺
𝛼𝑖֜

𝐺
𝛼𝑖+1֜

𝐺
…֜

𝐺
𝛼𝑗֜

𝐺
𝛼𝑗+1.

Unit productions just replace the symbol at the same
(leftmost) position, so 𝛼𝑖−1 ֜ 𝛼𝑗+1 will also hold by

some production in 𝑃1 − 𝑃.

Jim Anderson (modified by Nathan Otterness) 21

𝐺: The grammar containing unit productions.
𝐺1: The grammar with unit productions removed.

Non-unit
production

Non-unit
production

Unit
productions

Putting it all Together

Theorem 7.14: If 𝐿 is the language of a CFG 𝐺, and 𝐿
contains at least one string other than 𝜀, then there exists
a CFG 𝐺1 with no 𝜀-productions, unit productions, or
useless symbols such that 𝐿 𝐺1 = 𝐿 − 𝜀 .

(See the book for a formal proof.)

The order in which we apply the previous results is
important.

Jim Anderson (modified by Nathan Otterness) 22

Putting it all Together

The order of previous results:

 We saw on slide 12 that eliminating 𝜀-productions
may cause some symbols to become useless, so we
must eliminate 𝜀-productions before removing useless
symbols.

 In the same example on slide 12, removing 𝜀-
productions also introduced a unit production (𝑆 →
𝐶), so 𝜀-productions must be eliminated before unit
productions.

Jim Anderson (modified by Nathan Otterness) 23

Putting it all Together

Finally, unit productions must be eliminated before
useless symbols. Consider this example:

So, the only viable order is: 1) Eliminate 𝜀-productions,
2) Eliminate unit productions, and 3) Eliminate useless
symbols.

Jim Anderson (modified by Nathan Otterness) 24

𝑆 → 𝐴𝐵
𝐴 → 𝐵
𝐵 → 𝐶
𝐶 → 𝑏

𝑆 → 𝐴𝐵
𝐴 → 𝑏
𝐵 → 𝑏
𝐶 → 𝑏

Remove useless
symbols

Remove unit
productions

𝐶 is now useless,
but is still in the

grammar

Chomsky Normal Form (CNF)

 A CFG is in Chomsky Normal Form if all of its
productions are of the form 𝐴 → 𝐵𝐶 or 𝐴 → 𝑎, and
it contains no useless symbols.

Theorem 7.16 (reworded): Any CFL that doesn’t
include 𝜀 can be generated by a CFG in CNF.

Proof: Let 𝐿 = 𝐿 𝐺 for some CFG 𝐺, where 𝜀 ∉ 𝐿.
Use Theorem 7.14 to convert 𝐺 into 𝐺1 = 𝑉, 𝑇, 𝑃, 𝑆 ,
where 𝐺1 contains no 𝜀-productions, unit
productions, or useless symbols.

Jim Anderson (modified by Nathan Otterness) 25

Converting to Chomsky Normal Form

Proof (continued):

If 𝐴 → 𝑋 is a production, then 𝑋 ∈ 𝑇 (which is already in
the correct form).

Otherwise, consider 𝐴 → 𝑋1𝑋2…𝑋𝑚, where 𝑚 ≥ 2.

 If 𝑋𝑖 is a terminal, introduce a new variable 𝐶𝑎 and a
new production 𝐶𝑎 → 𝑎, then replace 𝑋𝑖 by 𝐶𝑎.

 Call the resulting grammar 𝐺2 (after making all such
replacements).

Claim: 𝐿 𝐺1 = 𝐿 𝐺2 . (The proof is left as an exercise.)

Jim Anderson (modified by Nathan Otterness) 26

Otherwise 𝐴 → 𝑋 would be
a unit production, and have

been eliminated already.

Converting to Chomsky Normal Form

The remaining problem is that we need to replace
productions of the form 𝐴 → 𝐵1𝐵2…𝐵𝑚 (where
𝑚 ≥ 3).

Replace such a production by:

𝐴 → 𝐵1𝐷1, 𝐷1 → 𝐵2𝐷2, …, 𝐷𝑚−1 → 𝐵𝑚−1𝐵𝑚, using
newly added 𝐷𝑖 variables.

Call the resulting grammar 𝐺3.

Claim: 𝐿 𝐺3 = 𝐿 𝐺2 . (The proof is left as an
exercise.)

Jim Anderson (modified by Nathan Otterness) 27

Conversion to CNF: Example

Jim Anderson (modified by Nathan Otterness) 28

𝑆 → 𝑏𝐴 | 𝑎𝐵
𝐴 → 𝑏𝐴𝐴 | 𝑎𝑆 | 𝑎
𝐵 → 𝑎𝐵𝐵 | 𝑏𝑆 | 𝑏

𝑆 → 𝐶𝑏𝐴 | 𝐶𝑎𝐵
𝐴 → 𝐶𝑏𝐴𝐴 | 𝐶𝑎𝑆 | 𝑎
𝐵 → 𝐶𝑎𝐵𝐵 | 𝐶𝑏𝑆 | 𝑏
𝐶𝑎 → 𝑎
𝐶𝑏 → 𝑏

Replace 𝐴 → 𝐶𝑏𝐴𝐴 by:
𝐴 → 𝐶𝑏𝐷1, 𝐷1 → 𝐴𝐴

Replace 𝐵 → 𝐶𝑎𝐵𝐵 by:
𝐵 → 𝐶𝑎𝐷2, 𝐷2 → 𝐵𝐵

𝑆 → 𝐶𝑏𝐴 | 𝐶𝑎𝐵
𝐴 → 𝐶𝑏𝐷1 | 𝐶𝑎𝑆 | 𝑎
𝐵 → 𝐶𝑎𝐷2 | 𝐶𝑏𝑆 | 𝑏
𝐷1 → 𝐴𝐴
𝐷2 → 𝐵𝐵
𝐶𝑎 → 𝑎
𝐶𝑏 → 𝑏

Starting CFG with no 𝜀-productions,
unit productions, or useless symbols.

CFG in
CNF.

The Pumping Lemma for CFLs

Theorem 7.18 (the Pumping Lemma for CFLs):
Let 𝐿 be any CFL. Then there exists a value 𝑛 such
that for all 𝑧 ∈ 𝐿, where 𝑧 ≥ 𝑛, there exist strings
𝑢, 𝑣, 𝑤, 𝑥, 𝑦 such that:

1. 𝑧 = 𝑢𝑣𝑤𝑥𝑦,

2. 𝑣𝑥 ≥ 1,

3. 𝑣𝑤𝑥 ≤ 𝑛, and

4. For all 𝑖 ≥ 0, 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

Jim Anderson (modified by Nathan Otterness) 29

Proof of the Pumping Lemma for CFLs

If 𝐿 is a CFL, let 𝐺 be a CFG generating 𝐿 − 𝜀 .

Claim: Let 𝑧 ∈ 𝐿 − 𝜀 . If a parse tree for 𝑧 in 𝐺 has
no path longer than 𝑛, then 𝑧 ≤ 2𝑛−1. (This is Theorem
7.17 in the book.)

Proof, by induction on 𝑛:

Base case: 𝑛 = 1. String 𝑧 = 𝑎. Tree: 𝑆 𝑧 = 1 = 2𝑛−1

𝑎
Jim Anderson (modified by Nathan Otterness) 30

The Pumping Lemma only
applies to strings longer

than 𝑛, so removing 𝜀
doesn’t matter.

Proof of the Pumping Lemma for CFLs

Inductive step: 𝑛 > 1.

Suppose that a tree exists with some path of length 𝑛,
but no path exceeding a length 𝑛. It looks like this:

Jim Anderson (modified by Nathan Otterness) 31

𝑆

𝐴 𝐵

≤ 2𝑛−2 ≤ 2𝑛−2

𝑇1 𝑇2

≤ 2𝑛−1

Proof of the Pumping Lemma for CFLs

 Let 𝑚 equal the number of variables in the CFG 𝐺.

 Let 𝑛 = 2𝑚.

 Suppose 𝑧 ∈ 𝐿 𝐺 , where 𝑧 ≥ 𝑛.

❖Note: 𝑧 > 2𝑚−1

 We claim that any parse tree for 𝑧 has a path of
length ≥ 𝑚 + 1.

❖To see this, suppose all paths in a tree are shorter
than 𝑚 + 1 (no path is > 𝑚). Then, 𝑧 ≤ 2𝑚−1,
contradicting the claim that 𝑧 > 2𝑚−1.

Jim Anderson (modified by Nathan Otterness) 32

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

Proof of the Pumping Lemma for CFLs

 As stated on the previous slide, any parse tree for 𝑧
has a path of length ≥ 𝑚 + 1.

 Such a path has at least 𝑚 + 2 nodes, 𝑚 + 1 of which
are variables.

Jim Anderson (modified by Nathan Otterness) 33

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝑧

Some path from the start
symbol to a terminal in 𝑧

must contain 𝑚 + 1 variables.

The CNF grammar requires
replacing variables with a

terminal at the end of the path.

Proof of the Pumping Lemma for CFLs

 Since the CFG contains 𝑚 variables, but the path in
𝑧’s parse tree contains 𝑚 + 1 variables, at least one
variable must be repeated in the path.

 If 𝐴 is the repeated variable, the path looks like this:

Jim Anderson (modified by Nathan Otterness) 34

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝑧

𝐴

𝐴

Proof of the Pumping Lemma for CFLs

 Consider the subtrees rooted at each occurrence
of 𝐴:

Jim Anderson (modified by Nathan Otterness) 35

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝑧

𝐴

𝐴

𝑢 𝑣 𝑤 𝑥 𝑦

Proof of the Pumping Lemma for CFLs

A subtree rooted at 𝐴 has
(at least) two possible
yields: 𝑤𝑤𝑥 and 𝑤.

Jim Anderson (modified by Nathan Otterness) 36

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
𝑆

𝐴

𝐴

𝑢 𝑣 𝑤 𝑥 𝑦

𝑣𝑤𝑥 = yield of first subtree of 𝐴
𝑤 = yield of second subtree of 𝐴

Proof of the Pumping Lemma for CFLs

We can replace the possible
subtrees rooted at 𝐴 with each
other to generate different strings.

Jim Anderson (modified by Nathan Otterness) 37

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
𝑆

𝑢

𝑤

𝑦

This tree has a yield 𝑢𝑤𝑦 = 𝑢𝑣0𝑤𝑥0𝑦
This string must also be in 𝐿.

𝐴

Proof of the Pumping Lemma for CFLs

Jim Anderson (modified by Nathan Otterness) 38

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.
𝑆

𝐴

𝐴

𝑢 𝑣 𝑥 𝑦

We can replace the possible
subtrees rooted at 𝐴 with each
other to generate different strings.

𝑣 𝑤 𝑥

This tree has a yield 𝑢𝑣𝑣𝑤𝑥𝑥𝑦 = 𝑢𝑣2𝑤𝑥2𝑦
This string must also be in 𝐿.

𝐴
Note that this introduces
another occurrence of 𝐴.

Proof of the Pumping Lemma for CFLs

Jim Anderson (modified by Nathan Otterness) 39

• 𝑧 = 𝑢𝑣𝑤𝑥𝑦
• 𝑣𝑥 ≥ 1
• 𝑣𝑤𝑥 ≤ 𝑛
• For all 𝑖 ≥ 0,

𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿.

𝑆

𝐴

𝐴

𝑢 𝑣 𝑥 𝑦

𝑣 𝑤 𝑥

𝐴

𝐴

𝐴

𝑣 𝑥

𝑣 𝑥

…

We can repeat this process
indefinitely to keep generating
strings in 𝐿 of the form 𝑢𝑣𝑖𝑤𝑥𝑖𝑦.

So, 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿 for all 𝑖 ≥ 0.

Application of the CFL Pumping Lemma

 𝐿 = 𝑎𝑖𝑏𝑖𝑐𝑖 | 𝑖 ≥ 1 .

 Let the string 𝑧 = 𝑎𝑛𝑏𝑛𝑐𝑛, for an arbitrary 𝑛 > 0. Clearly, 𝑧 ∈ 𝐿 for any 𝑛.

 Let 𝑧 = 𝑢𝑣𝑤𝑥𝑦, 𝑣𝑥 ≥ 1, and 𝑣𝑤𝑥 ≤ 𝑛. This means:

❖ 𝑣𝑥 is all 𝑎’s, 𝑏’s, or 𝑐’s, or

❖ 𝑣𝑥 is all 𝑎’s and 𝑏’s or all 𝑏’s and 𝑐’s

❖ (The key point is that 𝑣𝑥 can not possibly contain 𝑎’s, 𝑏’s, and 𝑐’s all
at the same time.)

 If 𝑣𝑥 contains only one type of symbol, 𝑢𝑣0𝑤𝑥0𝑦 will contain too few of
that symbol.

 If 𝑣𝑥 contains two types of symbols, 𝑢𝑣0𝑤𝑥0𝑦 will contain too many of
the symbol not in 𝑣𝑥.

 Therefore, 𝑢𝑣0𝑤𝑥0𝑦 ∉ 𝐿, and the Pumping Lemma for CFLs does not
hold for 𝐿.

Jim Anderson (modified by Nathan Otterness) 40

Application of the CFL Pumping Lemma
 𝐿 = 𝑤𝑤| 𝑤 ∈ 𝟎 + 𝟏 ∗ .

 Let 𝑧 = 0𝑛1𝑛0𝑛1𝑛. Clearly, 𝑧 ∈ 𝐿 for any 𝑛.

 Let 𝑧 = 𝑢𝑣𝑤𝑥𝑦, 𝑣𝑥 ≥ 1, and 𝑣𝑤𝑥 ≤ 𝑛. This means:

❖ 𝑣𝑥 is all 0s or all 1s

❖ 𝑣𝑥 is some 0s followed by some 1s

❖ 𝑣𝑥 is some 1s followed by some 0s.

 If 𝑣𝑥 contains only 0s or only 1s, 𝑢𝑣0𝑤𝑥0𝑦 will contain too few 0s or 1s in
one half of the string.

 If 𝑣𝑥 contained 0s followed by 1s, then either the first or second half of
𝑢𝑣0𝑤𝑥0𝑦 will contain fewer 0s and 1s than the other half.

 If 𝑣𝑥 contained 1s followed by 0s (𝑣𝑥 is in the middle of 𝑧), then 𝑢𝑣0𝑤𝑥0𝑦
will have more 0s in the first group of 0s than the second group of 0s.
(The number of 1s will also be similarly imbalanced.)

 In any of these cases, 𝑢𝑣0𝑤𝑥0𝑦 ∉ 𝐿.

Jim Anderson (modified by Nathan Otterness) 41

Closure of CFLs under Substitution

 Recall that a homomorphism maps characters in
some alphabet Σ to strings over another alphabet Δ.

 A homomorphism is actually a special case of
substitution, which maps characters in one alphabet to
any string in a language over another alphabet.

 Consider this example substitution 𝑓:

❖Σ = 0,1 , Δ = 𝑎, 𝑏 , 𝑓 0 = 𝐚 + 𝐛∗, 𝑓 1 = 𝐚∗𝐛.

❖𝑓 𝟎∗𝟏∗ = 𝐚 + 𝐛∗ ∗ 𝐚∗𝐛 ∗.

❖(Note that this particular example uses regular
languages.)

Jim Anderson (modified by Nathan Otterness) 42

Closure of CFLs under Substitution

Theorem 7.23 (reworded): The CFLs are closed under
substitution and, by extension, homomorphism.

Proof:

The main idea is to replace all terminals in a CFG with start
symbols of another CFG.

 Let 𝐿 be a CFL, and 𝐿 ⊆ Σ∗. For all 𝑎 ∈ Σ, let 𝐿𝑎 be a CFL.

 Let 𝐿 = 𝐿 𝐺 . For all 𝑎 ∈ Σ, let 𝐿𝑎 = 𝐿 𝐺𝑎 .

 Assume these grammars have distinct variables.

Jim Anderson (modified by Nathan Otterness) 43

Closure under Substitution, Proof contd.

Let 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 , and for all 𝑎 ∈ Σ, 𝐺𝑎 = 𝑉𝑎, 𝑇𝑎, 𝑃𝑎 , 𝑆𝑎

Define 𝐺′ = 𝑉′, 𝑇′, 𝑃′, 𝑆′ , where:

 𝑉′ = 𝑎∈Σ𝑉𝑎ڂ ∪ 𝑉

 𝑇′ = 𝑎∈Σ𝑇𝑎ڂ

 𝑆′ = 𝑆

 𝑃′ = 𝑎∈Σ𝑃𝑎ڂ ∪ {𝐴 → 𝛼′ | 𝐴 → 𝛼 is in 𝑃, and
𝛼′ = 𝛼 with each 𝑎 ∈ Σ replaced by 𝑆𝑎}.

The language defined by substitution equals 𝐿 𝐺′ . (The
proof is left as an exercise—or see Theorem 7.23 in the book.)

Jim Anderson (modified by Nathan Otterness) 44

Union, Concatenation, and Closure

Theorem 7.24: CFLs are closed under Union,
Concatenation, ∗-closure, and +-closure.

Proof:

Union: Let 𝐿1 and 𝐿2 be CFLs. 𝐿1 ∪ 𝐿2 = 𝑠 𝐿 , where
𝐿 = 1, 2 (which is clearly a CFL), and 𝑠 is the
substitution defined by 𝑠 1 = 𝐿1 and 𝑠 2 = 𝐿2.

The proofs for the others are similar.

Jim Anderson (modified by Nathan Otterness) 45

Notation similar to ∗,
but meaning “1 or
more repetitions”.

Closure under Reversal

Theorem 7.25: CFLs are closed under reversal.

Proof:

If 𝐿 = 𝐿 𝐺 , where 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 , then 𝐿𝑅 = 𝐿 𝐺𝑅 ,
where 𝐺𝑅 = 𝑉, 𝑇, 𝑃𝑅 , 𝑆 , and 𝑃𝑅 = {𝐴 → 𝛼𝑅 | A → 𝛼 is
a production in 𝑃}.

(The full formal proof is left as an exercise.)

Jim Anderson (modified by Nathan Otterness) 46

The productions in 𝐺𝑅

are just the productions
in 𝐺 written backwards.

(Lack of) Closure under Intersection

Theorem: CFLs are not closed under intersection.

Proof:

 𝐿1 = 𝑎𝑖𝑏𝑖𝑐𝑖 | 𝑖 ≥ 1 . We know 𝐿1 isn’t a CFL from
earlier slides.

 𝐿2 = 𝑎𝑖𝑏𝑖𝑐𝑗 | 𝑖 ≥ 1, 𝑗 ≥ 1 . This is a CFL.

 𝐿3 = 𝑎𝑖𝑏𝑗𝑐𝑗 | 𝑖 ≥ 1, 𝑗 ≥ 1 . This is also a CFL.

 However, 𝐿1 = 𝐿2 ∩ 𝐿3.

Jim Anderson (modified by Nathan Otterness) 47

See example 7.26 in
the book for CFGs.

(Lack of) Closure under Complementation

Corollary to the previous theorem: CFLs are not
closed under complementation.

Proof:

 CFLs are closed under union.

 𝐿1 ∩ 𝐿2 ≡ 𝐿1 ∪ 𝐿2.

 So, if CFLs are closed under complementation,
they would be closed under intersection, too.

Jim Anderson (modified by Nathan Otterness) 48

Intersection with Regular Languages

Theorem 7.26: If 𝐿 is a CFL and 𝑅 is a regular language, then
𝐿 ∩ 𝑅 is a CFL.

Proof:

Let 𝐿 be the language of some PDA 𝑃 = 𝑄𝑃, Σ, Γ, 𝛿𝑃, 𝑞𝑃 , 𝑍0, 𝐹𝑃 .

Let 𝑅 be the language of some DFA 𝐴 = 𝑄𝐴, Σ, 𝛿𝐴, 𝑞𝐴, 𝐹𝐴 .

Idea: Create a new PDA combining the states of 𝑃 and 𝐴,
similar to combining two DFAs.

Jim Anderson (modified by Nathan Otterness) 49

Proof: Intersection with Reg. Languages

Let 𝑃′ = 𝑄𝑃 × 𝑄𝐴, Σ, Γ, 𝛿, 𝑞𝑃 , 𝑞𝐴 , 𝑍0, 𝐹𝑃 × 𝐹𝐴 , where:

 𝛿 𝑞, 𝑝 , 𝑎, 𝑋 contains 𝑟, 𝑠 , 𝛾 if and only if
𝛿𝐴 𝑝, 𝑎 = 𝑠 and 𝛿𝑃 𝑞, 𝑎, 𝑋 contains 𝑟, 𝛾 .

Claim: 𝑞𝑃 , 𝑞𝐴 , 𝑤, 𝑍0 ├
𝑖

𝑃′
𝑞, 𝑝 , 𝜀, 𝛾 if and only if

𝑞𝑃 , 𝑤, 𝑍0 ├
𝑖

𝑃
𝑞, 𝜀, Y and 𝛿 𝑞𝐴, 𝑤 = 𝑝.

(This can be proven by induction on 𝑖.)

Jim Anderson (modified by Nathan Otterness) 50

Closure under Inverse Homomorphism

Theorem 7.30: CFLs are closed under inverse
homomorphism.

Proof:

Consider 𝐿, where 𝐿 is the language of some PDA 𝑃.

𝑃 = 𝑄, Δ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 .

Let ℎ: Σ → Δ∗.

Construct a PDA 𝑃′ that accepts ℎ−1 𝐿 .

Jim Anderson (modified by Nathan Otterness) 51

Closure under Inverse Homomorphism

Proof, continued:

The key idea is the same as for regular languages: When
processing an input 𝑎, 𝑃′ simulates 𝑃 on the input ℎ 𝑎 .

In A DFA, simulation required just a single state
transition.

However, 𝑃, being a PDA, does more than just change
state on input ℎ 𝑎 --it may change the stack contents or
make nondeterministic choices.

Solution: Use a buffer to hold the symbols of ℎ 𝑎 .

Jim Anderson (modified by Nathan Otterness) 52

This buffer will really be
part of 𝑃′’s (finite!) state.

Closure under Inverse Homomorphism

Conceptually:

Jim Anderson (modified by Nathan Otterness) 53

ℎ
ℎ 𝑎

Buffer

Input
𝑎

Original
PDA state

Stack

Accept/Reject

The buffer must be large
enough to hold the longest

string produced by ℎ.

Closure under Inverse Homomorphism

Short example: ℎ 𝑎 = 01, and ℎ 𝑏 = 111

Jim Anderson (modified by Nathan Otterness) 54

ℎ

Buffer
Input
string:
𝑎

Original
PDA state

Stack

Accept/Reject

𝑏𝑎
11011 Etc.

Closure under Inverse Homomorphism

 We have a homomorphism ℎ: Σ → Δ∗.

 Recall that 𝑃 = 𝑄, Δ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹

 Let 𝑃′ = 𝑄′, Σ, Γ, 𝛿′, 𝑞0, 𝜀 , 𝑍0, 𝐹 × 𝜀 .

 States in 𝑄′ is a set of pairs 𝑞, 𝑥 such that

❖𝑞 is a state in 𝑄, and

❖𝑥 is the finite “buffer”—ℎ 𝑎 or a suffix of ℎ 𝑎
for some symbol 𝑎 ∈ Σ.

Jim Anderson (modified by Nathan Otterness) 55

Start in the original start
state, with an empty buffer.

Accept in any of the original accepting
states, if the buffer is empty.

Closure under Inverse Homomorphism

Transitions in 𝑃′:

 𝛿′ 𝑞, 𝑥 , 𝜀, 𝑋 contains all 𝑝, 𝑥 , 𝛾 such that 𝛿 𝑞, 𝜀, 𝑋

contains 𝑝, 𝛾 .

❖ “Simulate 𝜀-transitions”

 𝛿′ 𝑞, 𝑏𝑥 , 𝜀, 𝑋 contains all 𝑝, 𝑥 , 𝛾 such that 𝛿 𝑞, 𝑏, 𝑋
contains 𝑝, 𝛾 .

❖ “Simulate non-𝜀 transitions”

 𝛿′ 𝑞, 𝜀 , 𝑎, 𝑋 contains 𝑞, ℎ 𝑎 , 𝑋 for all 𝑎 ∈ Σ and 𝑋 ∈ Γ.

❖ “Load the buffer”
Jim Anderson (modified by Nathan Otterness) 56

Closure under Inverse Homomorphism

Claim: If 𝑞0, ℎ 𝑤 , 𝑍0 ├
𝑃

∗
𝑝, 𝜀, 𝛾 , then

𝑞0, 𝜀 , 𝑤, 𝑍0 ├
𝑃′

∗
𝑝, 𝜀 , 𝜀, 𝛾 .

Proof sketch:

For each 𝑎 ∈ Σ, whatever sequence of moves 𝑃 makes
on ℎ 𝑎 , 𝑃′ can make a corresponding sequence of
moves on input 𝑎.

Jim Anderson (modified by Nathan Otterness) 57

Closure under Inverse Homomorphism

Claim: If 𝑞0, 𝜀 , 𝑤, 𝑍0 ├
𝑃′

∗
𝑝, 𝜀 , 𝜀, 𝛾 , then

𝑞0, ℎ 𝑤 , 𝑍0 ├
𝑃

∗
𝑝, 𝜀, 𝛾 .

Proof sketch:

𝑃′ can only process 𝑤 one character at a time. For each
character 𝑎, 𝑃′ does what 𝑃 does on ℎ 𝑎 .

The first claim implied that 𝐿 𝑃′ ⊇ ℎ−1 𝐿 𝑃 .

This claim implies that 𝐿 𝑃′ ⊆ ℎ−1 𝐿 𝑃 .

Jim Anderson (modified by Nathan Otterness) 58

Decision Properties of CFLs

As with regular languages, we’ll focus less on
efficiency and more on simplicity than what’s done
in the book.

 Theorem: There exist algorithms to determine if a
CFL is (a) empty, (b) finite, or (c) infinite.

Jim Anderson (modified by Nathan Otterness) 59

Detecting if a CFL is Empty

Nonemptiness:

 Use the iterative algorithm for detecting useless

symbols to test if 𝐴 ֜
∗
𝑤 for all 𝐴 ∈ 𝑉.

 The CFL is nonempty if and only if 𝑆 ֜
∗
𝑤 for some

terminal string 𝑤.

Jim Anderson (modified by Nathan Otterness) 60

Detecting if a CFL is Finite or Infinite

Assume 𝐿 does not contain 𝜀. (If 𝜀 ∈ 𝐿, then consider
𝐿 − 𝜀 instead.)

Suppose 𝐿 = 𝐿 𝐺 , where 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 is in CNF
(and therefore has no useless symbols).

Consider the directed graph 𝑉, 𝐸 , where 𝐴, 𝐵 ∈ 𝐸 if
𝐴 → 𝐵𝐶 or 𝐴 → 𝐶𝐵 is in 𝑃 for some variable 𝐶.

Claim: 𝐿 is finite if and only if 𝑉, 𝐸 has no cycles.
Jim Anderson (modified by Nathan Otterness) 61

𝐿 − 𝜀 will be finite if
and only if 𝐿 is finite.

Detecting if a CFL is Finite or Infinite

Claim (again): 𝐿 is finite if and only if 𝑉, 𝐸 has no cycles.

“Only if”: A cycle has the form 𝐴0, 𝐴1, …, 𝐴𝑛, 𝐴0.

Therefore, we have 𝐴0 ֜ 𝛼1𝐴1𝛽1 ֜ 𝛼2𝐴2𝛽2 ֜ ⋯ ֜ 𝛼𝑛𝐴𝑛𝛽𝑛 ֜
𝛼𝑛+1𝐴0𝛽𝑛+1, where 𝛼𝑖𝛽𝑖 = 𝑖.

Since 𝐺 has no useless symbols:

 𝛼𝑛+1 ֜
∗
𝑤,

 𝛽𝑛+1 ֜
∗
𝑥,

 𝑆 ֜
∗
𝑦𝐴0𝑧, and

 𝐴0 ֜
∗
𝑣,

where 𝑤, 𝑥, 𝑦, 𝑧, and 𝑣 are terminal strings.
Jim Anderson (modified by Nathan Otterness) 62

This is due to the grammar
being in CNF—we can

only produce 𝑖 symbols in
𝑖 derivation steps.

Detecting if a CFL is Finite or Infinite

“Only if” proof, continued:

From:

 𝛼𝑛+1 ֜
∗
𝑤

 𝛽𝑛+1 ֜
∗
𝑥

 𝑆 ֜
∗
𝑦𝐴0𝑧

 𝐴0 ֜
∗
𝑣

we have:

𝑆 ֜
∗
𝑦𝐴0𝑥 ֜

∗
𝑦𝑤𝐴0𝑥𝑧 ֜

∗
𝑦𝑤2𝐴0𝑥

2𝑧 ֜
∗
…֜

∗
𝑦𝑤𝑖𝐴0𝑥

𝑖𝑧 ֜
∗
𝑦𝑤𝑖𝑣𝑥𝑖𝑧.

Therefore, 𝐿 is infinite.

Jim Anderson (modified by Nathan Otterness) 63

Detecting if a CFL is Finite or Infinite

Claim (again): 𝐿 is finite if and only if 𝑉, 𝐸 has no cycles.

“If”: Suppose 𝑉, 𝐸 has no cycles.

 Definition: The rank of 𝐴 ∈ 𝑉 is the longest path beginning
from 𝐴. If a graph has no cycles, then all ranks are finite.

 Claim: If 𝐴 has a rank 𝑟, then 𝐴 derives no terminal string of
length exceeding 2𝑟.

❖This can be proven by induction on 𝑟, similarly to some
claims prior to the Pumping Lemma.

 Since 𝑉, 𝐸 has no cycles, 𝑆 has a finite rank. Therefore, the
longest string derivable from 𝑆 has a finite length, so 𝐿 must
be finite.

Jim Anderson (modified by Nathan Otterness) 64

Membership: CYK Algorithm

We want to know if a string 𝑥 is in 𝐿.

 Let 𝐿 − 𝜀 = 𝐿 𝐺 for a CFG 𝐺 in CNF.

 Let 𝑥 = 𝑛.

 Let 𝑥𝑖𝑗 be a substring of 𝑥 of length 𝑗 beginning at

position 𝑖.

 Inductively determine all variables 𝐴 such that

𝐴 ֜
∗
𝑥𝑖𝑗.

 𝑥 ∈ 𝐿 if and only if 𝑆 ֜
∗
𝑥1𝑛.

Jim Anderson (modified by Nathan Otterness) 65

Membership: CYK Algorithm

Base case: 𝑗 = 1. 𝐴 ֜
∗
𝑥𝑖𝑗 if and only if 𝐴 → 𝑥𝑖𝑗.

Inductive step: 𝑗 > 1. 𝐴 ֜
∗
𝑥𝑖𝑗 if and only if there

exists 𝐴 → 𝐵𝐶 and 𝑘, 1 ≤ 𝑘 < 𝑗, such that 𝐵 ֜
∗
𝑥𝑖𝑘 and

𝐶 ֜
∗
𝑥𝑖+𝑘 𝑗−𝑘.

Jim Anderson (modified by Nathan Otterness) 66

𝑗 = 1, so 𝑥𝑖𝑗 = 𝑥𝑖1. 𝑥𝑖1
has a length of 1, so

it’s a terminal symbol.

Membership: CYK Algorithm

Jim Anderson (modified by Nathan Otterness) 67

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

The time complexity is 𝑂 𝑛3 .

Pseudocode for determining the sets of variables, 𝑉𝑖𝑗,

that can produce the substring 𝑥𝑖𝑗:

CYK Algorithm: Example

Jim Anderson (modified by Nathan Otterness) 68

𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1
2
3
4
5

i →

j


b a a b a

CYK Algorithm: Example

Jim Anderson (modified by Nathan Otterness) 69

𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2
3
4
5

i →

j


b a a b a

CYK Algorithm: Example

Jim Anderson (modified by Nathan Otterness) 70

𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3
4
5

i →

j


b a a b a

CYK Algorithm: Example

Jim Anderson (modified by Nathan Otterness) 71

𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3  B B
4
5

i →

j


b a a b a

CYK Algorithm: Example

Jim Anderson (modified by Nathan Otterness) 72

𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3  B B
4  S, A, C
5

i →

j


b a a b a

CYK Algorithm: Example

Jim Anderson (modified by Nathan Otterness) 73

𝑆 → 𝐴𝐵 | 𝐵𝐶
𝐴 → 𝐵𝐴 | 𝑎
𝐵 → 𝐶𝐶 | 𝑏
𝐶 → 𝐴𝐵 | 𝑎
𝑥 = 𝑏𝑎𝑎𝑏𝑎 (𝑛 = 5)

for i := 1 to n:
Vi1 := {A | A → xi1 }

for j := 2 to n:
for i := 1 to n – j + 1:

Vij := ;
for k := 1 to j – 1:

Vij := Vij  {A | A → BC, B  Vik, C  Vi+k j-k}

1 2 3 4 5
1 B A, C A, C B A,C
2 S, A B S, C S, A
3  B B
4  S, A, C
5 S, A, C

i →

j


b a a b a

𝑆 ∈ 𝑉1𝑛, so 𝑥 ∈ 𝐿.

