Properties of Context-Free Languages

COMP 455 - 002, Spring 2019
Simplification of CFGs

We can simplify CFGs by removing:

- **Useless symbols.**
 - X is generating if $X \Rightarrow^* w$, where $w \in T^*$.
 - X is reachable if $S \Rightarrow^* \alpha X \beta$ (S is the start symbol).
 - X is useful only if it is both reachable and generating.

- **ϵ-productions**, of the form $A \rightarrow \epsilon$.
 - If ϵ is in the language, we will still need one ϵ-production.

- **Unit productions**, of the form $A \rightarrow B$.

Jim Anderson (modified by Nathan Otterness)
Finding Generating Variables

Theorem 7.4: The following algorithm correctly finds all generating variables.

```plaintext
old_vars := ∅;
new_vars := {A | A → w exists, and w ∈ T*};
while old_vars ≠ new_vars:
    old_vars = new_vars;
    new_vars = old_vars ∪ {A | A → α, α ∈ (T ∪ old_vars)*};
return new_vars;
```
Proof of Theorem 7.4:
We want to show that X is added to new_vars if and only if $X \Rightarrow w$ for some $w \in T^*$.

"Only if": We must show that if X is added to new_vars then $X \Rightarrow w$.

This can be proven by induction on the number of iterations of the algorithm (specifics are left as an exercise).

```plaintext
old_vars := ∅;
new_vars := {A | A \rightarrow w exists, and w \in T*};
while old_vars ≠ new_vars:
    old_vars = new_vars;
    new_vars = old_vars ∪ {A | A \rightarrow α, α \in (T \cup old_vars)*};
return new_vars;
```
Finding Generating Variables

Proof of Theorem 7.4:
We want to show that X is added to `new_vars` if and only if $X \Rightarrow^* w$ for some $w \in T^*$.

“**If**”: We must show that if $X \Rightarrow^* w$, then X is eventually added to `new_vars`.

This can be proven by induction on the length of the derivation (specifics are left as an exercise).
Finding Reachable Variables

Theorem 7.5: There exists an iterative algorithm that will correctly find all *reachable* symbols.

This is similar to the previous algorithm, except this time you’ll start with a set containing the start symbol and look for new reachable symbols in each iteration.

```plaintext
old_vars := ∅;  
new_vars := {S};  
while old_vars ≠ new_vars:  
    old_vars = new_vars;  
    new_vars = old_vars ∪  
        {A | A is produced by something in old_vars};  
return new_vars;
```
Eliminating Useless Symbols

Theorem 7.2: (Abbreviated) Every nonempty CFL is generated by a CFG with no useless symbols.

Proof:

Let L be the language of some CFG G, where $L \neq \emptyset$.

Define:

- Remove Non-generating using Theorem 7.4
- Remove Non-reachable using Theorem 7.5

This order matters!
Eliminating Useless Symbols

Proof, continued:
Assume G_2 contains a useless variable, X.

- By Theorem 7.5, $S \overset{*}{\Rightarrow} G_2 \alpha X \beta$.
 - In other words, we know that X is reachable in G_2.
- Any production in G_2 must be a production in G_1, so $S \overset{*}{\Rightarrow} G_1 \alpha X \beta \Rightarrow G_1 \alpha X \beta$ must be a production in G_1.
- By Theorem 7.4, $S \overset{*}{\Rightarrow} G_1 \alpha X \beta \overset{*}{\Rightarrow} G_1 w$.
 - In other words, we know that X is producing in G_1.
- Every symbol in this derivation is reachable from S, so none will be eliminated by Theorem 7.5. So, $S \overset{*}{\Rightarrow} G_2 \alpha X \beta \overset{*}{\Rightarrow} G_2 w$. This contradicts the assumption that X was useless in G_2.

It should be intuitively clear that removing useless symbols won’t change the language of a grammar.
Eliminating Useless Symbols: Example

Incorrect order:

- $S \rightarrow AB \mid a$
- $A \rightarrow a$
- $S \rightarrow a$
- $A \rightarrow a$

Remove Unreachable

Remove Non-generating

Correct order:

- $S \rightarrow AB \mid a$
- $A \rightarrow a$
- $S \rightarrow a$
- $A \rightarrow a$

Remove Non-generating

Remove Unreachable

Note that these are not the same!
Removing Nullable Symbols

A symbol A is *nullable* if $A \Rightarrow^* \epsilon$.

Theorem 7.7: There exists an algorithm that will correctly identify all nullable symbols.

We will not prove this—it should be intuitively similar to what we’ve done before.

```plaintext
old_vars := ∅;
new_vars := \{A | A \Rightarrow \epsilon \text{ exists}\};
while old_vars ≠ new_vars:
  old_vars = new_vars;
  new_vars = old_vars ∪ \{A | A \Rightarrow \alpha, \alpha \in old_vars^*\};
return new_vars;
```
Removing ε-Productions

Theorem 7.9, reworded: If $L = L(G)$ for a CFG G, then there exists a CFG G_1 with no ε-Productions such that $L(G_1) = L(G) - \{\varepsilon\}$.

Proof:

To construct G_1: If $A \rightarrow X_1 \ldots X_k$ is in P, then add all productions of the form $A \rightarrow \alpha_1 \ldots \alpha_k$ to P_1, where:

1. If X_i is not nullable, then $\alpha_i = X_i$,
2. If X_i is nullable, then α_i is either X_i or ε, and
3. Not all α_i's are ε.

This requires adding *two* production rules for each nullable X_i.

Jim Anderson (modified by Nathan Otterness)
Removing ε-Productions: Example

CFG P:
- $S \to ABC$
- $A \to \varepsilon$
- $B \to b \mid \varepsilon$
- $C \to c$

A and B are nullable. **CFG P_1:**
- $S \to ABC \mid BC \mid AC \mid C$
- $B \to b$
- $C \to c$

A is now useless in P_1. (If you want to eliminate both ε-productions and useless symbols, you must remove ε-productions first.)
Removing ε-Productions: Proof

Proof, continued:

Claim: For all $A \in V$ and $w \in T^*$, $A \Rightarrow^*_G w$ if and only if $w \neq \varepsilon$ and $A \Rightarrow^*_G w$.

"If": Assume $A \Rightarrow^*_G w$ and $w \neq \varepsilon$. We prove by induction on i that $A \Rightarrow^*_G w$.

Base case: $i = 1$ (one derivation step)

$A \rightarrow w$ must be a production in P. Because $w \neq \varepsilon$, $A \rightarrow w$ is also a production in G_1.

G_1: The CFG without ε-productions producing $L(G) - \{\varepsilon\}$.
Removing ε-Productions: Proof

Inductive step: $i > 1$ (more than one derivation step)

Assume $A \xRightarrow{G} Y_1 \ldots Y_m \Rightarrow_G w_i$. Then $Y_j \xRightarrow{G} w_j$ and $w = w_1 \ldots w_m$.

If $w_j \neq \varepsilon$, then $Y_j \xRightarrow{G_1} w_j$, by the induction hypothesis.

If $w_j = \varepsilon$, then Y_j is nullable.

Therefore, $A \rightarrow \beta_1 \ldots \beta_m$ is in the productions of G_1, where

- $\beta_j = Y_j$ if $w_j \neq \varepsilon$,
- $\beta_j = \varepsilon$ if $w_j = \varepsilon$.

And we have the following derivation in G_1:

$A \Rightarrow \beta_1 \beta_2 \ldots \beta_m \Rightarrow \beta_1 \beta_2 \ldots \beta_m \Rightarrow \beta_1 w_1 \beta_2 \ldots \beta_m \Rightarrow \beta_1 w_2 \ldots w_m = w$.

Claim: For all $A \in V$ and $w \in T^*$, $A \Rightarrow^*_G w$ if and only if $w \neq \varepsilon$ and $A \Rightarrow^*_G w$.

Jim Anderson (modified by Nathan Otterness)
Removing ϵ- Productions: Proof

“Only if”: Assume $A \Rightarrow^i w$. Then, $w \neq \epsilon$.

We will prove by induction on i that $A \Rightarrow^*_G w$.

Base case: $i = 1$.

$A \rightarrow w$ is in the productions of G_1. Therefore, $A \rightarrow \alpha$ is in the productions of G where $w = \alpha$ with nullable symbols replaced by ϵ.

Claim: For all $A \in V$ and $w \in T^*$, $A \Rightarrow^*_G w$ if and only if $w \neq \epsilon$ and $A \Rightarrow G_1^* w$.

Jim Anderson (modified by Nathan Otterness)
Removing ε-Productions: Proof

“Only if”, continued:

We must show that the derivation $A \Rightarrow_\alpha^*_G w$ exists in G.

Inductive step: Suppose that $A \Rightarrow_{G_1} X_1 \ldots X_k \Rightarrow_{G_1}^{i-1} w$.

Then, $A \rightarrow_\beta$ is in the productions of G, where $X_1 \ldots X_k = \beta$ with some nullable symbols removed.

As in the base case, $A \Rightarrow_\star G X_1 \ldots X_k$. And, by the inductive hypothesis, we can show that $X_1 \ldots X_k \Rightarrow_\star G w$.

This is where nullable symbols are replaced by ε.

“Assume the derivation with $i - 1$ steps is correct…” etc.
Removing Unit Productions

Theorem 7.13 (reworded): If $L = L(G)$ for a CFG G, then there exists a CFG G_1 with no unit productions such that $L = L(G_1)$.

Proof: Let $G = (V, T, P, S)$

To construction G_1, first add all non-unit productions in P to P_1.

Next, if $A \Rightarrow^* B$ and $B \rightarrow \alpha$ is a non-unit production in P, then add $A \rightarrow \alpha$ to P_1.

We can find all pairs of (A, B) where $A \Rightarrow^*_G B$ using an iterative algorithm like before (see Section 7.1.4 of the book).
Removing Unit Productions: Example

Consider the CFG G with the following productions:

- $S \rightarrow A \mid b$
- $A \rightarrow AAa$

After removing the unit production $S \rightarrow A$, this becomes:

- $S \rightarrow AAa \mid b$
- $A \rightarrow AAa$
Removing Unit Productions: Proof

Claim: \(L(G_1) \subseteq L(G) \)

Proof:

If \(A \rightarrow \alpha \) is in \(P_1 \), then \(A \xrightarrow{G} \alpha \). Therefore, \(A \xrightarrow{G_1} \alpha \) implies \(A \xrightarrow{G} \alpha \).
Removing Unit Productions: Proof

Claim: \(L(G) \subseteq L(G_1) \)

Proof:
Suppose \(w \in L(G) \).

Let \(S = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow \alpha_n = w \) be a leftmost derivation.

If \(\alpha_i \Rightarrow \alpha_{i+1} \) is due to a non-unit production, then \(\alpha_i \Rightarrow_{G_1} \alpha_{i+1} \).
Removing Unit Productions: Proof

Claim: $L(G) \subseteq L(G_1)$

Consider the following leftmost derivation with unit productions in G: $\alpha_{i-1} \Rightarrow_G \alpha_i \Rightarrow_G \alpha_{i+1} \Rightarrow_G \ldots \Rightarrow_G \alpha_j \Rightarrow_G \alpha_{j+1}$.

Unit productions just replace the symbol at the same (leftmost) position, so $\alpha_{i-1} \Rightarrow \alpha_{j+1}$ will also hold by some production in $P_1 - P$.

G: The grammar containing unit productions.

G_1: The grammar with unit productions removed.

Jim Anderson (modified by Nathan Otterness)
Putting it all Together

Theorem 7.14: If L is the language of a CFG G, and L contains at least one string other than ε, then there exists a CFG G_1 with no ε-productions, unit productions, or useless symbols such that $L(G_1) = L - \{\varepsilon\}$.

(See the book for a formal proof.)

The order in which we apply the previous results is important.
Putting it all Together

The order of previous results:

- We saw on slide 12 that eliminating ε-productions may cause some symbols to become useless, so we must eliminate ε-productions before removing useless symbols.

- In the same example on slide 12, removing ε-productions also introduced a unit production ($S \rightarrow C$), so ε-productions must be eliminated before unit productions.
Putting it all Together

Finally, unit productions must be eliminated before useless symbols. Consider this example:

So, the only viable order is: 1) Eliminate ε-productions, 2) Eliminate unit productions, and 3) Eliminate useless symbols.
Chomsky Normal Form (CNF)

- A CFG is in *Chomsky Normal Form* if all of its productions are of the form $A \rightarrow BC$ or $A \rightarrow a$, and it contains no useless symbols.

Theorem 7.16 (reworded): Any CFL that doesn’t include ε can be generated by a CFG in CNF.

Proof: Let $L = L(G)$ for some CFG G, where $\varepsilon \notin L$. Use Theorem 7.14 to convert G into $G_1 = (V, T, P, S)$, where G_1 contains no ε-productions, unit productions, or useless symbols.
Converting to Chomsky Normal Form

Proof (continued):

If $A \rightarrow X$ is a production, then $X \in T$ (which is already in the correct form).

Otherwise, consider $A \rightarrow X_1X_2 \ldots X_m$, where $m \geq 2$.

- If X_i is a terminal, introduce a new variable C_a and a new production $C_a \rightarrow a$, then replace X_i by C_a.
- Call the resulting grammar G_2 (after making all such replacements).

Claim: $L(G_1) = L(G_2)$. (The proof is left as an exercise.)
Converting to Chomsky Normal Form

The remaining problem is that we need to replace productions of the form $A \rightarrow B_1B_2 \ldots B_m$ (where $m \geq 3$).

Replace such a production by:

$A \rightarrow B_1D_1$, $D_1 \rightarrow B_2D_2$, ..., $D_{m-1} \rightarrow B_{m-1}B_m$, using newly added D_i variables.

Call the resulting grammar G_3.

Claim: $L(G_3) = L(G_2)$. (The proof is left as an exercise.)
Conversion to CNF: Example

Starting CFG with no ε-productions, unit productions, or useless symbols.

$S \rightarrow bA \mid aB$
$A \rightarrow bAA \mid aS \mid a$
$B \rightarrow aBB \mid bS \mid b$

Replace $A \rightarrow C_bAA$ by:
$A \rightarrow C_bD_1$, $D_1 \rightarrow AA$

Replace $B \rightarrow C_aBB$ by:
$B \rightarrow C_aD_2$, $D_2 \rightarrow BB$

$S \rightarrow C_bA \mid C_aB$
$A \rightarrow C_bD_1 \mid C_aS \mid a$
$B \rightarrow C_aD_2 \mid C_bS \mid b$
$D_1 \rightarrow AA$
$D_2 \rightarrow BB$
$C_a \rightarrow a$
$C_b \rightarrow b$

CFG in CNF.
The Pumping Lemma for CFLs

Theorem 7.18 (the Pumping Lemma for CFLs): Let L be any CFL. Then there exists a value n such that for all $z \in L$, where $|z| \geq n$, there exist strings u, v, w, x, y such that:

1. $z = uvwx$,
2. $|vx| \geq 1$,
3. $|vwx| \leq n$, and
4. For all $i \geq 0$, $uv^iwx^iy \in L$.

Jim Anderson (modified by Nathan Otterness)
Proof of the Pumping Lemma for CFLs

If L is a CFL, let G be a CFG generating $L - \{\varepsilon\}$.

Claim: Let $z \in L - \{\varepsilon\}$. If a parse tree for z in G has no path longer than n, then $|z| \leq 2^{n-1}$. (This is Theorem 7.17 in the book.)

Proof, by induction on n:

Base case: $n = 1$. String $z = a$. Tree:

```
  S
 /\  \\
 a /  \\
```

$|z| = 1 = 2^{n-1}$

The Pumping Lemma only applies to strings longer than n, so removing ε doesn’t matter.
Proof of the Pumping Lemma for CFLs

Inductive step: $n > 1$.

Suppose that a tree exists with some path of length n, but no path exceeding a length n. It looks like this:

S

A

T_1

$\leq 2^{n-2}$

B

T_2

$\leq 2^{n-2}$

$\leq 2^{n-1}$
Proof of the Pumping Lemma for CFLs

- Let \(m \) equal the number of variables in the CFG \(G \).
- Let \(n = 2^m \).
- Suppose \(z \in L(G) \), where \(|z| \geq n \).
 - **Note:** \(|z| > 2^{m-1} \)
- We claim that any parse tree for \(z \) has a path of length \(\geq m + 1 \).
 - To see this, suppose all paths in a tree are shorter than \(m + 1 \) (no path is \(> m \)). Then, \(|z| \leq 2^{m-1} \), contradicting the claim that \(|z| > 2^{m-1} \).
Proof of the Pumping Lemma for CFLs

- As stated on the previous slide, any parse tree for z has a path of length $\geq m + 1$.
- Such a path has at least $m + 2$ nodes, $m + 1$ of which are variables.

$z = uvwxy$

- $|vx| \geq 1$
- $|vwx| \leq n$
- For all $i \geq 0$, $uv^iwx^iy \in L$.

The CNF grammar requires replacing variables with a terminal at the end of the path.

Some path from the start symbol to a terminal in z must contain $m + 1$ variables.
Proof of the Pumping Lemma for CFLs

- Since the CFG contains m variables, but the path in z’s parse tree contains $m + 1$ variables,
 at least one variable must be repeated in the path.

- If A is the repeated variable, the path looks like this:

$$z = uvwx$$
$$|vx| \geq 1$$
$$|vwx| \leq n$$
For all $i \geq 0$, $uv^iwx^iy \in L$.
Proof of the Pumping Lemma for CFLs

- Consider the subtrees rooted at each occurrence of A:

\[z = uvwxy \]
\[|vx| \geq 1 \]
\[|vwx| \leq n \]
\[\text{For all } i \geq 0, \quad uv^iwx^iy \in L. \]
Proof of the Pumping Lemma for CFLs

A subtree rooted at A has (at least) two possible yields: wwx and w.

$z = uvwx$
|vx| \geq 1
|vwx| \leq n
For all $i \geq 0$, $uv^iwx^iy \in L$.

vwx = yield of first subtree of A

w = yield of second subtree of A
Proof of the Pumping Lemma for CFLs

We can replace the possible subtrees rooted at A with each other to generate different strings.

This tree has a yield $uvw_y = uv^0wx^0y$

This string must also be in L.

- $z = uvwxy$
- $|vx| \geq 1$
- $|vwx| \leq n$
- For all $i \geq 0$, $uv^iwx^iy \in L$.

Jim Anderson (modified by Nathan Otterness)
Proof of the Pumping Lemma for CFLs

We can replace the possible subtrees rooted at A with each other to generate different strings.

This tree has a yield $uvwvwxxy = uv^2wx^2y$

This string must also be in L.

- $z = uvwxy$
- $|vx| \geq 1$
- $|vwx| \leq n$
- For all $i \geq 0$, $uv^iwx^iy \in L$.

Note that this introduces another occurrence of A.

Jim Anderson (modified by Nathan Otterness)
Proof of the Pumping Lemma for CFLs

- $z = uvwxy$
- $|vx| \geq 1$
- $|vwx| \leq n$
- For all $i \geq 0$, $uv^iwx^iy \in L$

We can repeat this process indefinitely to keep generating strings in L of the form uv^iwx^iy.

So, $uv^iwx^iy \in L$ for all $i \geq 0$.

Jim Anderson (modified by Nathan Otterness)
Application of the CFL Pumping Lemma

- $L = \{a^i b^i c^i \mid i \geq 1\}$.
- Let the string $z = a^n b^n c^n$, for an arbitrary $n > 0$. Clearly, $z \in L$ for any n.
- Let $z = uvwxy$, $|vx| \geq 1$, and $|vwx| \leq n$. This means:
 - vx is all a’s, b’s, or c’s, or
 - vx is all a’s and b’s or all b’s and c’s
 - (The key point is that vx can not possibly contain a’s, b’s, and c’s all at the same time.)
- If vx contains only one type of symbol, uv^0wx^0y will contain too few of that symbol.
- If vx contains two types of symbols, uv^0wx^0y will contain too many of the symbol not in vx.
- Therefore, $uv^0wx^0y \not\in L$, and the Pumping Lemma for CFLs does not hold for L.
Application of the CFL Pumping Lemma

- \(L = \{ww | w \in (0 + 1)^*\} \).
- Let \(z = 0^n1^n0^n1^n \). Clearly, \(z \in L \) for any \(n \).
- Let \(z = uvwx, |vx| \geq 1, \text{ and } |vwx| \leq n \). This means:
 - \(vx \) is all 0s or all 1s
 - \(vx \) is some 0s followed by some 1s
 - \(vx \) is some 1s followed by some 0s.
- If \(vx \) contains only 0s or only 1s, \(uv^0wx^0y \) will contain too few 0s or 1s in one half of the string.
- If \(vx \) contained 0s followed by 1s, then either the first or second half of \(uv^0wx^0y \) will contain fewer 0s and 1s than the other half.
- If \(vx \) contained 1s followed by 0s (\(vx \) is in the middle of \(z \)), then \(uv^0wx^0y \) will have more 0s in the first group of 0s than the second group of 0s. (The number of 1s will also be similarly imbalanced.)
- In any of these cases, \(uv^0wx^0y \notin L \).
Closure of CFLs under Substitution

- Recall that a homomorphism maps characters in some alphabet Σ to strings over another alphabet Δ.
- A homomorphism is actually a special case of substitution, which maps characters in one alphabet to any string in a language over another alphabet.
- Consider this example substitution f:
 - $\Sigma = \{0,1\}$, $\Delta = \{a, b\}$, $f(0) = a + b^*$, $f(1) = a^*b$.
 - $f(0^*1^*) = (a + b^*)(a^*b)^*$.
 - (Note that this particular example uses regular languages.)
Closure of CFLs under Substitution

Theorem 7.23 (reworded): The CFLs are closed under substitution and, by extension, homomorphism.

Proof:

The main idea is to replace all terminals in a CFG with start symbols of another CFG.

- Let L be a CFL, and $L \subseteq \Sigma^*$. For all $a \in \Sigma$, let L_a be a CFL.
- Let $L = L(G)$. For all $a \in \Sigma$, let $L_a = L(G_a)$.
- Assume these grammars have distinct variables.
Closure under Substitution, Proof contd.

Let $G = (V, T, P, S)$, and for all $a \in \Sigma$, $G_a = (V_a, T_a, P_a, S_a)$

Define $G' = (V', T', P', S')$, where:

$V' = (\bigcup_{a \in \Sigma} V_a) \cup V$

$T' = \bigcup_{a \in \Sigma} T_a$

$S' = S$

$P' = \bigcup_{a \in \Sigma} P_a \cup \{A \rightarrow \alpha' \mid A \rightarrow \alpha \text{ is in } P, \text{ and } \alpha' = \alpha \text{ with each } a \in \Sigma \text{ replaced by } S_a\}$.

The language defined by substitution equals $L(G')$. (The proof is left as an exercise—or see Theorem 7.23 in the book.)
Theorem 7.24: CFLs are closed under Union, Concatenation, *-closure, and $^+$-closure.

Proof:

Union: Let L_1 and L_2 be CFLs. $L_1 \cup L_2 = s(L)$, where $L = \{1, 2\}$ (which is clearly a CFL), and s is the substitution defined by $s(1) = L_1$ and $s(2) = L_2$. The proofs for the others are similar.

Notation similar to *, but meaning “1 or more repetitions”.

Jim Anderson (modified by Nathan Otterness)
Closure under Reversal

Theorem 7.25: CFLs are closed under reversal.

Proof:

If $L = L(G)$, where $G = (V, T, P, S)$, then $L^R = L(G^R)$, where $G^R = (V, T, P^R, S)$, and $P^R = \{A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ is a production in } P\}$.

(The full formal proof is left as an exercise.)
(Lack of) Closure under Intersection

Theorem: CFLs are not closed under intersection.

Proof:

- \(L_1 = \{a^ib^ic^i \mid i \geq 1\}\). We know \(L_1\) isn’t a CFL from earlier slides.
- \(L_2 = \{a^ib^ic^j \mid i \geq 1, j \geq 1\}\). This is a CFL.
- \(L_3 = \{a^ib^jc^j \mid i \geq 1, j \geq 1\}\). This is also a CFL.
- However, \(L_1 = L_2 \cap L_3\).

See example 7.26 in the book for CFGs.
(Lack of) Closure under Complementation

Corollary to the previous theorem: CFLs are not closed under complementation.

Proof:
- CFLs are closed under union.
- \(L_1 \cap L_2 \equiv \overline{L_1} \cup \overline{L_2} \).
- So, if CFLs are closed under complementation, they would be closed under intersection, too.
Intersection with Regular Languages

Theorem 7.26: If L is a CFL and R is a regular language, then $L \cap R$ is a CFL.

Proof:
Let L be the language of some PDA $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$.
Let R be the language of some DFA $A = (Q_A, \Sigma, \delta_A, q_A, F_A)$.

Idea: Create a new PDA combining the states of P and A, similar to combining two DFAs.
Proof: Intersection with Reg. Languages

Let \(P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A) \), where:

\[\delta((q, p), a, X) \text{ contains } ((r, s), \gamma) \text{ if and only if } \delta_A(p, a) = s \text{ and } \delta_P(q, a, X) \text{ contains } (r, \gamma). \]

Claim: \(((q_P, q_A), w, Z_0) \models_{P'} ((q, p), \varepsilon, \gamma) \text{ if and only if } (q_P, w, Z_0) \models_P (q, \varepsilon, Y) \text{ and } \delta(q_A, w) = p. \)

(This can be proven by induction on \(i \).)
Closure under Inverse Homomorphism

Theorem 7.30: CFLs are closed under inverse homomorphism.

Proof:
Consider L, where L is the language of some PDA P.

$P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F)$.
Let $h : \Sigma \rightarrow \Delta^*$.

Construct a PDA P' that accepts $h^{-1}(L)$.

Closure under Inverse Homomorphism

Proof, continued:
The key idea is the same as for regular languages: When processing an input a, P' simulates P on the input $h(a)$. In a DFA, simulation required just a single state transition.

However, P, being a PDA, does more than just change state on input $h(a)$--it may change the stack contents or make nondeterministic choices.

Solution: Use a buffer to hold the symbols of $h(a)$.

This buffer will really be part of P''s (finite!) state.
Closure under Inverse Homomorphism

Conceptually:

The buffer must be large enough to hold the longest string produced by h.

Input $a \xrightarrow{h} h(a) \rightarrow \text{Buffer} \rightarrow \text{Original PDA state} \rightarrow \text{Accept/Reject}$
Closure under Inverse Homomorphism

Short example: $h(a) = 01$, and $h(b) = 111$
Closure under Inverse Homomorphism

- We have a homomorphism $h: \Sigma \to \Delta^*$.
- Recall that $P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F)$
- Let $P' = (Q', \Sigma, \Gamma, \delta', (q_0, \varepsilon), Z_0, F \times \{\varepsilon\})$.
- States in Q' is a set of pairs (q, x) such that
 - q is a state in Q, and
 - x is the finite "buffer" — $h(a)$ or a suffix of $h(a)$ for some symbol $a \in \Sigma$.

Start in the original start state, with an empty buffer.

Accept in any of the original accepting states, if the buffer is empty.
Closure under Inverse Homomorphism

Transitions in P':

- $\delta'((q, x), \varepsilon, X)$ contains all $((p, x), \gamma)$ such that $\delta(q, \varepsilon, X)$ contains (p, γ).
 - “Simulate ε-transitions”

- $\delta'((q, bx), \varepsilon, X)$ contains all $((p, x), \gamma)$ such that $\delta(q, b, X)$ contains (p, γ).
 - “Simulate non-ε transitions”

- $\delta'((q, \varepsilon), a, X)$ contains $((q, h(a)), X)$ for all $a \in \Sigma$ and $X \in \Gamma$.
 - “Load the buffer”
Closure under Inverse Homomorphism

Claim: If \((q_0, h(w), Z_0) \xymatrix{P}^* (p, \varepsilon, \gamma)\), then
\[((q_0, \varepsilon), w, Z_0) \xymatrix{P'}^* ((p, \varepsilon), \varepsilon, \gamma)\).

Proof sketch:
For each \(a \in \Sigma\), whatever sequence of moves \(P\) makes on \(h(a)\), \(P'\) can make a corresponding sequence of moves on input \(a\).
Closure under Inverse Homomorphism

Claim: If \((q_0, \varepsilon, w, Z_0) \xrightarrow{P'} ((p, \varepsilon), \varepsilon, \gamma)\), then
\((q_0, h(w), Z_0) \xrightarrow{P} (p, \varepsilon, \gamma)\).

Proof sketch:

\(P'\) can only process \(w\) one character at a time. For each character \(a\), \(P'\) does what \(P\) does on \(h(a)\).

The first claim implied that \(L(P') \supseteq h^{-1}(L(P))\).
This claim implies that \(L(P') \subseteq h^{-1}(L(P))\).
Decision Properties of CFLs

As with regular languages, we’ll focus less on efficiency and more on simplicity than what’s done in the book.

- **Theorem**: There exist algorithms to determine if a CFL is (a) empty, (b) finite, or (c) infinite.
Detecting if a CFL is Empty

Nonemptiness:

- Use the iterative algorithm for detecting useless symbols to test if $A \Rightarrow w$ for all $A \in V$.
- The CFL is nonempty if and only if $S \Rightarrow w^*$ for some terminal string w.
Detecting if a CFL is Finite or Infinite

Assume L does not contain ε. (If $\varepsilon \in L$, then consider $L - \{\varepsilon\}$ instead.)

Suppose $L = L(G)$, where $G = (V, T, P, S)$ is in CNF (and therefore has no useless symbols).

Consider the directed graph (V, E), where $(A, B) \in E$ if $A \rightarrow BC$ or $A \rightarrow CB$ is in P for some variable C.

Claim: L is finite if and only if (V, E) has no cycles.
Detecting if a CFL is Finite or Infinite

Claim (again): \(L \) is finite if and only if \((V, E) \) has no cycles.

“Only if”: A cycle has the form \(A_0, A_1, \ldots, A_n, A_0 \).

Therefore, we have \(A_0 \Rightarrow \alpha_1 A_1 \beta_1 \Rightarrow \alpha_2 A_2 \beta_2 \Rightarrow \cdots \Rightarrow \alpha_n A_n \beta_n \Rightarrow \alpha_{n+1} A_0 \beta_{n+1} \), where \(|\alpha_i \beta_i| = i \).

Since \(G \) has no useless symbols:

\[\begin{align*}
\alpha_{n+1} & \Rightarrow w, \\
\beta_{n+1} & \Rightarrow x, \\
S & \Rightarrow y A_0 z, \text{ and} \\
A_0 & \Rightarrow v,
\end{align*} \]

where \(w, x, y, z, \) and \(v \) are terminal strings.

This is due to the grammar being in CNF — we can only produce \(i \) symbols in \(i \) derivation steps.
Detecting if a CFL is Finite or Infinite

“Only if” proof, continued:

From:

- $\alpha_{n+1} \Rightarrow w$
- $\beta_{n+1} \Rightarrow x$
- $S \Rightarrow yA_0z$
- $A_0 \Rightarrow v$

we have:

$S \Rightarrow yA_0x \Rightarrow ywA_0xz \Rightarrow yw^2A_0x^2z \Rightarrow \ldots \Rightarrow yw^iA_0x^iz \Rightarrow yw^ivx^iz$.

Therefore, L is infinite.
Detecting if a CFL is Finite or Infinite

Claim (again): L is finite if and only if (V, E) has no cycles.

“If”: Suppose (V, E) has no cycles.

Definition: The rank of $A \in V$ is the longest path beginning from A. If a graph has no cycles, then all ranks are finite.

Claim: If A has a rank r, then A derives no terminal string of length exceeding 2^r.

❖ This can be proven by induction on r, similarly to some claims prior to the Pumping Lemma.

Since (V, E) has no cycles, S has a finite rank. Therefore, the longest string derivable from S has a finite length, so L must be finite.
Membership: CYK Algorithm

We want to know if a string x is in L.

- Let $L - \{\varepsilon\} = L(G)$ for a CFG G in CNF.
- Let $|x| = n$.
- Let x_{ij} be a substring of x of length j beginning at position i.
- Inductively determine all variables A such that $A \Rightarrow x_{ij}$.
- $x \in L$ if and only if $S \Rightarrow x_1n$.

Jim Anderson (modified by Nathan Otterness)
Membership: CYK Algorithm

Base case: $j = 1$. $A \Rightarrow x_{ij}^*$ if and only if $A \rightarrow x_{ij}$.

Inductive step: $j > 1$. $A \Rightarrow x_{ij}^*$ if and only if there exists $A \rightarrow BC$ and k, $1 \leq k < j$, such that $B \Rightarrow x_{ik}^*$ and $C \Rightarrow x_{i+k \ j-k}^*$.

$j = 1$, so $x_{ij} = x_{i1}$. x_{i1} has a length of 1, so it's a terminal symbol.
Membership: CYK Algorithm

Pseudocode for determining the sets of variables, V_{ij}, that can produce the substring x_{ij}:

```plaintext
for i := 1 to n:
    $V_{i1} := \{A \mid A \rightarrow x_{i1}\}$

for j := 2 to n:
    for i := 1 to n - j + 1:
        $V_{ij} := \emptyset$;
        for k := 1 to j - 1:
            $V_{ij} := V_{ij} \cup \{A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k,j-k}\}$
```

The time complexity is $O(n^3)$.
CYK Algorithm: Example

\[S \rightarrow AB \mid BC \]
\[A \rightarrow BA \mid a \]
\[B \rightarrow CC \mid b \]
\[C \rightarrow AB \mid a \]

\[x = baaba \ (n = 5) \]

\[
\begin{array}{cccccc}
\text{i} & 1 & 2 & 3 & 4 & 5 \\
\hline
\text{j} & 1 & & & & \\
2 & & & & & \\
3 & & & & & \\
4 & & & & & \\
5 & & & & & \\
\end{array}
\]

for \(i := 1 \) to \(n \):
\[V_{i1} := \{ A \mid A \rightarrow x_{i1} \} \]

for \(j := 2 \) to \(n \):
for \(i := 1 \) to \(n - j + 1 \):
\[V_{ij} := \emptyset; \]
for \(k := 1 \) to \(j - 1 \):
\[V_{ij} := V_{ij} \cup \{ A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k-j-k} \} \]
CYK Algorithm: Example

Given the grammar:

- $S \rightarrow AB \mid BC$
- $A \rightarrow BA \mid a$
- $B \rightarrow CC \mid b$
- $C \rightarrow AB \mid a$

And the string $x = baaba$ ($n = 5$), we apply the CYK algorithm as follows:

Step 1:

- For $i := 1$ to n:
 - $V_{i1} := \{ A \mid A \rightarrow x_{i1} \}$

Step 2:

- For $j := 2$ to n:
 - For $i := 1$ to $n - j + 1$:
 - $V_{ij} := \emptyset$
 - For $k := 1$ to $j - 1$:
 - $V_{ij} := V_{ij} \cup \{ A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k-j+k} \}$

Table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>A, C</td>
<td>A, C</td>
<td>B</td>
<td>A, C</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jim Anderson (modified by Nathan Otterness)
CYK Algorithm: Example

\[
S \rightarrow AB \mid BC \\
A \rightarrow BA \mid a \\
B \rightarrow CC \mid b \\
C \rightarrow AB \mid a \\
x = baaba \ (n = 5)
\]

\[
\begin{array}{cccccc}
& b & a & a & b & a \\
2 & S, A & B & S, C & S, A \\
3 & & & & & \\
4 & & & & & \\
5 & & & & & \\
\end{array}
\]

Algorithm:

```plaintext
for i := 1 to n:
    \( V_{i1} := \{ A \mid A \rightarrow x_{i1} \} \)

for j := 2 to n:
    for i := 1 to n - j + 1:
        \( V_{ij} := \emptyset; \)
        for k := 1 to j - 1:
            \( V_{ij} := V_{ij} \cup \{ A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k-j-k} \} \)
```

Jim Anderson (modified by Nathan Otterness)
CYK Algorithm: Example

$S \rightarrow AB \mid BC$
$A \rightarrow BA \mid a$
$B \rightarrow CC \mid b$
$C \rightarrow AB \mid a$

$x = baaba (n = 5)$

for $i := 1$ to n:

$V_{i1} := \{ A \mid A \rightarrow x_{i1} \}$

for $j := 2$ to n:

for $i := 1$ to $n - j + 1$:

$V_{ij} := \emptyset$

for $k := 1$ to $j - 1$:

$V_{ij} := V_{ij} \cup \{ A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k-j-k} \}$
CYK Algorithm: Example

\[
S \rightarrow AB \mid BC \\
A \rightarrow BA \mid a \\
B \rightarrow CC \mid b \\
C \rightarrow AB \mid a
\]

\(x = baaba \ (n = 5)\)

Diagram:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>A, C</td>
<td>A, C</td>
<td>B</td>
<td>A, C</td>
</tr>
<tr>
<td>2</td>
<td>S, A</td>
<td>B</td>
<td>S, C</td>
<td>S, A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>☐</td>
<td>B</td>
<td>☐</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>☐</td>
<td>S, A, C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Algorithm:

\[
\text{for } i := 1 \text{ to } n: \\
\quad V_{i1} := \{A \mid A \rightarrow x_{i1}\}
\]

\[
\text{for } j := 2 \text{ to } n: \\
\quad \text{for } i := 1 \text{ to } n - j + 1: \\
\quad \quad V_{ij} := \emptyset; \\
\quad \quad \text{for } k := 1 \text{ to } j - 1: \\
\quad \quad \quad V_{ij} := V_{ij} \cup \{A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k-j-k}\}
\]

Jim Anderson (modified by Nathan Otterness)
CYK Algorithm: Example

\[
S \rightarrow AB \mid BC \\
A \rightarrow BA \mid a \\
B \rightarrow CC \mid b \\
C \rightarrow AB \mid a \\
x = baaba (n = 5)
\]

\[
\begin{array}{cccccc}
 & b & a & a & b & a \\
\hline
2 & S, A & B & S, C & S, A \\
3 & \emptyset & B & B & \\
4 & \emptyset & S, A, C & \\
5 & S, A, C & \\
\end{array}
\]

\[
\text{for } i := 1 \text{ to } n: \\
V_{i1} := \{A \mid A \rightarrow x_{i1}\}
\]

\[
\text{for } j := 2 \text{ to } n: \\
\text{for } i := 1 \text{ to } n - j + 1: \\
V_{ij} := \emptyset; \\
\text{for } k := 1 \text{ to } j - 1: \\
V_{ij} := V_{ij} \cup \{A \mid A \rightarrow BC, B \in V_{ik}, C \in V_{i+k-j-k}\}
\]

\[
S \in V_{1n}, \text{ so } x \in L.
\]