Properties of
Context-Free Languages

COMP 455 - 002, Spring 2019

Simplification of CFGs

We can simplify CFGs by removing:
» Useless symbols.

« X is generating if X > w, wherew € T".

%X is reachable if S = aX S (S is the start symbol).
« X is useful only if it is both reachable and generating.

» e-productions, of the form 4 — «¢.

«If € is in the language, we will still need one
e-production.

» Unit productions, of the form A — B.

Jim Anderson (modified by Nathan Otterness) 2

Finding Generating Variables

Theorem 7.4: The following algorithm correctly finds
all generating variables.

old_vars := @;
new_vars :={A| A - wexists, andw € T*};
while old_vars # new_vars:
old_vars = new_vars;
new_vars =old_varsU{A | A - a,a € (T U old_vars)*};
return new_vars;

Jim Anderson (modified by Nathan Otterness)

Finding Generating Variables

old_vars := @;
new_vars :={A| A > wexists, andw € T"};
while old_vars # new_vars:

old_vars = new_vars;

new_vars = old_vars U{A | A - a,a € (T U old_vars)*};
Pl‘OOf Of Theorem 74 return new_vars;

We want to show that X is added to new_vars if and only
if X = w for some w € T".

“Only if”: We must show that if X is added to new_vars
then X = w.

This can be proven by induction on the number of
iterations of the algorithm (specifics are left as an
exercise).

Jim Anderson (modified by Nathan Otterness) 4

Finding Generating Variables

old_vars := @;
new_vars :={A| A > wexists, andw € T"};
while old_vars # new_vars:

old_vars = new_vars;

new_vars = old_vars U{A | A - a,a € (T U old_vars)*};

Proof of Theorem 7.4: return new_vars;

We want to show that X is added to new_vars if and only
if X=>wforsomew € T".

“Tf”: We must show that if X :*> w, then X is eventually
added to new vars.

This can be proven by induction on the length of the
derivation (specifics are left as an exercise).

Jim Anderson (modified by Nathan Otterness) 5

Finding Reachable Variables

Theorem 7.5: There exists an iterative algorithm that
will correctly find all reachable symbols.

This is similar to the previous algorithm, except this
time you’ll start with a set containing the start

symbol and look for new reachable symbols in each
iteration.

old_vars := @;
new_vars := {S};
while old_vars # new_vars:
old_vars = new_vars;
new_vars = old_vars U
{A | A is produced by something in old_vars};
return new_vars;

Jim Anderson (modified by Nathan Otterness) 6

Eliminating Useless Symbols

Theorem 7.2: (Abbreviated) Every nonempty CFL is
generated by a CFG with no useless symbols.

Proof:
Let L be the language of some CFG G, where L # 0.
Define: This order
Remove Remove SHatEEs
Non-generating Non-reachable
using Theorem 7.4 using Theorem 7.5

>G1 > GZ

Jim Anderson (modified by Nathan Otterness) 7

Eliminating Useless Symbols

Proof, continued: Remove Remove

non—generating unreachable

Assume G, contains a useless variable, X. > U1
» By Theorem 7.5, S G=*> aXp.
2

Gy

< In other words, we know that X is reachable in G,.

» Any production in G, must be a production in G4, so

S = aXp must be a production in G;. It should be intuitively clear
Gy that removing useless

> By Theorem 7.4, S =*> aXp ; A symbols won’t change the
Gy Gy language of a grammar.

<+ In other words, we know that X is producing in G;.

» Every symbol in this derivation is reachable from §, so
none will be eliminated by Theorem 7.5. So, S : aXp : w.

This contradicts the assumption that X was useiess in i;

Jim Anderson (modified by Nathan Otterness) 8

Eliminating Useless Symbols: Example

Incorrect order: Correct order:

Note that these are
not the same!

Jim Anderson (modified by Nathan Otterness)

Removing Nullable Symbols

A symbol 4 is nullable if A = «.

Theorem 7.7: There exists an algorithm that will
correct identity all nullable symbols.

We will not prove this —it should be intuitively
similar to what we’ve done before.

old_vars := @;
new_vars := {A | A - € exists};
while old_vars # new_vars:
old_vars = new_vars;
new_vars = old_vars U{A | A - a,a € old_vars*};
return new_vars;

Jim Anderson (modified by Nathan Otterness)

10

Removing e-Productions

Theorem 7.9, reworded: If L = L(G) for a CFG G,
then there exists a CFG G; with no e-Productions
such that L(G,) = L(G) — {&}.

Proof:

To construct G{: If A - X; ... X;, is in P, then add all
productions of the form A — a4 ... ay to P;, where:

1. If X; is not nullable, then a; = X;,

This requires adding
two production rules

. .= — for each nullable X;.
2. If X; is nullable, then a; isleither X; or e,|aR SrER e

3. Notall a;’s are ¢.

Jim Anderson (modified by Nathan Otterness) 11

Removing e-Productions: Example

CFG P:
» S > ABC
» A—>¢
» B->b|c¢

» (—>cC
A and B are nullable. CFG P;: 4

» S—> ABC|BC|AC|C A is now useless in P;. (If you want
to eliminate both e-productions and
»B-b
useless symbols, you must remove
» (C —>c g-productions first.

Jim Anderson (modified by Nathan Otterness)

Removing e-Productions: Proof e

productions producing
Proof, continued: L(G) — {e}.

Claim: ForallA€eVandw €T~ A E_*> w if and only if
1

W;teandA?W.

“If”: Assume A % w and w # . We prove by

S

inductionon i that 4 G:» w.
1

Base case: i = 1 (one derivation step)

A —» w must be a production in P. Because w # ¢,
A - w is also a production in G;.

Jim Anderson (modified by Nathan Otterness) 13

Removing e-Productions: Proof

Inductive step: i > 1 (more than one derivation step)

[—1 *
Assume A ? Y; .Y, :G> w. ThenY; ? w; and Claim: Forall A€V andw € T",
W= Wy ... W,y,. A2W1fandonly1fwisandA?w.

If w; # ¢, then Y; é w;, by the induction hypothesis.

If w; = ¢, then Y is nullable.
Therefore, A — f; ... b is in the productions of G;, where
> i =Y itw; # ¢,
> i =cifw; =e.
And we have the following derivation in G;:

A= ﬁlﬁz ﬁm = Wlﬁz ﬁm = WiWs ...W;; = W.

Jim Anderson (modified by Nathan Otterness) 14

Removing e-Productions: Proof

Claim: Forall A e Vandw € T7,

i * . . *
”Ollly if” AssumeA?W. Then, w # «. Azw if and onlylfwieandA?W.
1

We will prove by induction on i that A :;> w.

Base case: i = 1.

A — w is in the productions of G;. Therefore, A — «
is in the productions of G where w = a with nullable
symbols replaced by e.

Jim Anderson (modified by Nathan Otterness) 15

Removing e-Productions: Proof

This is where nullable
symbols are replaced by «.

“Only it”, continued:

w exists in G.

We must show that the derivation A ? a

i—1
Inductive step: Suppose that A = X1 - Xk => W,
1 1

Then, A — f is in the productions of G, where
X1 ... X, = B with some nullable symbols removed.

As in the base case, A %X 1 - Xg. And, by the inductive

k
hypothesis, we can show that X 1 wue X k ? W. “ Assume the derivation with

i — 1 steps is correct...” etc.

Jim Anderson (modified by Nathan Otterness)

Removing Unit Productions

Theorem 7.13 (reworded): If L = L(G) for a CFG G,
then there exists a CFG G; with no unit productions
such that L = L(G,).

Proof: LetG = (V,T,P,S)

To construction G4, first add all non-unit productions
in P to P;.

Next, if|A = Bland B — a is a non-unit production in
P. then adgl A-> ato p1 \ We can find all pairs of (4, B) where

A=B using an iterative algorithm like

before (see Section 7.1.4 of the book).

Jim Anderson (modified by Nathan Otterness)

Removing Unit Productions: Example

Consider the CFG G with the following productions:
»S—->A|Db
» A - Ada

After removing the unit production § — A4, this
becomes:

» S - AAa | b
» A > AAa

Jim Anderson (modified by Nathan Otterness) 18

Removing Unit Productions: Proof

. G: The grammar containing unit productions.
Claim: L (Gl) CL (G) G1: The grammar with unit productions removed.

Proof:

If A—> aisin Py, then A :} . Therefore, A E—*> a implies
1

*k
A= «a.
G

Jim Anderson (modified by Nathan Otterness) 19

Removing Unit Productions: Proof

. G: The grammar containing unit productions.
Claim: L (G) CL (Gl) G1: The grammar with unit productions removed.

Proof:
Suppose w € L(G).

Let S = «a 2022y =W be a leftmost derivation.

If a; = Xty is due to a non-unit production, then a; = a;, .

Jim Anderson (modified by Nathan Otterness) 20

Removing Unit Productions: Proof

. G: The grammar containing unit productions.
Claim: L (G) CL (Gl) G1: The grammar with unit productions removed.

Consider the following leftmost derivation with unit
roductions in G: aj_1 = a; = Aj11 = .= A} = Ajy1.
P llG l\G l+1G GJJG J+1

Y
Unit Non-unit
productions production

Non-unit
production

Unit productions just replace the symbol at the same
(leftmost) position, so a;_; = a4, will also hold by
some production in P; — P.

Jim Anderson (modified by Nathan Otterness) 21

Putting it all Together

Theorem 7.14: If L is the language of a CFG G, and L
contains at least one string other than ¢, then there exists
a CFG G, with no e-productions, unit productions, or
useless symbols such that L(G;) = L — {¢}.

(See the book for a formal proof.)

The order in which we apply the previous results is
important.

Jim Anderson (modified by Nathan Otterness) 22

Putting it all Together

The order of previous results:

» We saw on slide 12 that eliminating e-productions
may cause some symbols to become useless, so we
must eliminate e-productions before removing useless
symbols.

» In the same example on slide 12, removing &-
productions also introduced a unit production (S -
C), so e-productions must be eliminated before unit
productions.

Jim Anderson (modified by Nathan Otterness) 23

Putting it all Together

Finally, unit productions must be eliminated before
useless symbols. Consider this example:

Remove unit
productions

Remove useless [g 2tz
symbols

C is now usele
but is still in tl
grammar

So, the only viable order is: 1) Eliminate e-productions,
2) Eliminate unit productions, and 3) Eliminate useless
symbols.

Jim Anderson (modified by Nathan Otterness) 24

Chomsky Normal Form (CNF)

» A CFG is in Chomsky Normal Form it all of its
productions are of the form A - BC or A — a, and
it contains no useless symbols.

Theorem 7.16 (reworded): Any CFL that doesn’t
include ¢ can be generated by a CFG in CNF.

Proof: Let L = L(G) for some CFG G, where € & L.
Use Theorem 7.14 to convert G into G, = (V,T,P,S),
where G contains no e-productions, unit
productions, or useless symbols.

Jim Anderson (modified by Nathan Otterness) 25

Converting to Chomsky Normal Form

Otherwise 4 - X would be
a unit production, and have

Proof (continued): been eliminated already.

Otherwise, consider A —» XX, ...X,,,, where m > 2.

» If X; is a terminal, introduce a new variable C, and a
new production C, — a, then replace X; by C,.

» Call the resulting grammar G, (after making all such
replacements).

Claim: L(G;) = L(G,). (The proof is left as an exercise.)

Jim Anderson (modified by Nathan Otterness) 26

Converting to Chomsky Normal Form

The remaining problem is that we need to replace
productions of the form A —» BB, ... By, (where
m = 3).

Replace such a production by:

A - B{Dy, Dy - B,D,, ..., Dyy_1 = Bpy—1Bp, using
newly added D; variables.

Call the resulting grammar Gs.

Claim: L(G3) = L(G,). (The proof is left as an
exercise.)

Jim Anderson (modified by Nathan Otterness) 27

Conversion to CNF: Example

Starting CFG with no e-productions,
unit productions, or useless symbols.

S - bA|aB
A—->bAA|aS|a
B —->aBB |bS|b

S—->C,A|C,B
A->C,AA|C,S | a
B—->C,BB|C,S|b
C, > a

Cb—)b

Jim Anderson (modified by Nathan Otterness)

Replace A - C,AA by:
A- CbDll D]_ — AA

Replace B — C,BB by:
B — CaDz, D2 — BB

S->CA|C,B
A->CyD;|C,S | a
B-C,D,|CpS|Db
D, —» AA

D, - BB
C, —a
Cb—>b

The Pumping Lemma for CFLs

Theorem 7.18 (the Pumping Lemma for CFLs):
Let L be any CFL. Then there exists a value n such
that for all z € L, where |z| > n, there exist strings
u, v, w, x, y such that:

1. Z =uvwxy,

2. |vx| =1,

3. |vwx| < n, and
4

Foralli > 0, uvtwx'y € L.

Jim Anderson (modified by Nathan Otterness) 29

Proof of the Pumping Lemma for CFLs

The Pumping Lemma only

If L is a CFL, let G be a CFG generating IL — {&} applies to strings longer

. : than n, so removing ¢
Claim: Let z € L — {¢}. If a parse tree for z in G has Jous’t matter.

no path longer than n, then |z| < 2™~*. (This is Theorem
7.17 in the book.)

Proof, by induction on n:

Base case:n = 1.5tringz =a. Tree: § |[z|=1= n-1

Jim Anderson (modified by Nathan Otterness) 30

Proof of the Pumping Lemma for CFLs

Inductive step: n > 1.

Suppose that a tree exists with some path of length n,
but no path exceeding a length n. It looks like this:

31

Z = UVWXY

Proof of the Pumping Lemma for CFLs x| > 1
lvwx| < n
Foralli > 0,
uvtwx'y € L.

» Let m equal the number of variables in the CFG G.
» Letn = 2™,
» Suppose z € L(G), where |z| = n.

<+ Note: |z| > 2m~1

» We claim that any parse tree for z has a path of
length > m + 1.

«To see this, suppose all paths in a tree are shorter
than m + 1 (no path is > m). Then, |z| < 2™,
contradicting the claim that |z| > 2™,

Jim Anderson (modified by Nathan Otterness) 32

Proof of the Pumping Lemma for CFLs |Zv;| Lgvfxy
lvwx| < n

. . Foralli = 0,
» As stated on the previous slide, any parse tree for z uviwxly € L.

has a path of length > m + 1.

» Such a path has at least|m + 2|nodes, m + 1 of which
are variables.

The CNF grammar requires
replacing variables with a
terminal at the end of the path.

Some path from the start
“ symbol to a terminal in z
must contain m + 1 variables.

N <

Jim Anderson (modified by Nathan Otterness)

Z = UVWXY

Proof of the Pumping Lemma for CFLs x| > 1
lvwx| < n
Foralli > 0,
uvtwx'y € L.

» Since the CFG contains m variables, but the path in
z's parse tree contains m + 1 variables, at least one
variable must be repeated in the path.

» If A is the repeated variable, the path looks like this:
S

A

A

“ J
Y
Z

Jim Anderson (modified by Nathan Otterness) 34

Z = UVWXY

Proof of the Pumping Lemma for CFLs lvx| > 1
lvwx| < n
: Foralli > 0,
» Consider the subtrees rooted at each occurrence wriwxly € L.
of A:
S
A
A
u % X y

Jim Anderson (modified by Nathan Otterness) 35

Z = Uvwx
Proof of the Pumping Lemma for CFLs lvx| > 1 :
lvwx| < n
Foralli > 0,
A subtree rooted at 4 has uv'wx'y € L.
(at least) two possible

yields: wwx and w.

vwx = yield of first subtree of A w = yield of second subtree of A

Jim Anderson (modified by Nathan Otterness)

Z = UVWXY
e |vx|=>1
e |vwx|<n
We can replace the possible * Foralli =20,
subtrees rooted at A with each uv'wx'y € L.

Proof of the Pumping Lemma for CFLs

This tree has a yield uwy = uv®wx°y

This string must also be in L.

Jim Anderson (modified by Nathan Otterness) 37

Z = UVWXY

Proof of the Pumping Lemma for CFLs lvx| > 1
lvwx| < n
We can replace the possible Foralli = 0,

subtrees rooted at A with each uv'wx'y € L.
other to generate different strings.

Note that this introduces
another occurrence of A.

v w X

This tree has a yield uvvwxxy = uv?wx?y

This string must also be in L.

Jim Anderson (modified by Nathan Otterness)

Z = UVWXY

Proof of the Pumping Lemma for CFLs lvx| = 1

Jim Anderson (modified by Nathan Otterness)

lvwx| < n
Foralli > 0,
uvtwx'y € L.

We can repeat this process
indefinitely to keep generating
strings in L of the form uv'wx'y.

So, uvtwx'y € L for all i > 0.

Application of the CFL Pumping Lemma

v

L={a'b'c'|i=>1}.
Let the string z = a™b"c", for an arbitrary n > 0. Clearly, z € L for an

\ A 4

Let z = uvwxy, |vx| = 1, and |vwx| < n. This means:
< vxisall a’s, b’s, or ¢’s, or
% vxisall a’'sand b’s or all b’s and ¢’s

% (The key point is that vx can not possibly contain a’s, b’s, and ¢’s all
at the same time.)

» If vx contains only one type of symbol, uv®wx®y will contain too few of
that symbol.

0

» If vx contains two types of symbols, uv®wx°y will contain too many of

the symbol not in vx.

» Therefore, uv®

wx’y & L, and the Pumping Lemma for CFLs does not
hold for L.

Jim Anderson (modified by Nathan Otterness) 40

>
>
>

Application of the CFL Pumping Lemma

L={ww|we(0+1)}

Let z = 0"1"0"1". Clearly, z € L for any n.

Let z = uvwxy, |vx| = 1, and |vwx| < n. This means:
< vx is all Os or all 1s
< vx is some Os followed by some 1s

% vx is some 1s followed by some Os.

0

If vx contains only Os or only 1s, uv®wx®y will contain too few 0s or 1s in

one half of the string.

If vx contained Os followed by 1s, then either the first or second half of
uv®wx®y will contain fewer Os and 1s than the other half.

If vx contained 1s followed by 0Os (vx is in the middle of z), then uv°wx°
will have more Os in the first group of Os than the second group of Os.
(The number of 1s will also be similarly imbalanced.)

0

In any of these cases, uv®wx°y ¢ L.

Jim Anderson (modified by Nathan Otterness) 41

Closure of CFLs under Substitution

» Recall that a homomorphism maps characters in
some alphabet X to strings over another alphabet A.

» A homomorphism is actually a special case of
substitution, which maps characters in one alphabet to
any string in a language over another alphabet.

» Consider this example substitution f:
+2=1{0,1}, A={a,b}, f(0) =a+b" f(1) =a"b.
«f(0*1") = (a+b*)"(a*b)".
“ (Note that this particular example uses regular
languages.)

Jim Anderson (modified by Nathan Otterness) 42

Closure of CFLs under Substitution

Theorem 7.23 (reworded): The CFLs are closed under
substitution and, by extension, homomorphism.

Proof:

The main idea is to replace all terminals in a CFG with star
symbols of another CFG.

» Let LbeaCFL,and L € ¥*. Foralla € %, let L, be a CFL.
» Let L = L(G). Foralla € %, let L, = L(G,).

» Assume these grammars have distinct variables.

Jim Anderson (modified by Nathan Otterness) 43

Closure under Substitution, Proof contd.

LetG =(V,T,P,S),and foralla €, 6, = (V,T,P,S,)
Define ¢' = (V',T',P',S"), where:

>V = (UgesVa) UV

> T' = UgesTa

»S'=S

» PP =UgesPLU{A—>a' |A—- aisinP,and
a' = a with each a € X replaced by S, }.

The language defined by substitution equals L(G"). (The
proof is left as an exercise — or see Theorem 7.23 in the boo

Jim Anderson (modified by Nathan Otterness) 44

Union, Concatenation, and Closure

Theorem 7.24: CFLs are closed under Union,
Concatenation, *-closure, and

*

Notation similar to *,
but meaning “1 or
Proof: more repetitions”.

Union: Let L; and L, be CFLs. L; U L, = s(L), where
L = {1, 2} (which is clearly a CFL), and s is the
substitution defined by s(1) = L; and s(2) = L,.

The proofs for the others are similar.

Jim Anderson (modified by Nathan Otterness) 45

Closure under Reversal

Theorem 7.25: CFLs are closed under reversal.

Proof:
If L = L(G), where G = (V,T,P,S), then L? = L(G"),

The productions in GX
are just the productions

(The full formal proof is left as an exercise.) in G written backwards.

Jim Anderson (modified by Nathan Otterness)

(Lack of) Closure under Intersection

Theorem: CFLs are not closed under intersection.

Proof:

» L, ={a'bic'|i > 1}. We know L, isn’t a CFL from
earlier slides.

(i i s : . the book for CFGs.
» Ly = {a blcd|i=1,j = 1}. This is also a CFL. y
» However, L, = L, N Lj.

Jim Anderson (modified by Nathan Otterness) 47

(Lack of) Closure under Complementation

Corollary to the previous theorem: CFLs are not
closed under complementation.

Proof:

» CFLs are closed under union.

» L. NL, =L, UL,.

» So, if CFLs are closed under complementation,
they would be closed under intersection, too.

Jim Anderson (modified by Nathan Otterness) 48

Intersection with Regular Languages

Theorem 7.26: If L is a CFL and R is a regular language, the
L NnRisaCFL.

Proof:
Let L be the language of some PDA P = (Qp,%,T, 6p,qp, Zy, Fp).
Let R be the language of some DFA A = (Qy4, %, 84,4, F4).

Idea: Create a new PDA combining the states of P and 4,
similar to combining two DFAs.

Jim Anderson (modified by Nathan Otterness) 49

Proof: Intersection with Reg. Languages

Let P" = (Qp X Q4,%,T,6,(qp, q4), Zo, Fp X F4), where:

> 0 ((q, p),a, X) contains ((r, S),y) if and only if
5,(p,a) = s and 6p(q, a, X) contains (7, y).

Claim: ((qp, q4), W, ZO)I:I—, ((q, p), € v) if and only if

l
(gp, w, ZO)IL‘ (g,&,Y) and 8(q4, w) = p.

(This can be proven by induction on i.)

Jim Anderson (modified by Nathan Otterness) 50

Closure under Inverse Homomorphism

Theorem 7.30: CFLs are closed under inverse
homomorphism.

Proof:
Consider L, where L is the language of some PDA P.
P=(Q,AT,S8,qy Zy, F).

Let h:X - A™.

Construct a PDA P’ that accepts h™1(L).

Jim Anderson (modified by Nathan Otterness) 51

Closure under Inverse Homomorphism

Proof, continued:

The key idea is the same as for regular languages: When
processing an input a, P’ simulates P on the input h(a).

In A DFA, simulation required just a single state
transition.

However, P, being a PDA, does more than just change
state on input h(a)--it may change the stack contents or

make nondeterministic choices.
This buffer will really be

part of P"’s (finite!) state.
Solution: Use a buffer to hold the symbols of h(a).

Jim Anderson (modified by Nathan Otterness) 52

Closure under Inverse Homomorphism

The buffer must be large

] enough to hold the longest
COnCePtuaHY- string produced by h.

(A
Buffer

!

[Original]—-> Accept/Reject
J

PDA state

N\ 1
’

Stack

Jim Anderson (modified by Nathan Otterness) 53

Closure under Inverse Homomorphism

Short example: h(a) = 01, and h(b) = 111

Input 4 Buffor A
string;:
YA E— 1 | e
Original :
[PD -]—-> Accept/Reject
- I J

Stack

Jim Anderson (modified by Nathan Otterness) 54

Closure under Inverse Homomorphism

» We have a homomorphism h: X — A" Start in the original start
state, with an empty buffer.
» Recall that P = (Q,A, T, 8,q¢, Zy, F)
Accept in any of the original accepting
> Let P’ = (QI; 2, I, 5’:|(9Q; E)I. Zo, . states, if the buffer is empty.
» States in Q' is a set of pairs (g, x) such that

% q is a state in Q, and

< x is the finite “buffer” —h(a) or a suffix of h(a)
for some symbol a € X.

Jim Anderson (modified by Nathan Otterness) 55

Closure under Inverse Homomorphism

Transitions in P’:

) ’((q, x),& X) contains all ((p, x), y) such that (g, &, X)
contains (p,y).

< “Simulate e-transitions”

> 6 ’((q, bx), &, X) contains all ((p, x), y) such that §(qg, b, X)
contains (p,y).

< “Simulate non-¢ transitions”
D> 5’((q, £),aq, X) contains ((q, h(a)),X) foralla € ¥ and X € T.
» “Load the buffer”

L)

Jim Anderson (modified by Nathan Otterness) 56

Closure under Inverse Homomorphism

Claim: If (g, h(w), Z 0):|;‘ (p,&,7), then

((CIO! 8)1 w, ZO):'? ((p, 8): €,)/)

Proof sketch:

For each a € Z, whatever sequence of moves P makes
on h(a), P’ can make a corresponding sequence of
moves on input a.

Jim Anderson (modified by Nathan Otterness) 57

Closure under Inverse Homomorphism

Claim: If ((qo, £),w, ZO)I:I_’ ((p, £),&, y), then
(qo, h(w), Zo)}L‘ (p,&,7).

Proof sketch:

P’ can only process w one character at a time. For each
character a, P' does what P does on h(a).

The first claim implied that L(P’) 2 h™*(L(P)).
T'his claim implies that L(P') C h‘l(L (P)).

Jim Anderson (modified by Nathan Otterness) 58

Decision Properties of CFLs

As with regular languages, we’ll focus less on
efficiency and more on simplicity than what’s done
in the book.

» Theorem: There exist algorithms to determine if a
CFL is (a) empty, (b) finite, or (c) infinite.

Jim Anderson (modified by Nathan Otterness) 59

Detecting it a CFL is Empty

Nonemptiness:

» Use the iterative algorithm for detecting useless

symbols to testif A=> w forall 4 € V.

» The CFL is nonempty if and only if S = w for some
terminal string w.

Jim Anderson (modified by Nathan Otterness) 60

Detecting if a CFL is Finite or Infinite

Assume L does not contain €. (If € € L, then consider

IL — {e}|instead.)

Suppose L = L(G), where G = (V,T,P,S) is in CNF
(and therefore has no useless symbols).

L — {&} will be finite if
and only if L is finite.

Consider the directed graph (V,E), where (4,B) € E if
A - BC or A » CB is in P for some variable C.

Claim: L is finite if and only if (V, E') has no cycles.

Jim Anderson (modified by Nathan Otterness) 61

Detecting if a CFL is Finite or Infinite

Claim (again): L is finite if and only if (V, E) has no cycles.
“Only if”: A cycle has the form 4y, 4, ..., 4y, Ao.

= a1 A1 = A6, = - = a,AnLn =
i — l

Therefore, we have A,
An+140Pn+1, Where|[a;

Since G has no useless symbols: This is due to the grammar

> pyiq _i> w, being in CNF —we can
* only produce i symbols in
> fni1 =X, i derivation steps.

» S = yAyz, and
> Ay >,
where w, x, y, z, and v are terminal strings.

Jim Anderson (modified by Nathan Otterness) 62

Detecting if a CFL is Finite or Infinite

“Only if” proof, continued:

From:

*

*

> fpi1 =X
*
» S=>vyA,z
*
> Ag >V
we have:
' ' I 1S S /' SE SR SN

S = yAgx =2 yWAgXxzZ > yW*Apgx“zZ = ... YW Agx'Z > yW'vx'Z.

Therefore, L is infinite.

Jim Anderson (modified by Nathan Otterness) 63

Detecting if a CFL is Finite or Infinite

Claim (again): L is finite if and only if (V, E') has no cycles.
“If"”: Suppose (V, E) has no cycles.

» Definition: The rank of A € V is the longest path beginning
from A. If a graph has no cycles, then all ranks are finite.

» Claim: If A has a rank r, then A derives no terminal string of
length exceeding 2".

< This can be proven by induction on r, similarly to some
claims prior to the Pumping Lemma.

» Since (V, E) has no cycles, S has a finite rank. Therefore, the
longest string derivable from S has a finite length, so L must
be finite.

Jim Anderson (modified by Nathan Otterness) 64

Membership: CYK Algorithm

We want to know if a string x is in L.
» Let L — {¢} = L(G) for a CFG G in CNF.

» Let |x]| =n.

» Let x;; be a substring of x of length j beginning at
position i.

» Inductively determine all variables A such that
A =*> Xij.

» x € L if and only ifS:*»xln.

Jim Anderson (modified by Nathan Otterness) 65

Membership: CYK Algorithm

j = 1, SO xij = Xi1- Xi1

has a length of 1, so
it's a terminal symbol.

Base case:j = 1. A =*> if and only if 4 — x;;.

Inductive step: j > 1. A = x;; if and only if there
exists A - BCand k, 1 < k < j, such that B > X, and

%k
C = Xitk j—k-

Jim Anderson (modified by Nathan Otterness)

Membership: CYK Algorithm

Pseudocode for determining the sets of variables, V;;,
that can produce the substring x;;:

fori:=1ton:
Vi={A| A—-xy}

forj:=2ton:
fori:=1ton-j+1:
Vi = 9;
fork:=1toj-1:

Vij = Vl] N\ {A | A — BC, B e Vik’ C e Vi+k]-k}

The time complexity is 0(n>).

Jim Anderson (modified by Nathan Otterness) 67

CYK Algorithm: Example

fori:=1ton:
PG Vi ={A | A—>x;y]
A—->BA|a
B—->CC|b forj:=2ton:
C > AB|a fori:=1ton-j+1:
x = baaba (n = 5) Vy =
fork:=1toj-1:
b a a b a V1] :=VijU{A | A_)BC’BEVik’CEVi+kj—k}
1—
1 2 3 4 5

U1 o W N =

Jim Anderson (modified by Nathan Otterness) 68

CYK Algorithm: Example

fori:=1ton:
S - AB | BC _
A—-BA|a Vi = 1A | A=)
B—->CC|b forj:=2ton:
C > AB|a fori:=1ton-j+1:
x = baaba (n = 5) V=0
fork:=1toj-1:
b a a b a Vij=VyUIA | A= BC, B e Vy, C € Vi jud
1—
1 2 3 4 5
B AC AC B AC

U1 o W N =

Jim Anderson (modified by Nathan Otterness) 69

CYK Algorithm: Example

fori:=1ton:
Zigﬁlfc Vi ={A | A—xy}
B-CC|b forj:=2ton:
C > AB|a fori:=Tton-j+1:
x = baaba (n = 5) V= O;

fork:=1toj-1:
b , , b , Vi =V; U{A | A>BC B e Vy, Ce Vil

. 1 : 2 3 4 5
1| B A C AC B AC
2 1S54 B S C S A
3
4
5

Jim Anderson (modified by Nathan Otterness) 70

CYK Algorithm: Example

fori:=1ton:
Zigﬁlfc Vi ={A | A—xy}
B-CC|b forj:=2ton:
C > AB|a fori:=Tton-j+1:
x = baaba (n = 5) V= O;

fork:=1toj-1:
b , , b , Vi =V; U{A | A>BC B e Vy, Ce Vil

. 1 : 2 3 4 5
1| B A C AC B AC
2 1S54 B S C S A
3 | B B
4
5

Jim Anderson (modified by Nathan Otterness) 71

CYK Algorithm: Example

fori:=1ton:
2 BAla Vim (AT A=)
B—CC|b forj:=2ton:
C > AB|a fori:=Tton-j+1:
x = baaba (n = 5) V; =
fork:=1toj-1:
b . X Y R V,;:=V;U{A | A—BC B e Vy, Ce Vi i)
1 : 2 3 4 5
1|8 AC | AC| B | AC
2 | S5 A B S, C S A
3 | Y B B
4 D S, A C
5

Jim Anderson (modified by Nathan Otterness) 72

CYK Algorithm: Example

fori:=1ton:
S - AB | BC _
A—-BA|a Vi =A A=)
B—CC|b forj:=2ton:
C > AB|a fori:=1ton-j+1:
x = baaba (n = 5) V=9
fork:=1toj-1:
b a a b a Vl] =V1]U{A | A_)BC’BEVik’CGVi+kj—k}
1 —
. 1 2 3 4 5
1 | B A C A C B AC
2 1S A B S C S A
3 B B
4 | D S A C
qac

Jim Anderson (modified by Nathan Otterness) 73

