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Simplification of CFGs

We can simplify CFGs by removing:
» Useless symbols.

« X is generating if X > w, wherew € T".

%X is reachable if S = aX S (S is the start symbol).
« X is useful only if it is both reachable and generating.

» e-productions, of the form 4 — «¢.

«If € is in the language, we will still need one
e-production.

» Unit productions, of the form A — B.
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Finding Generating Variables

Theorem 7.4: The following algorithm correctly finds
all generating variables.

old_vars := @;
new_vars :={A| A - wexists, andw € T*};
while old_vars # new_vars:
old_vars = new_vars;
new_vars =old_varsU{A | A - a,a € (T U old_vars)*};
return new_vars;
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Finding Generating Variables

old_vars := @;
new_vars :={A| A > wexists, andw € T"};
while old_vars # new_vars:

old_vars = new_vars;

new_vars = old_vars U{A | A - a,a € (T U old_vars)*};
Pl‘OOf Of Theorem 74 return new_vars;

We want to show that X is added to new_vars if and only
if X = w for some w € T".

“Only if”: We must show that if X is added to new_vars
then X = w.

This can be proven by induction on the number of
iterations of the algorithm (specifics are left as an
exercise).
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Finding Generating Variables

old_vars := @;
new_vars :={A| A > wexists, andw € T"};
while old_vars # new_vars:

old_vars = new_vars;

new_vars = old_vars U{A | A - a,a € (T U old_vars)*};

Proof of Theorem 7.4: return new_vars;

We want to show that X is added to new_vars if and only
if X=>wforsomew € T".

“Tf”: We must show that if X :*> w, then X is eventually
added to new vars.

This can be proven by induction on the length of the
derivation (specifics are left as an exercise).
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Finding Reachable Variables

Theorem 7.5: There exists an iterative algorithm that
will correctly find all reachable symbols.

This is similar to the previous algorithm, except this
time you’ll start with a set containing the start

symbol and look for new reachable symbols in each
iteration.

old_vars := @;
new_vars := {S};
while old_vars # new_vars:
old_vars = new_vars;
new_vars = old_vars U
{A | A is produced by something in old_vars};
return new_vars;
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Eliminating Useless Symbols

Theorem 7.2: (Abbreviated) Every nonempty CFL is
generated by a CFG with no useless symbols.

Proof:
Let L be the language of some CFG G, where L # 0.
Define: This order
Remove Remove SHatEEs
Non-generating Non-reachable
using Theorem 7.4 using Theorem 7.5

>G1 > GZ
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Eliminating Useless Symbols

Proof, continued: Remove Remove

non—generating unreachable

Assume G, contains a useless variable, X. > U1
» By Theorem 7.5, S G=*> aXp.
2

Gy

< In other words, we know that X is reachable in G,.

» Any production in G, must be a production in G4, so

S = aXp must be a production in G;. It should be intuitively clear
Gy that removing useless

> By Theorem 7.4, S =*> aXp ; A symbols won’t change the
Gy Gy language of a grammar.

<+ In other words, we know that X is producing in G;.

» Every symbol in this derivation is reachable from §, so
none will be eliminated by Theorem 7.5. So, S : aXp : w.

This contradicts the assumption that X was useiess in i;
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Eliminating Useless Symbols: Example

Incorrect order: Correct order:

Note that these are
not the same!
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Removing Nullable Symbols

A symbol 4 is nullable if A = «.

Theorem 7.7: There exists an algorithm that will
correct identity all nullable symbols.

We will not prove this —it should be intuitively
similar to what we’ve done before.

old_vars := @;
new_vars := {A | A - € exists};
while old_vars # new_vars:
old_vars = new_vars;
new_vars = old_vars U{A | A - a,a € old_vars*};
return new_vars;
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Removing e-Productions

Theorem 7.9, reworded: If L = L(G) for a CFG G,
then there exists a CFG G; with no e-Productions
such that L(G,) = L(G) — {&}.

Proof:

To construct G{: If A - X; ... X;, is in P, then add all
productions of the form A — a4 ... ay to P;, where:

1. If X; is not nullable, then a; = X;,

This requires adding
two production rules

. .= — for each nullable X;.
2. If X; is nullable, then a; isleither X; or e,|aR SrER e

3. Notall a;’s are ¢.
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Removing e-Productions: Example

CFG P:
» S > ABC
» A—>¢
» B->b|c¢

» ( —>cC
A and B are nullable. CFG P;: 4

» S—> ABC|BC|AC|C A is now useless in P;. (If you want
to eliminate both e-productions and
»B-b
useless symbols, you must remove
» (C —>c g-productions first.
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Removing e-Productions: Proof e

productions producing
Proof, continued: L(G) — {e}.

Claim: ForallA€eVandw €T~ A E_*> w if and only if
1

W;teandA?W.

“If”: Assume A % w and w # . We prove by

S

inductionon i that 4 G:» w.
1

Base case: i = 1 (one derivation step)

A —» w must be a production in P. Because w # ¢,
A - w is also a production in G;.
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Removing e-Productions: Proof

Inductive step: i > 1 (more than one derivation step)

[—1 *
Assume A ? Y; .Y, :G> w. ThenY; ? w; and Claim: Forall A€V andw € T",
W= Wy ... W,y,. A2W1fandonly1fwisandA?w.

If w; # ¢, then Y; é w;, by the induction hypothesis.

If w; = ¢, then Y is nullable.
Therefore, A — f; ... b is in the productions of G;, where
> i =Y itw; # ¢,
> i =cifw; =e.
And we have the following derivation in G;:

A= ﬁlﬁz ﬁm = Wlﬁz ﬁm = WiWs ...W;; = W.
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Removing e-Productions: Proof

Claim: Forall A e Vandw € T7,

i * . . *
”Ollly if” AssumeA?W. Then, w # «. Azw if and onlylfwieandA?W.
1

We will prove by induction on i that A :;> w.

Base case: i = 1.

A — w is in the productions of G;. Therefore, A — «
is in the productions of G where w = a with nullable
symbols replaced by e.
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Removing e-Productions: Proof

This is where nullable
symbols are replaced by «.

“Only it”, continued:

w exists in G.

We must show that the derivation A ? a

i—1
Inductive step: Suppose that A = X1 - Xk => W,
1 1

Then, A — f is in the productions of G, where
X1 ... X, = B with some nullable symbols removed.

As in the base case, A %X 1 - Xg. And, by the inductive

k
hypothesis, we can show that X 1 wue X k ? W. “ Assume the derivation with

i — 1 steps is correct...” etc.
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Removing Unit Productions

Theorem 7.13 (reworded): If L = L(G) for a CFG G,
then there exists a CFG G; with no unit productions
such that L = L(G,).

Proof: LetG = (V,T,P,S)

To construction G4, first add all non-unit productions
in P to P;.

Next, if|A = Bland B — a is a non-unit production in
P. then adgl A-> ato p1 \ We can find all pairs of (4, B) where

A=B using an iterative algorithm like

before (see Section 7.1.4 of the book).
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Removing Unit Productions: Example

Consider the CFG G with the following productions:
»S—->A|Db
» A - Ada

After removing the unit production § — A4, this
becomes:

» S - AAa | b
» A > AAa
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Removing Unit Productions: Proof

. G: The grammar containing unit productions.
Claim: L (Gl) CL (G) G1: The grammar with unit productions removed.

Proof:

If A—> aisin Py, then A :} . Therefore, A E—*> a implies
1

*k
A= «a.
G
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Removing Unit Productions: Proof

. G: The grammar containing unit productions.
Claim: L (G) CL (Gl) G1: The grammar with unit productions removed.

Proof:
Suppose w € L(G).

Let S = «a 2022y =W be a leftmost derivation.

If a; = Xty is due to a non-unit production, then a; = a;, .

Jim Anderson (modified by Nathan Otterness) 20



Removing Unit Productions: Proof

. G: The grammar containing unit productions.
Claim: L (G) CL (Gl) G1: The grammar with unit productions removed.

Consider the following leftmost derivation with unit
roductions in G: aj_1 = a; = Aj11 = .= A} = Ajy1.
P llG l\G l+1G GJJG J+1

Y
Unit Non-unit
productions production

Non-unit
production

Unit productions just replace the symbol at the same
(leftmost) position, so a;_; = a4, will also hold by
some production in P; — P.
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Putting it all Together

Theorem 7.14: If L is the language of a CFG G, and L
contains at least one string other than ¢, then there exists
a CFG G, with no e-productions, unit productions, or
useless symbols such that L(G;) = L — {¢}.

(See the book for a formal proof.)

The order in which we apply the previous results is
important.
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Putting it all Together

The order of previous results:

» We saw on slide 12 that eliminating e-productions
may cause some symbols to become useless, so we
must eliminate e-productions before removing useless
symbols.

» In the same example on slide 12, removing &-
productions also introduced a unit production (S -
C), so e-productions must be eliminated before unit
productions.
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Putting it all Together

Finally, unit productions must be eliminated before
useless symbols. Consider this example:

Remove unit
productions

Remove useless [ g 2tz
symbols

C is now usele
but is still in tl
grammar

So, the only viable order is: 1) Eliminate e-productions,
2) Eliminate unit productions, and 3) Eliminate useless
symbols.
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Chomsky Normal Form (CNF)

» A CFG is in Chomsky Normal Form it all of its
productions are of the form A - BC or A — a, and
it contains no useless symbols.

Theorem 7.16 (reworded): Any CFL that doesn’t
include ¢ can be generated by a CFG in CNF.

Proof: Let L = L(G) for some CFG G, where € & L.
Use Theorem 7.14 to convert G into G, = (V,T,P,S),
where G contains no e-productions, unit
productions, or useless symbols.
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Converting to Chomsky Normal Form

Otherwise 4 - X would be
a unit production, and have

Proof (continued): been eliminated already.

Otherwise, consider A —» XX, ...X,,,, where m > 2.

» If X; is a terminal, introduce a new variable C, and a
new production C, — a, then replace X; by C,.

» Call the resulting grammar G, (after making all such
replacements).

Claim: L(G;) = L(G,). (The proof is left as an exercise.)
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Converting to Chomsky Normal Form

The remaining problem is that we need to replace
productions of the form A —» BB, ... By, (where
m = 3).

Replace such a production by:

A - B{Dy, Dy - B,D,, ..., Dyy_1 = Bpy—1Bp, using
newly added D; variables.

Call the resulting grammar Gs.

Claim: L(G3) = L(G,). (The proof is left as an
exercise.)
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Conversion to CNF: Example

Starting CFG with no e-productions,
unit productions, or useless symbols.

S - bA|aB
A—->bAA|aS|a
B —->aBB |bS|b

S—->C,A|C,B
A->C,AA|C,S | a
B—->C,BB|C,S|b
C, > a

Cb—)b
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Replace A - C,AA by:
A- CbDll D]_ — AA

Replace B — C,BB by:
B — CaDz, D2 — BB

S->CA|C,B
A->CyD;|C,S | a
B-C,D,|CpS|Db
D, —» AA

D, - BB
C, —a
Cb—>b




The Pumping Lemma for CFLs

Theorem 7.18 (the Pumping Lemma for CFLs):
Let L be any CFL. Then there exists a value n such
that for all z € L, where |z| > n, there exist strings
u, v, w, x, y such that:

1. Z =uvwxy,

2. |vx| =1,

3. |vwx| < n, and
4

Foralli > 0, uvtwx'y € L.
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Proof of the Pumping Lemma for CFLs

The Pumping Lemma only

If L is a CFL, let G be a CFG generating IL — {&} applies to strings longer

. : than n, so removing ¢
Claim: Let z € L — {¢}. If a parse tree for z in G has Jous’t matter.

no path longer than n, then |z| < 2™~*. (This is Theorem
7.17 in the book.)

Proof, by induction on n:

Base case:n = 1.5tringz =a. Tree: § |[z|=1= n-1
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Proof of the Pumping Lemma for CFLs

Inductive step: n > 1.

Suppose that a tree exists with some path of length n,
but no path exceeding a length n. It looks like this:
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Z = UVWXY

Proof of the Pumping Lemma for CFLs x| > 1
lvwx| < n
Foralli > 0,
uvtwx'y € L.

» Let m equal the number of variables in the CFG G.
» Letn = 2™,
» Suppose z € L(G), where |z| = n.

<+ Note: |z| > 2m~1

» We claim that any parse tree for z has a path of
length > m + 1.

«To see this, suppose all paths in a tree are shorter
than m + 1 (no path is > m). Then, |z| < 2™,
contradicting the claim that |z| > 2™,
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Proof of the Pumping Lemma for CFLs |Zv;| Lgvfxy
lvwx| < n

. . Foralli = 0,
» As stated on the previous slide, any parse tree for z uviwxly € L.

has a path of length > m + 1.

» Such a path has at least|m + 2|nodes, m + 1 of which
are variables.

The CNF grammar requires
replacing variables with a
terminal at the end of the path.

Some path from the start
“ symbol to a terminal in z
must contain m + 1 variables.

N <
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Z = UVWXY

Proof of the Pumping Lemma for CFLs x| > 1
lvwx| < n
Foralli > 0,
uvtwx'y € L.

» Since the CFG contains m variables, but the path in
z's parse tree contains m + 1 variables, at least one
variable must be repeated in the path.

» If A is the repeated variable, the path looks like this:
S

A

A

“ J
Y
Z
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Z = UVWXY

Proof of the Pumping Lemma for CFLs lvx| > 1
lvwx| < n
: Foralli > 0,
» Consider the subtrees rooted at each occurrence wriwxly € L.
of A:
S
A
A
u % X y
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Z = Uvwx
Proof of the Pumping Lemma for CFLs lvx| > 1 :
lvwx| < n
Foralli > 0,
A subtree rooted at 4 has uv'wx'y € L.
(at least) two possible

yields: wwx and w.

vwx = yield of first subtree of A w = yield of second subtree of A
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Z = UVWXY
e |vx|=>1
e |vwx|<n
We can replace the possible * Foralli =20,
subtrees rooted at A with each uv'wx'y € L.

Proof of the Pumping Lemma for CFLs

This tree has a yield uwy = uv®wx°y

This string must also be in L.
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Z = UVWXY

Proof of the Pumping Lemma for CFLs lvx| > 1
lvwx| < n
We can replace the possible Foralli = 0,

subtrees rooted at A with each uv'wx'y € L.
other to generate different strings.

Note that this introduces
another occurrence of A.

v w X

This tree has a yield uvvwxxy = uv?wx?y

This string must also be in L.

Jim Anderson (modified by Nathan Otterness)



Z = UVWXY

Proof of the Pumping Lemma for CFLs lvx| = 1

Jim Anderson (modified by Nathan Otterness)

lvwx| < n
Foralli > 0,
uvtwx'y € L.

We can repeat this process
indefinitely to keep generating
strings in L of the form uv'wx'y.

So, uvtwx'y € L for all i > 0.



Application of the CFL Pumping Lemma

v

L={a'b'c'|i=>1}.
Let the string z = a™b"c", for an arbitrary n > 0. Clearly, z € L for an

\ A 4

Let z = uvwxy, |vx| = 1, and |vwx| < n. This means:
< vxisall a’s, b’s, or ¢’s, or
% vxisall a’'sand b’s or all b’s and ¢’s

% (The key point is that vx can not possibly contain a’s, b’s, and ¢’s all
at the same time.)

» If vx contains only one type of symbol, uv®wx®y will contain too few of
that symbol.

0

» If vx contains two types of symbols, uv®wx°y will contain too many of

the symbol not in vx.

» Therefore, uv®

wx’y & L, and the Pumping Lemma for CFLs does not
hold for L.
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>
>

Application of the CFL Pumping Lemma

L={ww|we(0+1)}

Let z = 0"1"0"1". Clearly, z € L for any n.

Let z = uvwxy, |vx| = 1, and |vwx| < n. This means:
< vx is all Os or all 1s
< vx is some Os followed by some 1s

% vx is some 1s followed by some Os.

0

If vx contains only Os or only 1s, uv®wx®y will contain too few 0s or 1s in

one half of the string.

If vx contained Os followed by 1s, then either the first or second half of
uv®wx®y will contain fewer Os and 1s than the other half.

If vx contained 1s followed by 0Os (vx is in the middle of z), then uv°wx°
will have more Os in the first group of Os than the second group of Os.
(The number of 1s will also be similarly imbalanced.)

0

In any of these cases, uv®wx°y ¢ L.
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Closure of CFLs under Substitution

» Recall that a homomorphism maps characters in
some alphabet X to strings over another alphabet A.

» A homomorphism is actually a special case of
substitution, which maps characters in one alphabet to
any string in a language over another alphabet.

» Consider this example substitution f:
+2=1{0,1}, A={a,b}, f(0) =a+b" f(1) =a"b.
«f(0*1") = (a+b*)"(a*b)".
“ (Note that this particular example uses regular
languages.)
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Closure of CFLs under Substitution

Theorem 7.23 (reworded): The CFLs are closed under
substitution and, by extension, homomorphism.

Proof:

The main idea is to replace all terminals in a CFG with star
symbols of another CFG.

» Let LbeaCFL,and L € ¥*. Foralla € %, let L, be a CFL.
» Let L = L(G). Foralla € %, let L, = L(G,).

» Assume these grammars have distinct variables.
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Closure under Substitution, Proof contd.

LetG =(V,T,P,S),and foralla €, 6, = (V,T,P,S,)
Define ¢' = (V',T',P',S"), where:

>V = (UgesVa) UV

> T' = UgesTa

»S'=S

» PP =UgesPLU{A—>a' |A—- aisinP,and
a' = a with each a € X replaced by S, }.

The language defined by substitution equals L(G"). (The
proof is left as an exercise — or see Theorem 7.23 in the boo
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Union, Concatenation, and Closure

Theorem 7.24: CFLs are closed under Union,
Concatenation, *-closure, and

*

Notation similar to *,
but meaning “1 or
Proof: more repetitions”.

Union: Let L; and L, be CFLs. L; U L, = s(L), where
L = {1, 2} (which is clearly a CFL), and s is the
substitution defined by s(1) = L; and s(2) = L,.

The proofs for the others are similar.
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Closure under Reversal

Theorem 7.25: CFLs are closed under reversal.

Proof:
If L = L(G), where G = (V,T,P,S), then L? = L(G"),

The productions in GX
are just the productions

(The full formal proof is left as an exercise.) in G written backwards.
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(Lack of) Closure under Intersection

Theorem: CFLs are not closed under intersection.

Proof:

» L, ={a'bic'|i > 1}. We know L, isn’t a CFL from
earlier slides.

(i i s : . the book for CFGs.
» Ly = {a blcd|i=1,j = 1}. This is also a CFL. y
» However, L, = L, N Lj.
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(Lack of) Closure under Complementation

Corollary to the previous theorem: CFLs are not
closed under complementation.

Proof:

» CFLs are closed under union.

» L. NL, =L, UL,.

» So, if CFLs are closed under complementation,
they would be closed under intersection, too.
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Intersection with Regular Languages

Theorem 7.26: If L is a CFL and R is a regular language, the
L NnRisaCFL.

Proof:
Let L be the language of some PDA P = (Qp,%,T, 6p,qp, Zy, Fp).
Let R be the language of some DFA A = (Qy4, %, 84,4, F4).

Idea: Create a new PDA combining the states of P and 4,
similar to combining two DFAs.
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Proof: Intersection with Reg. Languages

Let P" = (Qp X Q4,%,T,6,(qp, q4), Zo, Fp X F4), where:

> 0 ((q, p),a, X ) contains ((r, S),y) if and only if
5,(p,a) = s and 6p(q, a, X) contains (7, y).

Claim: ((qp, q4), W, ZO)I:I—, ((q, p), € v) if and only if

l
(gp, w, ZO)IL‘ (g,&,Y) and 8(q4, w) = p.

(This can be proven by induction on i.)
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Closure under Inverse Homomorphism

Theorem 7.30: CFLs are closed under inverse
homomorphism.

Proof:
Consider L, where L is the language of some PDA P.
P=(Q,AT,S8,qy Zy, F).

Let h:X - A™.

Construct a PDA P’ that accepts h™1(L).
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Closure under Inverse Homomorphism

Proof, continued:

The key idea is the same as for regular languages: When
processing an input a, P’ simulates P on the input h(a).

In A DFA, simulation required just a single state
transition.

However, P, being a PDA, does more than just change
state on input h(a)--it may change the stack contents or

make nondeterministic choices.
This buffer will really be

part of P"’s (finite!) state.
Solution: Use a buffer to hold the symbols of h(a).
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Closure under Inverse Homomorphism

The buffer must be large

] enough to hold the longest
COnCePtuaHY- string produced by h.

( A
Buffer

!

[ Original ]—-> Accept/Reject
J

PDA state

N\ 1
’

Stack
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Closure under Inverse Homomorphism

Short example: h(a) = 01, and h(b) = 111

Input 4 Buffor A
string;:
YA E— 1 | e
Original :
[PD - ]—-> Accept/Reject
- I J

Stack
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Closure under Inverse Homomorphism

» We have a homomorphism h: X — A" Start in the original start
state, with an empty buffer.
» Recall that P = (Q,A, T, 8,q¢, Zy, F)
Accept in any of the original accepting
> Let P’ = (QI; 2, I, 5’:|(9Q; E)I. Zo, . states, if the buffer is empty.
» States in Q' is a set of pairs (g, x) such that

% q is a state in Q, and

< x is the finite “buffer” —h(a) or a suffix of h(a)
for some symbol a € X.
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Closure under Inverse Homomorphism

Transitions in P’:

) ’((q, x),& X ) contains all ((p, x), y) such that (g, &, X)
contains (p,y).

< “Simulate e-transitions”

> 6 ’((q, bx), &, X ) contains all ((p, x), y) such that §(qg, b, X)
contains (p,y).

< “Simulate non-¢ transitions”
D> 5’((q, £),aq, X) contains ((q, h(a)),X) foralla € ¥ and X € T.
» “Load the buffer”

L)
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Closure under Inverse Homomorphism

Claim: If (g, h(w), Z 0):|;‘ (p,&,7), then

((CIO! 8)1 w, ZO):'? ((p, 8): €, )/)

Proof sketch:

For each a € Z, whatever sequence of moves P makes
on h(a), P’ can make a corresponding sequence of
moves on input a.
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Closure under Inverse Homomorphism

Claim: If ((qo, £),w, ZO)I:I_’ ((p, £),&, y), then
(qo, h(w), Zo)}L‘ (p,&,7).

Proof sketch:

P’ can only process w one character at a time. For each
character a, P' does what P does on h(a).

The first claim implied that L(P’) 2 h™*(L(P)).
T'his claim implies that L(P') C h‘l(L (P)).
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Decision Properties of CFLs

As with regular languages, we’ll focus less on
efficiency and more on simplicity than what’s done
in the book.

» Theorem: There exist algorithms to determine if a
CFL is (a) empty, (b) finite, or (c) infinite.
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Detecting it a CFL is Empty

Nonemptiness:

» Use the iterative algorithm for detecting useless

symbols to testif A=> w forall 4 € V.

» The CFL is nonempty if and only if S = w for some
terminal string w.
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Detecting if a CFL is Finite or Infinite

Assume L does not contain €. (If € € L, then consider

IL — {e}|instead.)

Suppose L = L(G), where G = (V,T,P,S) is in CNF
(and therefore has no useless symbols).

L — {&} will be finite if
and only if L is finite.

Consider the directed graph (V,E), where (4,B) € E if
A - BC or A » CB is in P for some variable C.

Claim: L is finite if and only if (V, E') has no cycles.
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Detecting if a CFL is Finite or Infinite

Claim (again): L is finite if and only if (V, E) has no cycles.
“Only if”: A cycle has the form 4y, 4, ..., 4y, Ao.

= a1 A1 = A6, = - = a,AnLn =
i — l

Therefore, we have A,
An+140Pn+1, Where|[a;

Since G has no useless symbols: This is due to the grammar

> pyiq _i> w, being in CNF —we can
* only produce i symbols in
> fni1 =X, i derivation steps.

» S = yAyz, and
> Ay >,
where w, x, y, z, and v are terminal strings.
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Detecting if a CFL is Finite or Infinite

“Only if” proof, continued:

From:

*

*

> fpi1 =X
*
» S=>vyA,z
*
> Ag >V
we have:
' ' I 1S S /' SE SR SN

S = yAgx =2 yWAgXxzZ > yW*Apgx“zZ = ... YW Agx'Z > yW'vx'Z.

Therefore, L is infinite.
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Detecting if a CFL is Finite or Infinite

Claim (again): L is finite if and only if (V, E') has no cycles.
“If"”: Suppose (V, E) has no cycles.

» Definition: The rank of A € V is the longest path beginning
from A. If a graph has no cycles, then all ranks are finite.

» Claim: If A has a rank r, then A derives no terminal string of
length exceeding 2".

< This can be proven by induction on r, similarly to some
claims prior to the Pumping Lemma.

» Since (V, E) has no cycles, S has a finite rank. Therefore, the
longest string derivable from S has a finite length, so L must
be finite.
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Membership: CYK Algorithm

We want to know if a string x is in L.
» Let L — {¢} = L(G) for a CFG G in CNF.

» Let |x]| =n.

» Let x;; be a substring of x of length j beginning at
position i.

» Inductively determine all variables A such that
A =*> Xij.

» x € L if and only ifS:*»xln.
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Membership: CYK Algorithm

j = 1, SO xij = Xi1- Xi1

has a length of 1, so
it's a terminal symbol.

Base case:j = 1. A =*> if and only if 4 — x;;.

Inductive step: j > 1. A = x;; if and only if there
exists A - BCand k, 1 < k < j, such that B > X, and

%k
C = Xitk j—k-
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Membership: CYK Algorithm

Pseudocode for determining the sets of variables, V;;,
that can produce the substring x;;:

fori:=1ton:
Vi={A| A—-xy}

forj:=2ton:
fori:=1ton-j+1:
Vi = 9;
fork:=1toj-1:

Vij = Vl] N\ {A | A — BC, B e Vik’ C e Vi+k ]-k}

The time complexity is 0(n>).
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CYK Algorithm: Example

fori:=1ton:
PG Vi ={A | A—>x;y ]
A—->BA|a
B—->CC|b forj:=2ton:
C > AB|a fori:=1ton-j+1:
x = baaba (n = 5) Vy =
fork:=1toj-1:
b a a b a V1] :=VijU{A | A_)BC’BEVik’CEVi+kj—k}
1—
1 2 3 4 5

U1 o W N =
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CYK Algorithm: Example

fori:=1ton:
S - AB | BC _
A—-BA|a Vi = 1A | A=)
B—->CC|b forj:=2ton:
C > AB|a fori:=1ton-j+1:
x = baaba (n = 5) V=0
fork:=1toj-1:
b a a b a Vij=VyUIA | A= BC, B e Vy, C € Vi jud
1—
1 2 3 4 5
B AC AC B AC

U1 o W N =

Jim Anderson (modified by Nathan Otterness) 69



CYK Algorithm: Example

fori:=1ton:
Zigﬁlfc Vi ={A | A—xy}
B-CC|b forj:=2ton:
C > AB|a fori:=Tton-j+1:
x = baaba (n = 5) V= O;

fork:=1toj-1:
b , , b , Vi =V; U{A | A>BC B e Vy, Ce Vil

. 1 : 2 3 4 5
1| B A C AC B AC
2 1S54 B S C S A
3
4
5
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CYK Algorithm: Example

fori:=1ton:
Zigﬁlfc Vi ={A | A—xy}
B-CC|b forj:=2ton:
C > AB|a fori:=Tton-j+1:
x = baaba (n = 5) V= O;

fork:=1toj-1:
b , , b , Vi =V; U{A | A>BC B e Vy, Ce Vil

. 1 : 2 3 4 5
1| B A C AC B AC
2 1S54 B S C S A
3 | B B
4
5
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CYK Algorithm: Example

fori:=1ton:
2 BAla Vim (AT A=)
B—CC|b forj:=2ton:
C > AB|a fori:=Tton-j+1:
x = baaba (n = 5) V; =
fork:=1toj-1:
b . X Y R V,;:=V;U{A | A—BC B e Vy, Ce Vi i)
1 : 2 3 4 5
1|8 AC | AC| B | AC
2 | S5 A B S, C S A
3 | Y B B
4 D S, A C
5
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CYK Algorithm: Example

fori:=1ton:
S - AB | BC _
A—-BA|a Vi =A A=)
B—CC|b forj:=2ton:
C > AB|a fori:=1ton-j+1:
x = baaba (n = 5) V=9
fork:=1toj-1:
b a a b a Vl] =V1]U{A | A_)BC’BEVik’CGVi+kj—k}
1 —
. 1 2 3 4 5
1 | B A C A C B AC
2 1S A B S C S A
3 B B
4 | D S A C
qac
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