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Turing Machines

 We want to study computable functions, or algorithms.

 In particular, we will look at algorithms for answering 
certain questions.

❖A question is decidable if and only if an algorithm 
exists to answer it.

 Example question: Is the complement of an arbitrary 
CFL also a CFL?

❖This question is undecidable—there is no algorithm 
that takes an arbitrary CFL and outputs “yes” if the 
complement is a CFL and “no” otherwise.
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Such an algorithm  
does exist for any 

specific CFL.



Undecidability Example

We can give an informal “proof” showing that an 
undecidable problem exists.  Let’s consider:

 The “Hello World” problem: Given a program 𝑃 and an 
input to that program 𝐼, print “yes” if 𝑃 prints “hello 
world” when run with input 𝐼 and “no” otherwise.

❖𝑃 can be any program—including one that is very 
convoluted!
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Undecidability Example

Suppose a program, 𝐻, exists that solves the “hello 
world” problem:

Now consider another program, 𝐻1, which is the 
same as 𝐻, but prints “hello world” instead of “no”:
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𝐻
𝑃

𝐼

“yes”

“no”

𝐻1
𝑃

𝐼

“yes”

“hello world”



Undecidability Example

Next, construct a program 𝐻2 that is identical to 𝐻1
but only takes a single input, 𝑃, that it uses as both 𝑃
and 𝐼 in 𝐻1:
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𝐻1
𝑃

𝐼

“yes”

“hello world”

𝐻2𝑃
“yes”

“hello world”

𝑃
“yes”

“hello world”
𝐻1

Another way to 
represent 𝐻2:



Undecidability Example

Now consider what happens when we run 𝐻2 with 
itself as input:

We have reached a paradox:

 Suppose 𝐻2 prints “hello world” when fed 𝐻2 as 
input. This means that 𝐻2 must also print “yes” 
when fed 𝐻2 as input!
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𝐻2𝐻2
“yes”

“hello world”



Turing Machines

 To be able to rigorously do proofs like the “hello 
world” example, we need a formal model for defining 
computable functions.

 The Turing Machine has become the accepted 
model for formalizing functions.
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Turing Machines

 A TM can be defined by a 7-tuple 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹

❖𝑄: A finite set of states.

❖Γ: The tape alphabet.

❖Σ: The input alphabet. Σ ⊂ Γ.

❖𝐵: The blank tape symbol.  (𝐵 ∈ Γ, and 𝐵 ∉ Σ)

❖𝛿: The next move function: 𝑄 × Γ → 𝑄 × Γ × 𝐿, 𝑅 .

❖𝑞0: The start state.

❖𝐹: The set of final states.
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A TM’s input starts out on the 
“tape”, so the tape alphabet 

must include the input alphabet.

𝛿 takes a state 
and tape symbol

𝛿 returns a new state, 
a new tape symbol, 

and whether to move 
left or right.



Turing Machines

Conceptually, a Turing Machine looks like this:
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𝑋1 𝑋𝑖… … 𝑋𝑛𝐵𝐵… 𝐵𝐵 …

Non-blank tape symbols 
(input symbols, etc.)

All of the rest of the tape initially 
is filled with “blank” symbols.

Finite Control

Tape head

Initially, the input starts out on the tape, and the tape 
head starts at the leftmost input symbol. 

The “finite control” just 
refers to the part of the TM 
that keeps track of the state.



Example: Turing Machine Accepting 0𝑛1𝑛
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0𝐵𝐵… 𝐵𝐵 …

Finite Control
State =

0 1 1 𝐵

Input string: 0011

Initial configuration:
In start state, at 
leftmost input symbol 
on the tape.

𝑞0



Example: Turing Machine Accepting 0𝑛1𝑛
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0𝐵𝐵… 𝐵𝐵 …

Finite Control
State =

0 1 1 𝐵

𝑞0

𝑋

𝑞1𝑞2

𝑌

𝑞0

𝑋

𝑞1

𝑌

𝑞2𝑞0 𝑞3 𝑞4

A Turing Machine halts 
when it can’t make any 
more moves.



Example: Formal Notation

𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹 , where:

 𝑄 = 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4 ,

 Σ = 0, 1 ,

 Γ = 0, 1, 𝑋, 𝑌, 𝐵 ,

 𝐹 = 𝑞4 ,

 And 𝛿 is defined on the following slide…
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Example: Formal Notation

 𝛿 is as follows:

❖𝛿 𝑞0, 0 = 𝑞1, 𝑋, 𝑅 : Change the leftmost 0 to X

❖𝛿 𝑞0, 𝑌 = 𝑞3, 𝑌, 𝑅 : There are no more 0s

❖𝛿 𝑞1, 0 = 𝑞1, 0, 𝑅 : Skip over 0s

❖𝛿 𝑞1, 𝑌 = 𝑞1, 𝑌, 𝑅 : Skip over Ys

❖𝛿 𝑞1, 1 = 𝑞1, 𝑌, 𝐿 : Change the leftmost 1 to Y

❖𝛿 𝑞2, 0 = 𝑞2, 0, 𝐿 : Skip over 0s

❖𝛿 𝑞2, 𝑌 = 𝑞2, 𝑌, 𝐿 : Skip over Ys

❖𝛿 𝑞2, 𝑋 = 𝑞0, 𝑋, 𝑅 : Move right of the rightmost X

❖𝛿 𝑞3, 𝑌 = 𝑞3, 𝑌, 𝑅 : Make sure there are no more 1s

❖𝛿 𝑞3, 𝐵 = 𝑞4, 𝐵, 𝑅 : There were no more 1s, accept.
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“Seek” to the leftmost 1.

“Seek” to the 
leftmost 0.



Instantaneous Descriptions for TMs

 As with a PDA, we can also give an instantaneous 
description (ID) for a Turing Machine.

 An ID for a TM has the following form: 𝛼1𝑞𝛼2.

❖𝑞 corresponds to both the state of the TM and 
the position of the tape head (𝑞 is written 
directly before the tape symbol the head is on).

❖𝛼1𝛼2 = the tape’s current contents, and only 
contains the non-blank portion, except in cases 
like 𝛼𝐵𝐵𝐵𝑞 or 𝑞𝐵𝐵𝐵𝛼.

 The depicted portion of the tape is always finite.
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This indicates both 
the location of the 
tape head and the 
current state (𝑞).

We can’t write an 
infinite number of cells 
without either infinite 

input or an infinite 
number of moves.



Notation for TM Moves

 Left moves.  Suppose 𝛿 𝑞, 𝑋𝑖 = 𝑝, 𝑌, 𝐿 . Then,

❖𝑋1…𝑋𝑖−1𝑞𝑋𝑖 …𝑋𝑛├
𝑀
𝑋1…𝑋𝑖−2𝑝𝑋𝑖−1𝑌…𝑋𝑛.

❑The tape head moved from 𝑋𝑖 to 𝑋𝑖−1.

❑The state changed from 𝑞 to 𝑝.

❑𝑋𝑖 was replaced by 𝑌.

❖Special case where 𝑖 = 1:

❑𝑞𝑋1𝑋2…𝑋𝑛├
𝑀
𝑝𝐵𝑌𝑋2…𝑋𝑛

❖Special case where 𝑖 = 𝑛 and 𝑌 = 𝐵:

❑𝑋1…𝑋𝑛−1𝑞𝑋𝑛├
𝑀
𝑋1…𝑋𝑛−2𝑝𝑋𝑛−1
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We moved left past the start of 
the tape content, so we need to 

show the extra blank symbol (𝐵).

We replaced the rightmost tape 
symbol (𝑋𝑛) with a 𝐵, so we no 

longer include it in the ID.



Notation for TM Moves

 Right moves.  Suppose 𝛿 𝑞, 𝑋𝑖 = 𝑝, 𝑌, 𝑅 . Then,

❖𝑋1…𝑋𝑖−1𝑞𝑋𝑖 …𝑋𝑛├
𝑀
𝑋1…𝑋𝑖−1𝑌𝑝𝑋𝑖+1…𝑋𝑛.

❑The tape head moved from 𝑋𝑖 to 𝑋𝑖+1.

❑The state changed from 𝑞 to 𝑝.

❑𝑋𝑖 was replaced by 𝑌.

❖Special case where 𝑖 = 𝑛:

❑𝑋1…𝑋𝑛+1𝑞𝑋𝑛├
𝑀
𝑋1…𝑋𝑛−1𝑌𝑝𝐵.

❖Special case where 𝑖 = 1 and 𝑌 = 𝐵:

❑𝑞𝑋1…𝑋𝑛├
𝑀
𝑝𝑋2…𝑋𝑛.
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The 𝐵 is included here just 
to make it clear what the 
tape head is pointing at.



The Language Defined by a TM

The language accepted by a Turing Machine 𝑀 is defined as:

 𝐿 𝑀 ≡ {𝑤 | 𝑤 ∈ Σ∗ and 𝑞0𝑤 ├
𝑀

∗
𝛼1𝑝𝛼2 for some 𝑝 ∈ 𝐹, and 

𝛼1, 𝛼2 ∈ Γ∗}.

 Assumption: If 𝑀 accepts 𝑤, 𝑀 halts.

 Notation used for moves (similar to a PDA):

❖├
𝑀

𝑖
, ├
𝑀

∗
, ├, ├

𝑖
, ├
∗

.

❑The 𝑖 indicates “exactly 𝑖 moves”

❑The ∗ indicates “any number of moves”

❑The (optional) 𝑀 below the ├ indicates that TM 𝑀 made the 
moves.
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Recursively Enumerable Languages

 A language that is accepted by a Turing Machine is 
called recursively enumerable (RE).

 If a string 𝑤 is in 𝐿 𝑀 , then 𝑀 eventually halts and 
accepts 𝑤.

 If 𝑤 ∉ 𝐿 𝑀 , then one of two things can happen:

❖𝑀 halts without accepting 𝑤, or

❖𝑀 never halts.
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Recursive Languages

 A language that is accepted by a TM that halts on all 
inputs is called recursive.

 This is the accepted formal definition of “algorithm”.

❖For a recursive language, we can always 
algorithmically determine membership—but we 
can’t necessarily do this for RE languages.

 A problem that is solved by a TM that always halts is 
called decidable.

❖We will discuss decidable problems in much more 
detail later!
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TM Construction Technique: Extra Storage

Storage in the finite control:

 You can keep track of a finite amount of extra data 
by incorporating it into the state of a TM.

 Example: Keep track of
an additional symbol:

 If the “extra data” can be
𝐴 or 𝐵, and the “state” can
be 𝑞0 or 𝑞1, then the actual
states of the TM can be
{[𝑞0, 𝐴], [𝑞1, 𝐴], [𝑞0, 𝐵],
[𝑞1, 𝐵]}.
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… …

Finite Control
State =
Extra data = 

𝑞0
𝐴

… … …



Storage in the Finite Control: Example

 Example: Scan the input and ensure the first 
symbol doesn’t appear a second time.

 𝑀 = 𝑄, 0, 1 , 0, 1, 𝐵 , 𝛿, 𝑞0, 𝐵 , 𝐵, 𝐹

 𝑄 = 𝑞0, 𝑞1 × 0, 1, 𝐵

 𝐹 = 𝑞1, 𝐵

 Note: This doesn’t change the fact that the TM has 
a finite number of states!
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► 𝛿([𝑞0, 𝐵], 0) = ([𝑞1, 0], 0, 𝑅)
► 𝛿([𝑞1, 0], 1) = ([𝑞1, 0], 1, 𝑅)
► 𝛿([𝑞1, 0], 𝐵) = ([𝑞1, 𝐵], 0, 𝐿)

► 𝛿([𝑞0, 𝐵], 1) = ([𝑞1, 1], 1, 𝑅)
► 𝛿([𝑞1, 1], 0) = ([𝑞1, 1], 0, 𝑅)
► 𝛿([𝑞1, 1], 𝐵) = ( 𝑞1, 𝐵 , 0, 𝐿)



Storage in the Finite Control: Example
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𝛿 𝑞0, 𝐵 , 0 = 𝑞1, 0 , 0, 𝑅

𝛿 𝑞1, 0 , 1 = 𝑞1, 0 , 1, 𝑅

𝛿 𝑞1, 0 , 𝐵 = 𝑞1, 𝐵 , 0, 𝐿

𝛿 𝑞0, 𝐵 , 1 = 𝑞1, 1 , 1, 𝑅

𝛿 𝑞1, 1 , 0 = 𝑞1, 1 , 0, 𝑅

𝛿 𝑞1, 1 , 𝐵 = 𝑞1, 𝐵 , 0, 𝐿

If the first symbol 
was a 0, “store” a 0.

If the first symbol 
was a 1, “store” a 1.

This construction may result 
in unreachable states.
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TM Construction Technique: Multiple Tracks

0¢𝐵… 𝐵𝐵 …

Finite Control

1 1 1 $

𝐵𝐵… 𝐵𝐵 …0 1 𝐵

0𝐵𝐵… 𝐵𝐵 …0 0 0 0

𝐵 𝐵

 In the above figure, the “real” input is between the ¢ and $ on 
the first track; the other tracks are used for scratch storage.

 Tape symbols are tuples, i.e., ¢, 𝐵, 𝐵 , 1, 𝐵, 0 , $, 𝐵, 0 , etc.

 This doesn’t change the fact that there are a finite number of 
possible tape symbols!



Multiple Tracks: Example

 We will use multiple tracks and storage in the 
finite control to write a TM that accepts the 
language 𝐿 = 𝑤𝑐𝑤 | 𝑤 ∈ 𝐚 + 𝐛 ∗ .

 This TM will work by “checking off” 
corresponding symbols in each copy of 𝑤.
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Any string 𝑤, followed by a “c”, 
followed by a second copy of 𝑤.



Multiple Tracks: Example

Defining a TM accepting 𝐿 = 𝑤𝑐𝑤 | 𝑤 ∈ 𝐚 + 𝐛 ∗ , using 
two tracks and storing an extra symbol in the finite control.

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹

 𝑄 = 𝑞, 𝑑 | 𝑞 ∈ 𝑞1, … , 𝑞9 , 𝑑 ∈ 𝑎, 𝑏, 𝐵

 Σ = 𝐵, 𝑑 | 𝑑 ∈ 𝑎, 𝑏, 𝑐

 Γ = 𝑋, 𝑑 | 𝑋 ∈ 𝐵,∗ , 𝑑 ∈ 𝑎, 𝑏, 𝑐, 𝐵

 𝑞0 = 𝑞1, 𝐵

 𝐹 = 𝑞9, 𝐵

 𝐵 = 𝐵, 𝐵
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Multiple Tracks: Example

Defining a TM accepting 𝐿 = 𝑤𝑐𝑤 | 𝑤 ∈ 𝐚 + 𝐛 ∗ , using 
two tracks and storing an extra symbol in the finite control.

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹

 𝑄 = 𝑞, 𝑑 | 𝑞 ∈ 𝑞1, … , 𝑞9 , 𝑑 ∈ 𝑎, 𝑏, 𝐵

 Σ = 𝐵, 𝑑 | 𝑑 ∈ 𝑎, 𝑏, 𝑐

 Γ = 𝑋, 𝑑 | 𝑋 ∈ 𝐵,∗ , 𝑑 ∈ 𝑎, 𝑏, 𝑐, 𝐵

 𝑞0 = 𝑞1, 𝐵

 𝐹 = 𝑞9, 𝐵

 𝐵 = 𝐵, 𝐵
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This TM stores one additional 
symbol, 𝑑, in its finite control, 

along with the “state”.

This TM has 9 
logical “states”

The additional symbol that 
this TM stores in the finite 
control can be 𝑎, 𝑏, or 𝐵.



Multiple Tracks: Example

Defining a TM accepting 𝐿 = 𝑤𝑐𝑤 | 𝑤 ∈ 𝐚 + 𝐛 ∗ , using 
two tracks and storing an extra symbol in the finite control.

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹

 𝑄 = 𝑞, 𝑑 | 𝑞 ∈ 𝑞1, … , 𝑞9 , 𝑑 ∈ 𝑎, 𝑏, 𝐵

 Σ = 𝐵, 𝑑 | 𝑑 ∈ 𝑎, 𝑏, 𝑐

 Γ = 𝑋, 𝑑 | 𝑋 ∈ 𝐵,∗ , 𝑑 ∈ 𝑎, 𝑏, 𝑐, 𝐵

 𝑞0 = 𝑞1, 𝐵

 𝐹 = 𝑞9, 𝐵

 𝐵 = 𝐵, 𝐵
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The tape has two tracks, so the 
input “symbols” simply 

initialize corresponding cells in 
one of the tracks as blank.

The actual input string we care about 
consists of 𝑎s, 𝑏s, or 𝑐s.  For example, 

the symbol 𝐵, 𝑎 corresponds to a 
symbol 𝑎 in an input string.



Multiple Tracks: Example

Defining a TM accepting 𝐿 = 𝑤𝑐𝑤 | 𝑤 ∈ 𝐚 + 𝐛 ∗ , using 
two tracks and storing an extra symbol in the finite control.

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐵, 𝐹

 𝑄 = 𝑞, 𝑑 | 𝑞 ∈ 𝑞1, … , 𝑞9 , 𝑑 ∈ 𝑎, 𝑏, 𝐵

 Σ = 𝐵, 𝑑 | 𝑑 ∈ 𝑎, 𝑏, 𝑐

 Γ = 𝑋, 𝑑 | 𝑋 ∈ 𝐵,∗ , 𝑑 ∈ 𝑎, 𝑏, 𝑐, 𝐵

 𝑞0 = 𝑞1, 𝐵

 𝐹 = 𝑞9, 𝐵

 𝐵 = 𝐵, 𝐵
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The first track in the tape contains a ∗ to 
indicate if the input symbol in the 

second track has been “checked off”.

The second track contains 
either input symbols or 𝐵.



Multiple Tracks: Example
To avoid having to write several similar rules,
let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 . 𝛿 =

Jim Anderson (modified by Nathan Otterness) 29

► 𝛿 𝑞1, 𝐵 , 𝐵, 𝑑 = 𝑞2, 𝑑 , ∗, 𝑑 , 𝑅

► 𝛿([𝑞2, 𝑑], 𝐵, 𝑒 ) = ([𝑞2, 𝑑], 𝐵, 𝑒 , 𝑅)
► 𝛿([𝑞2, 𝑑], [𝐵, 𝑐]) = ([𝑞3, 𝑑], [𝐵, 𝑐], 𝑅)

► 𝛿 𝑞3, 𝑑 , ∗, 𝑒 = 𝑞3, 𝑑 , ∗, 𝑒 , 𝑅
► 𝛿 𝑞3, 𝑑 , 𝐵, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿

► 𝛿 𝑞4, 𝐵 , ∗, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿
► 𝛿 𝑞4, 𝐵 , 𝐵, 𝑐 = 𝑞5, 𝐵 , 𝐵, 𝑐 , 𝐿

► 𝛿 𝑞5, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞5, 𝐵 , ∗, 𝑑 = 𝑞7, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞6, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞6, 𝐵 , ∗, 𝑑 = 𝑞1, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞7, 𝐵 , 𝐵, 𝑐 = 𝑞8, 𝐵 , 𝐵, 𝑐 , 𝑅

► 𝛿 𝑞8, 𝐵 , ∗, 𝑑 = 𝑞8, 𝐵 , ∗, 𝑑 , 𝑅
► 𝛿 𝑞8, 𝐵 , 𝐵, 𝐵 = 𝑞9, 𝐵 , 𝐵, 𝐵 , 𝐿



Multiple Tracks: Example

(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)
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► 𝛿 𝑞1, 𝐵 , 𝐵, 𝑑 = 𝑞2, 𝑑 , ∗, 𝑑 , 𝑅 ► Start off by storing the symbol you’re 
looking at in the “finite control” 
storage, checking off the symbol, and 
starting to move right.
❖ The goal will be to make sure the 

first “unchecked” symbol in the 
right-hand string matches the 
symbol stored in the finite 
control.

We’re looking at 
input symbol 𝑑 in 
the second track.

Store 𝑑 into the 
finite-control 

storage.
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(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)
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► 𝛿 𝑞1, 𝐵 , 𝐵, 𝑑 = 𝑞2, 𝑑 , ∗, 𝑑 , 𝑅 ► Start off by storing the symbol you’re 
looking at in the “finite control” 
storage, checking off the symbol, and 
starting to move right.
❖ The goal will be to make sure the 

first “unchecked” symbol in the 
right-hand string matches the 
symbol stored in the finite 
control.

Previously, this 
symbol was not 
checked off…

So we’ll 
check it off.
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► 𝛿 𝑞1, 𝐵 , 𝐵, 𝑑 = 𝑞2, 𝑑 , ∗, 𝑑 , 𝑅

► 𝛿([𝑞2, 𝑑], 𝐵, 𝑒 ) = ([𝑞2, 𝑑], 𝐵, 𝑒 , 𝑅)
► 𝛿([𝑞2, 𝑑], [𝐵, 𝑐]) = ([𝑞3, 𝑑], [𝐵, 𝑐], 𝑅)

► 𝛿 𝑞3, 𝑑 , ∗, 𝑒 = 𝑞3, 𝑑 , ∗, 𝑒 , 𝑅
► 𝛿 𝑞3, 𝑑 , 𝐵, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿

► 𝛿 𝑞4, 𝐵 , ∗, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿
► 𝛿 𝑞4, 𝐵 , 𝐵, 𝑐 = 𝑞5, 𝐵 , 𝐵, 𝑐 , 𝐿

(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

The point of state 𝑞2 is just 
to move right until we 

reach the right-hand string.

We know we’ve reached 
the right-hand string after 

passing the input symbol 𝑐.
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► 𝛿 𝑞1, 𝐵 , 𝐵, 𝑑 = 𝑞2, 𝑑 , ∗, 𝑑 , 𝑅

► 𝛿([𝑞2, 𝑑], 𝐵, 𝑒 ) = ([𝑞2, 𝑑], 𝐵, 𝑒 , 𝑅)
► 𝛿([𝑞2, 𝑑], [𝐵, 𝑐]) = ([𝑞3, 𝑑], [𝐵, 𝑐], 𝑅)

► 𝛿 𝑞3, 𝑑 , ∗, 𝑒 = 𝑞3, 𝑑 , ∗, 𝑒 , 𝑅
► 𝛿 𝑞3, 𝑑 , 𝐵, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿

► 𝛿 𝑞4, 𝐵 , ∗, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿
► 𝛿 𝑞4, 𝐵 , 𝐵, 𝑐 = 𝑞5, 𝐵 , 𝐵, 𝑐 , 𝐿

(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

The point of state 𝑞3 is to move 
right until we reach the first 

unchecked symbol in the right-
hand string.

Once this symbol is reached, 
check it off. (The TM will die here 

if the symbol doesn’t match the 
one in the finite-control storage.)
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► 𝛿 𝑞1, 𝐵 , 𝐵, 𝑑 = 𝑞2, 𝑑 , ∗, 𝑑 , 𝑅

► 𝛿([𝑞2, 𝑑], 𝐵, 𝑒 ) = ([𝑞2, 𝑑], 𝐵, 𝑒 , 𝑅)
► 𝛿([𝑞2, 𝑑], [𝐵, 𝑐]) = ([𝑞3, 𝑑], [𝐵, 𝑐], 𝑅)

► 𝛿 𝑞3, 𝑑 , ∗, 𝑒 = 𝑞3, 𝑑 , ∗, 𝑒 , 𝑅
► 𝛿 𝑞3, 𝑑 , 𝐵, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿

► 𝛿 𝑞4, 𝐵 , ∗, 𝑑 = 𝑞4, 𝐵 , ∗, 𝑑 , 𝐿
► 𝛿 𝑞4, 𝐵 , 𝐵, 𝑐 = 𝑞5, 𝐵 , 𝐵, 𝑐 , 𝐿

(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

The point of state 𝑞4 is to 
move left until we reach 

the left-hand string again.

Enter state 𝑞5 after 
passing the symbol 𝑐.
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(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

In 𝑞5, we are looking at the 
last symbol in the left-hand 
string. If it’s not checked off, 

go to state 𝑞6.

If the last symbol in the left-
hand string was checked off 

already, go to 𝑞7 instead.

► 𝛿 𝑞5, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞5, 𝐵 , ∗, 𝑑 = 𝑞7, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞6, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞6, 𝐵 , ∗, 𝑑 = 𝑞1, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞7, 𝐵 , 𝐵, 𝑐 = 𝑞8, 𝐵 , 𝐵, 𝑐 , 𝑅

► 𝛿 𝑞8, 𝐵 , ∗, 𝑑 = 𝑞8, 𝐵 , ∗, 𝑑 , 𝑅
► 𝛿 𝑞8, 𝐵 , 𝐵, 𝐵 = 𝑞9, 𝐵 , 𝐵, 𝐵 , 𝐿
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(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

In 𝑞6, keep moving left 
until we find the leftmost 
checked-off symbol in the 

left-hand string.

Move right from this 
symbol to get to the next 
unchecked symbol in the 

left-hand string, and repeat 
the process from state 𝑞1.

► 𝛿 𝑞5, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞5, 𝐵 , ∗, 𝑑 = 𝑞7, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞6, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞6, 𝐵 , ∗, 𝑑 = 𝑞1, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞7, 𝐵 , 𝐵, 𝑐 = 𝑞8, 𝐵 , 𝐵, 𝑐 , 𝑅

► 𝛿 𝑞8, 𝐵 , ∗, 𝑑 = 𝑞8, 𝐵 , ∗, 𝑑 , 𝑅
► 𝛿 𝑞8, 𝐵 , 𝐵, 𝐵 = 𝑞9, 𝐵 , 𝐵, 𝐵 , 𝐿
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(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

In state 𝑞7, everything in 
the left-hand string has 

been checked off, so we’re 
getting ready to make sure 

everything in the right-
hand string is checked off, 

too.
State 𝑞7’s main purpose is 
to move right past the 𝑐.

► 𝛿 𝑞5, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞5, 𝐵 , ∗, 𝑑 = 𝑞7, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞6, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞6, 𝐵 , ∗, 𝑑 = 𝑞1, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞7, 𝐵 , 𝐵, 𝑐 = 𝑞8, 𝐵 , 𝐵, 𝑐 , 𝑅

► 𝛿 𝑞8, 𝐵 , ∗, 𝑑 = 𝑞8, 𝐵 , ∗, 𝑑 , 𝑅
► 𝛿 𝑞8, 𝐵 , 𝐵, 𝐵 = 𝑞9, 𝐵 , 𝐵, 𝐵 , 𝐿
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(Let 𝑑 ∈ 𝑎, 𝑏 and 𝑒 ∈ 𝑎, 𝑏 .)

In state 𝑞8, move right while 
checking that everything in 

the right-hand string is 
checked off (if any input 

symbol is not checked off, 
execution will die).

► 𝛿 𝑞5, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞5, 𝐵 , ∗, 𝑑 = 𝑞7, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞6, 𝐵 , 𝐵, 𝑑 = 𝑞6, 𝐵 , 𝐵, 𝑑 , 𝐿
► 𝛿 𝑞6, 𝐵 , ∗, 𝑑 = 𝑞1, 𝐵 , ∗, 𝑑 , 𝑅

► 𝛿 𝑞7, 𝐵 , 𝐵, 𝑐 = 𝑞8, 𝐵 , 𝐵, 𝑐 , 𝑅

► 𝛿 𝑞8, 𝐵 , ∗, 𝑑 = 𝑞8, 𝐵 , ∗, 𝑑 , 𝑅
► 𝛿 𝑞8, 𝐵 , 𝐵, 𝐵 = 𝑞9, 𝐵 , 𝐵, 𝐵 , 𝐿If we made it past all the input 

symbols without dying, go to 
state 𝑞9 (which is accepting).

Side note: we already accept here, so it 
doesn’t matter whether we move L or R now.
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Here’s the TM as a 
transition diagram:
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TM Technique: Shifting Symbols Over

 You may need to create extra space in the middle 
of a string of symbols in a TM.

 This can be accomplished by holding a small 
buffer of symbols in the finite control.

 Example: Shifting a string of nonblank symbols 
over by two spaces.

❖States will be of the form 𝑞, 𝐴1, 𝐴2 , where 𝑞 is 
𝑞1 or 𝑞2 and 𝐴1 and 𝐴2 are in Γ.
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TM Technique: Shifting Symbols Over

Here are the relevant moves for shifting symbols 
over by two spaces:
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► 𝛿 𝑞1, 𝐵, 𝐵 , 𝐴1 = 𝑞1, 𝐵, 𝐴1 , 𝑋, 𝑅 , 𝐴1 ∈ Γ − 𝐵, 𝑋
► 𝛿 𝑞1, 𝐵, 𝐴1 , 𝐴2 = 𝑞1, 𝐴1, 𝐴2 , 𝑋, 𝑅 , 𝐴1 and 𝐴2 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐴3 = 𝑞1, 𝐴2, 𝐴3 , 𝐴1, 𝑅 , 𝐴1, 𝐴2, and 𝐴3 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐵 = 𝑞1, 𝐴2, 𝐵 , 𝐴1, 𝑅 , 𝐴1 and 𝐴2 ∈ Γ − 𝐵, 𝑋
► 𝛿 𝑞1, 𝐴1, 𝐵 , 𝐵 = 𝑞2, 𝐵, 𝐵 , 𝐴1, 𝐿 , 𝐴1 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞2, 𝐵, 𝐵 , 𝐴 = 𝑞2, 𝐵, 𝐵 , 𝐴, 𝐿 , 𝐴 ∈ Γ − 𝐵, 𝑋
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Here are the relevant moves for shifting symbols 
over by two spaces:
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► 𝛿 𝑞1, 𝐵, 𝐵 , 𝐴1 = 𝑞1, 𝐵, 𝐴1 , 𝑋, 𝑅 , 𝐴1 ∈ Γ − 𝐵, 𝑋
► 𝛿 𝑞1, 𝐵, 𝐴1 , 𝐴2 = 𝑞1, 𝐴1, 𝐴2 , 𝑋, 𝑅 , 𝐴1 and 𝐴2 ∈ Γ − 𝐵, 𝑋

Start by “shifting” the tape 
symbols 𝐴1 and 𝐴2 into the 

finite-control buffer.

We will write the symbol 𝑋 into 
the “extra space” we are adding.

𝐴1 and 𝐴2 can’t be 𝐵.  For simplicity, 
also assume that they can’t be 𝑋.
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Jim Anderson (modified by Nathan Otterness) 43

► 𝛿 𝑞1, 𝐵, 𝐵 , 𝐴1 = 𝑞1, 𝐵, 𝐴1 , 𝑋, 𝑅 , 𝐴1 ∈ Γ − 𝐵, 𝑋
► 𝛿 𝑞1, 𝐵, 𝐴1 , 𝐴2 = 𝑞1, 𝐴1, 𝐴2 , 𝑋, 𝑅 , 𝐴1 and 𝐴2 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐴3 = 𝑞1, 𝐴2, 𝐴3 , 𝐴1, 𝑅 , 𝐴1, 𝐴2, and 𝐴3 ∈ Γ − 𝐵, 𝑋

Once the buffer is full, shift subsequent new 
symbols into the buffer while replacing them 

with the oldest symbol in the buffer.
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Here are the relevant moves for shifting symbols 
over by two spaces:
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► 𝛿 𝑞1, 𝐵, 𝐵 , 𝐴1 = 𝑞1, 𝐵, 𝐴1 , 𝑋, 𝑅 , 𝐴1 ∈ Γ − 𝐵, 𝑋
► 𝛿 𝑞1, 𝐵, 𝐴1 , 𝐴2 = 𝑞1, 𝐴1, 𝐴2 , 𝑋, 𝑅 , 𝐴1 and 𝐴2 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐴3 = 𝑞1, 𝐴2, 𝐴3 , 𝐴1, 𝑅 , 𝐴1, 𝐴2, and 𝐴3 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐵 = 𝑞1, 𝐴2, 𝐵 , 𝐴1, 𝑅 , 𝐴1 and 𝐴2 ∈ Γ − 𝐵, 𝑋
► 𝛿 𝑞1, 𝐴1, 𝐵 , 𝐵 = 𝑞2, 𝐵, 𝐵 , 𝐴1, 𝐿 , 𝐴1 ∈ Γ − 𝐵, 𝑋

► 𝛿 𝑞2, 𝐵, 𝐵 , 𝐴 = 𝑞2, 𝐵, 𝐵 , 𝐴, 𝐿 , 𝐴 ∈ Γ − 𝐵, 𝑋 Finally, after you encounter blank 
symbols, shift the remaining 

symbols out of the buffer.
After shifting everything, state 𝑞2 causes the 
TM to move left to the newly added space.
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0𝐵𝐵… 𝐵𝐵 …

Finite Control
State =
Buffer =    ,

0 1 1 𝐵

𝑞1
𝐵 𝐵𝐵

𝑋 𝑋 𝐵

𝐵

𝑞2
𝛿 𝑞1, 𝐵, 𝐵 , 𝐴1 = 𝑞1, 𝐵, 𝐴1 , 𝑋, 𝑅
𝛿 𝑞1, 𝐵, 𝐴1 , 𝐴2 = 𝑞1, 𝐴1, 𝐴2 , 𝑋, 𝑅
𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐴3 = 𝑞1, 𝐴2, 𝐴3 , 𝐴1, 𝑅
𝛿 𝑞1, 𝐴1, 𝐴2 , 𝐵 = 𝑞1, 𝐴2, 𝐵 , 𝐴1, 𝑅
𝛿 𝑞1, 𝐴1, 𝐵 , 𝐵 = 𝑞2, 𝐵, 𝐵 , 𝐴1, 𝐿
𝛿 𝑞2, 𝐵, 𝐵 , 𝐴 = 𝑞2, 𝐵, 𝐵 , 𝐴, 𝐿

𝐴1, 𝐴2, 𝐴3, 𝐴 ∉ 𝑋, 𝐵 :

Done!



TM Technique: Subroutines

 TMs can simulate subroutines, even including 
parameter-passing and recursion.

 Example: Multiplication using a “copy” subroutine

❖Given 0𝑚10𝑛1 as input, produce 0𝑚𝑛 as output.

❖This can be done by “copying” 𝑛 0s 𝑚 times.
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TM Technique: Subroutines

Here’s how the overall TM will work:

1. While processing, the tape will contain a string of the 
form 0𝑖10𝑛0𝑘𝑛 for some 𝑘.

2. In one “iteration”, we will change a 0 in the first 
group of 𝑖 0s to 𝐵 and append 𝑛 0s to the last group of 
0s.

❖ This will require copying the group of 𝑛 0s to the 
end of the string.

3. Eventually, there will be no more 0s at the start of the 
string, and the TM can delete the 10𝑛1, leaving only 
0𝑛𝑚 on the tape.
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TM Technique: Subroutines

The key component of our “multiplication” TM is this 
subroutine, copy, defined in the following diagram:
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TM Technique: Subroutines

We can “plug in” the copy subroutine where it is 
needed in a larger TM:
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The “copy” 
subroutine goes here.



TM Technique: Subroutines

Jim Anderson (modified by Nathan Otterness) 50

031q10
2104

├ 031Xq2010000
├ 031X0q210000
├ 031201q20000
…
├ 031X010000q2

├ 031X01000q300
├ 031X0100q3000
…
├ 031q3X0100000
├ 031Xq10100000

…
├ 031XX100000q2

├ 031XX10000q300
…
├ 031Xq3X1000000
├ 031XXq11000000
├ 031Xq4X1000000
├ 031q4X01000000
├ 03q41001000000
├ 031q5001000000

Example move 
sequence for the 
copy routine for 
an input where 
𝑚 = 3, 𝑛 = 2,
and 𝑖 = 4:



TM Extensions: Multiple Tapes

A multi-tape TM can be 
conceptualized like this:
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… …

Finite Control

… … …… … … …

… … … … …… … … …

… … … … …… … … …

𝑘 tapes

Each tape is processed by 
an independent tape head.



TM Extensions: Multiple Tapes

 In a multi-tape TM, each move depends on the state 
of the finite control and 𝑘 “current” tape symbols.

 During a move, a multi-tape TM can:

1. Change state.

2. Print a new symbol on each cell scanned by a 
tape head.

3. Move each tape head left, right, or stationary.

 We assume the input is initially on the first tape.
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Single-Tape vs. Multi-Tape TMs

Theorem 8.9: If 𝐿 is accepted by a multi-tape TM, 
then it is accepted by a single-tape TM.

Proof:

 Let 𝑀 be a multi-tape TM with 𝑘 tapes.

 We can construct a single-tape TM, 𝑀′ with 2𝑘
tracks that accepts 𝐿 𝑀 .
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Single-Tape vs. Multi-Tape TMs

𝑀′’s (single) multi-track tape looks like this:
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X11 X12 X1i

X2jX22X21

Xk1 Xk2 Xkn

B B #

B B

B B #

#



















Tape 1 of 𝑴
Head for tape 1

Tape 2 of 𝑴
Head for tape 2

Tape 𝒌 of 𝑴
Head for tape 𝒌










The state of 𝑀′ includes:
►The state of 𝑀.
►The number of head markers to the right of the tape head.
►The tape symbols at each head marker.
►The scan direction.

We use the # in these 
tracks to indicate where 

the tape heads are.



Single-Tape vs. Multi-Tape TMs
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X11 X12 X1i

X2jX22X21

Xk1 Xk2 Xkn

B B #

B B

B B #

#



















Tape 1 of 𝑴
Head for tape 1

Tape 2 of 𝑴
Head for tape 2

Tape 𝒌 of 𝑴
Head for tape 𝒌










For 𝑀′ to simulate a move of 𝑀:
1. Starting at the leftmost head marker, move right and store the 

symbol at each head marker.
2. Determine the move 𝑀 would make.
3. Move left and update the tape symbols and head markers.
4. Change the state as indicated by the move that 𝑀 would make.

Keeping the number of head 
markers to the left of 𝑀′’s 
head makes it possible to 

know when all of the head 
markers have been visited.



Single-Tape vs. Multi-Tape TMs
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X11 X12 X1i

X2jX22X21

Xk1 Xk2 Xkn

B B #

B B

B B #

#



















Tape 1 of 𝑴
Head for tape 1

Tape 2 of 𝑴
Head for tape 2

Tape 𝒌 of 𝑴
Head for tape 𝒌










▶ Theorem 8.10: 𝑀′ takes 𝑂 𝑛2 moves to simulate 𝑛
moves of 𝑀.

▶ Since a multi-tape TM is just as powerful as a single-
tape TM, we can use whichever is more convenient.

Proof (abridged):
After 𝑛 moves in 𝑀, the head 
markers in 𝑀′ can be at most 
2𝑛 cells apart.  This means that 
simulating a single move in 𝑀
requires 𝑂 𝑛 moves in 𝑀′.



TM Extensions: Nondeterministic TMs

 The original definition we discussed was for a 
deterministic TM (DTM).

 A nondeterministic TM (NDTM) can “choose” between 
multiple possible moves for any combination of state 
and tape symbol(s).

 Move function for a nondeterministic TM with 𝑘 tapes:

❖𝛿 maps 𝑄 × Γ𝑘 to subsets of 𝑄 × Γ × 𝐿, 𝑅, 𝑆 𝑘.
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TM Extensions: Nondeterministic TMs

Example move function for a nondeterministic 
single-tape TM, where Γ = 0, 1, 𝐵 :

 𝛿 𝑞0, 0 = 𝑞1, 𝐵, 𝑅 , 𝑞2, 1, 𝐿
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Nondeterministic TMs

Theorem 8.11: If 𝐿 is accepted by a single-tape 
NDTM 𝑀1, then 𝐿 is accepted by some DTM 𝑀2.

 Let 𝑑 be the maximum number of nondeterministic 
choices 𝑀1 can make at any given move.

 𝑀2 will systematically try all nondeterministic 
possibilities.

 𝑀2 will have three tapes.
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Note: The book reasons 
about a multi-tape 

NDTM here, instead.



Nondeterministic TMs

How 𝑀2 works:

 Tape 1 holds the input.

 Tape 2 contains a sequence of digits from 1 to 𝑑, 
generated systematically.  Each sequence dictates a 
sequence of choices. e.g.,

❖ 1 , 2 , 3 , … , 𝑑 ,
1,1 , 1, 2 , 2, 1 , … , 𝑑, 𝑑 ,
1,1,1 , 1,1,2 , 1, 2, 1 , … , 𝑑, 𝑑, 𝑑 ,

…

 Tape 3 contains a scratch copy of the input.
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Nondeterministic TMs

How 𝑀2 works (continued):

1. Generate the next sequence on tape 2

2. Copy tape 1 (input) to tape 3 (scratch copy)

3. Simulate 𝑀1 on tape 3, making choices according 
to the sequence on tape 2.

4. If 𝑀1 accepts, then accept;

5. Otherwise, go to step 1.
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Nondeterminism and Time Complexity

 Definition: A NDTM 𝑀 is of time complexity 𝑇 𝑛 if 
for every accepted string of length 𝑛, some sequence of 
at most 𝑇 𝑛 moves leading to an accepting state exists.

Theorem: If 𝐿 is accepted by a single-tape NDTM 𝑀1

with time complexity 𝑇 𝑛 , then 𝐿 is accepted by some 

DTM 𝑀2 with time complexity 𝑂 𝑐𝑇 𝑛 , for some 
constant 𝑐.

 Proof: If 𝑀1 in the previous construction can accept in 
at most 𝑇 𝑛 moves, then 𝑀2 can accept in at most 

𝑂 𝑇 𝑛 𝑑 + 1 𝑇 𝑛 moves.
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Restricted TMs: Semi-infinite Tape

 In a TM with a semi-infinite tape, the tape is infinite 
only to the right of the starting position.

❖Assume that trying to move left from the 
leftmost cell causes execution to die.

Theorem 8.12: (reworded) 𝐿 is recognized by a TM 
with a two-way infinite tape if and only if it is 
recognized by a TM with a semi-infinite tape.
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Restricted TMs: Semi-infinite Tape

Proof of Theorem 8.12:

“If”:

 It’s pretty straightforward to simulate a semi-infinite 
tape TM using one with a two-way infinite tape.

❖Mark the tape cell to the left of the starting 
position with a special symbol, and halt without 
accepting if that symbol is ever encountered.
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Theorem 8.12: 𝐿 is recognized by 
a TM with a two-way infinite 

tape if and only if it is recognized 
by a TM with a semi-infinite tape.



Restricted TMs: Semi-infinite Tape

Proof (continued), “Only if”:

 Let 𝑀2 = 𝑄2, Σ2, Γ2, 𝛿2, 𝑞2, 𝐵, 𝐹2 be a two-way TM.

 Construct a one-way TM 𝑀1 to simulate 𝑀2.

 The tape of 𝑀1 will have two tracks.
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… 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 …

𝐴0 𝐴1 𝐴2 …

𝐴−1 𝐴−2 …¢

Tape for 𝑀2:

Tape for 𝑀1:
The ¢ helps us 

identify the 
leftmost cell.



Restricted TMs: Semi-infinite Tape

 Formally, 𝑀1 = 𝑄1, Σ1, Γ1, 𝛿1, 𝑞1, 𝐵, 𝐹1 .

❖𝑄1 contains all 𝑞, 𝑈 and 𝑞, 𝐷 for all 𝑞 ∈ 𝑄2.

❑We’re storing 𝑈 or 𝐷 in the finite control to remember 
whether 𝑀1 is on the upper “𝑈”, or lower “𝐷” track.

❑𝑄1 also contains 𝑞1 by itself.

❖Γ1 contains all 𝑋, 𝑌 , where 𝑋 ∈ Γ2 and 𝑌 ∈ Γ2 ∪ ¢ .
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… 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 …

𝐴0 𝐴1 𝐴2 …

𝐴−1 𝐴−2 …¢

Tape for 𝑀2:

Tape for 𝑀1:



Restricted TMs: Semi-infinite Tape

 Formally, 𝑀1 = 𝑄1, Σ1, Γ1, 𝛿1, 𝑞1, 𝐵, 𝐹1 .

❖Σ1 contains all 𝑎, 𝐵 , where 𝑎 ∈ Σ2.

❖𝐹1 is 𝑞, 𝑈 , 𝑞, 𝐷 | 𝑞 ∈ 𝐹2 .

❖𝐵 is 𝐵, 𝐵 .
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… 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 …

𝐴0 𝐴1 𝐴2 …

𝐴−1 𝐴−2 …¢

Tape for 𝑀2:

Tape for 𝑀1:



Restricted TMs: Semi-infinite Tape

The definition of 𝛿1:

 𝛿1 𝑞1, 𝑎, 𝐵 = 𝑞, 𝑈 , 𝑋, ¢ , 𝑅 if 𝛿2 𝑞2, 𝑎 = 𝑞, 𝑋, 𝑅

❖This is the case when the first move of 𝑀2 is right.

 𝛿1 𝑞1, 𝑎, 𝐵 = 𝑞, 𝐷 , 𝑋, ¢ , 𝑅 if 𝛿2 𝑞2, 𝑎 = 𝑞, 𝑋, 𝐿

❖This is the case when the first move of 𝑀2 is left.
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… 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 …

𝐴0 𝐴1 𝐴2 …

𝐴−1 𝐴−2 …¢

Tape for 𝑀2:

Tape for 𝑀1:



Restricted TMs: Semi-infinite Tape

The definition of 𝛿1 (continued):

For all 𝑋, 𝑌 ∈ Γ1, with 𝑌 ≠ ¢, and 𝐴 = 𝐿 or 𝑅:

 𝛿1 𝑞, 𝑈 , 𝑋, 𝑌 = 𝑝, 𝑈 , 𝑍, 𝑌 , 𝐴 if 𝛿2 𝑞, 𝑋 = 𝑝, 𝑍, 𝐴 .

❖ This simulates 𝑀2 on the upper track.

 𝛿1 𝑞, 𝐷 , 𝑋, 𝑌 = 𝑝, 𝐷 , 𝑋, 𝑍 , 𝐴 if 𝛿2 𝑞, 𝑌 = 𝑝, 𝑍, ҧ𝐴

❖ This simulates 𝑀2 on the lower track.
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… 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 …

𝐴0 𝐴1 𝐴2 …

𝐴−1 𝐴−2 …¢

Tape for 𝑀2:

Tape for 𝑀1:

If we’re in the lower track 
in 𝑀1 we need to move in 
the opposite direction from 

how 𝑀2 would move.



Restricted TMs: Semi-infinite Tape

The definition of 𝛿1 (continued):

 𝛿1 𝑞, 𝑈 , 𝑋, ¢ = 𝛿1 𝑞, 𝐷 , 𝑋, ¢ = 𝑝, 𝐶 , 𝑌, ¢ , 𝑅 ,
if 𝛿2 𝑞, 𝑋 = 𝑝, 𝑌, 𝐴 , where

𝐶 = ቊ
𝑈 if 𝐴 = 𝑅
𝐷 if 𝐴 = 𝐿

 This allows 𝑀1 to switch tracks if it is currently at the leftmost cell.
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… 𝐴−2 𝐴−1 𝐴0 𝐴1 𝐴2 …

𝐴0 𝐴1 𝐴2 …

𝐴−1 𝐴−2 …¢

Tape for 𝑀2:

Tape for 𝑀1:



Restricted TMs: Two-Stack Machine

 Imagine a PDA that can make decisions and modify two 
stacks rather than one. This is called a two-stack machine.

Theorem 8.13: A two-stack machine can simulate a TM.

Proof sketch:
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… …𝐴2𝐴1 𝐴4𝐴3 𝐴5 𝐴6

See Section 8.5.2 of the book for 
a much more detailed proof.

Tape head

Store tape contents in 
two stacks like this:

𝐴1

𝐴2

𝐴3

𝐴6

𝐴5

𝐴4

TM tape content:



Restricted TMs: Counter Machines

 A counter machine can be thought of as a multi-stack PDA, 
with only two stack symbols and some restrictions:

❖ 𝑍0, serving as the “bottom of stack marker”

❖ 𝑋

❖ Initially, only 𝑍0 is on each stack.

❖ Only 𝑋’s can be pushed or popped from the stack.

 Essentially, each stack is a counter. The PDA can only do 
three things with each stack:

❖ Increase the “counter” by pushing more 𝑋’s.

❖ Decrement the “counter” by popping a single 𝑋.

❖ Check if the “counter” is 0 by seeing if 𝑍0 is on top of the 
stack.
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Restricted TMs: Three-Counter Machines

Theorem 8.14: Every RE language is accepted by a 
three-counter machine.

Proof:

We will show that one stack can be simulated by two 
counters, the second of which is a “scratch” counter 
used for calculations.

When simulating two stacks, we can then use the 
same scratch counter, so three counters in total are 
sufficient.
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Restricted TMs: Three-Counter Machines

We now need to show how to simulate one stack using 
two counters.

 Suppose the stack alphabet contains 𝑟 − 1 symbols.

 We can assume these symbols are denoted 1,… , 𝑟 − 1.

 Store the stack contents 𝑋1𝑋2…𝑋𝑛 (where 𝑋1 is the top 
of the stack) as a base-𝑟 number:
𝑋𝑛𝑟

𝑛−1 + 𝑋𝑛−1𝑟
𝑛−2 + …+ 𝑋2𝑟 + 𝑋1.

 Example: Assume 𝑟 = 10 and the stack contains the 
symbols 9, 2, 5, and 3 (9 is on top).  The counter value 
associated with this stack is simply 3259.
Jim Anderson (modified by Nathan Otterness) 74



Restricted TMs: Three-Counter Machines

We now need to show how to simulate stack 
operations using a counter.

 Pop the stack: Replace the counter value 𝑖 by 𝑖/𝑟. 
The remainder is the old top-of-stack symbol, 
which can be stored in the finite control.

❖Example: popping 3259.  
3259

𝑟
=

3259

10
= 325, with 

remainder 9.
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Restricted TMs: Three-Counter Machines

 Push 𝑋 onto the stack: Replace the counter value 𝑖
by 𝑖𝑟 + 𝑋.

❖Example: pushing a 6 onto 3259.  3259𝑟 + 6 =
3259 ∗ 10 + 6 = 32596.

 Replace 𝑋 by 𝑌 on top of the stack: If 𝑌 > 𝑋, then 
increment 𝑖 by 𝑌 − 𝑋.  If 𝑌 < 𝑋, then decrement it 
by 𝑋 − 𝑌.

Note that these operations (including pop) only 
involve constant values (based on the constant 𝑟).

Jim Anderson (modified by Nathan Otterness) 76



Restricted TMs: Three-Counter Machines

But how do we multiply or divide when we can only 
check if a counter is 0 or nonzero?

To multiply a counter by 𝑟 using a scratch counter:
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scratch := 0;
while count ≠ 0:

count := count – 1;
scratch := scratch + r;

/* If count was initially 𝑖, then scratch is now 𝑖𝑟. 
So now, copy scratch back to count. */
while scratch ≠ 0:

count := count + 1;
scratch := scratch – 1;

This algorithm only adds 
or subtracts constant 

values, and only needs to 
check if counters are 0.



Restricted TMs: Three-Counter Machines

To divide a counter by 𝑟 using a scratch counter and 
a bounded value 𝑘 (𝑘 ≤ 𝑟, and 𝑟 is constant, so we 
can keep track of 𝑘 using a finite number of states):
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scratch := 0;
while count ≠ 0:

k := 0;
while k ≠ r and count ≠ 0:

count := count – 1;
k := k + 1;

if k = r:
scratch := scratch + 1;

/* If count was initially 𝑖, then scratch is now 𝑖/𝑟 and k is the remainder.*/
while scratch ≠ 0:

count := count + 1;
scratch := scratch – 1;



Restricted TMs: Two-Counter Machines

We have now shown that we can simulate a single 
stack using two counters, and two stacks using three 
counters, but we can go farther!

Theorem 8.15: Every RE language is accepted by a two-
counter machine.

Proof: We will show that we can simulate three counters 
using two counters.

If 𝑖, 𝑗, and 𝑘 are the three counts we want to track, we 
can store them in a single integer 𝑛 = 2𝑖3𝑗5𝑘.

Jim Anderson (modified by Nathan Otterness) 79



Restricted TMs: Two-Counter Machines

(From previous slide) If 𝑖, 𝑗, and 𝑘 are the three counts we want 
to track, we can store them in a single integer 𝑛 = 2𝑖3𝑗5𝑘.

 To increment 𝑖: Replace 𝑛 by 2𝑛.

 To decrement 𝑖: Replace 𝑛 by 𝑛/2.

 To test if 𝑖 is 0: Check if 𝑛 is not divisible by 2.

 The other counters are similar (e.g. increment 𝑗 by replacing 𝑛
with 3𝑛 and increment 𝑘 by setting 𝑛 = 5𝑛, etc.).

We have already seen how to multiply and divide by constant 
values using a second “scratch” counter.

Note that this construction works because 2, 3, and 5 are 
relatively prime.
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Restricted TMs: Summary

 We have shown that the following machines are 
equally powerful in terms of languages they can identify:

❖Nondeterministic TMs

❖Multi-tape TMs

❖Multi-track TMs

❖Single-tape TMs

❖Semi-infinite tape TMs

❖Two-stack machines

❖Three-counter machines

❖Two-counter machines
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TMs vs. “Real” Computers

We want to show that anything a TM can do is possible using 
a computer, and vice versa.

 Designing a computer that simulates a TM is easy: just 
store the transition function in a table, which tells a 
program what to do next.

 One “gotcha”: a TM has infinite memory.

❖ The book says we can just continually add new disks to 
a TM when old ones are full. 

❖ What if we have TM that uses more tape cells than 
atoms in the universe?  (Clearly the book’s approach 
isn’t a true Turing Machine.)

❖ My take: we can’t simulate infinite memory, but we will 
also never have a practical application that requires it.
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Simulating a Computer using a TM

We will consider a simplified model of a computer 
called a random access machine (RAM):
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A potentially infinite number 
of values stored in memory:

𝑣1

…

Register 1

Register 2

…

Program Counter

A finite number of registers:

Both memory and 
registers can store any 

integer; even 
indefinitely large ones.

Program “code” and data 
is stored in memory.

𝑣2

𝑣3

𝑣4



Random Access Machines

 In a RAM, a “program” is a list of instructions.

❖Instructions are like what you’d find on a “real” 
computer, and consist of an opcode and an 
address.

❖Instructions are encoded as a single integer (e.g. 
with some bits representing the opcode and the 
remaining bits representing the argument).

 With this model, you can have basic instructions 
like LOAD, STORE, ADD, etc., like an assembly 
language.
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Simulating a Random Access Machine

Theorem: A TM can simulate a RAM, provided that 
the TM can simulate each individual RAM instruction.

 For example, you can’t have a RAM instruction that 
solves the halting problem.

Proof sketch:

We will use multiple tapes to store the RAM’s memory 
and register values in a TM.
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Simulating a Random Access Machine

 One tape in our TM holds memory values that 
have been written.

❖The format of this tape is #0*𝑣0#1*𝑣1#10*𝑣2#...

❖The # and * are simply delimiters around the 
“address” of each value.  Assume that each 𝑣𝑖 is 
stored in binary.

 Use one additional tape for each register.
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Simulating a Random Access Machine

Overview of the TM’s behavior for simulating the RAM:

1. Read the current PC value 𝑖 from the tape holding the 
“program counter” register.

2. Scan the memory tape for the “address” #𝑖*.  Halt if it 
isn’t found.

3. Decode the instruction opcode and address from the 
memory value at location 𝑖.

4. Perform the operation indicated by the opcode and 
address.

5. Repeat from step 1.
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Simulating a Random Access Machine

Possible behavior for a couple common “instructions”:

 If the instruction indicates to “ADD” a value at address 
𝑗 to a register:

1. Scan memory for #𝑗*, and add the value found 
afterwards to a register.

2. Add 1 to the program counter register to advance to 
the next instruction.

 If the instruction indicates to “GOTO” address 𝑗:

1. Copy the address 𝑗 to the program counter register.

(Other instructions can be simulated in a similar manner)
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Running Time of the RAM Simulation

The previous simulation will run in polynomial time
provided that a couple restrictions hold:

 First, the RAM can’t have an instruction that takes 
exponential time to compute.

❖For example, you can’t have a “solve the 
traveling salesman problem” instruction.

❖This isn’t a big restriction, because no real 
computer will have instructions like this anyway.
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Running Time of the RAM Simulation

(Continued list of restrictions for this simulation)

 Second, we can’t have instructions that “drastically” increase 
the length of some number.

❖Example: If integer values are unrestricted, then starting 
with a value 2, applying a hypothetical “multiply a value 
by itself” instruction 𝑛 times would lead to a value of 22

𝑛
, 

which takes 2𝑛+1 bits to represent. Just writing these 
down takes exponential time, so we don’t allow 
instructions like this.

❖ In reality, this is also a mild restriction.  In real computers, 
the lengths of individual numbers are limited.
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Running Time of the RAM Simulation

Theorem 8.17: If a computer has (1) only instructions that 
increase the length of a number by 1 bit and (2) has only 
instructions that a multi-tape TM can perform on 
numbers of length 𝑘 in 𝑂 𝑘2 steps, then a TM exists that 
can simulate 𝑛 steps of the computer in 𝑂 𝑛3 moves.

Notes:

 (1) rules out multiplication, which can double the 
length of a number.  However, multiplication can be 
simulated in polynomial time by repeatedly adding, 
which is allowed.

 The 𝑂 𝑘2 bound in (2) was selected because it seems 
sufficient for most “reasonable” instructions.
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Running Time of the RAM Simulation

We won’t prove Theorem 8.17 in detail.  However,

 If individual instructions can be simulated in 
polynomial time, we only need to worry about 
spending an exponential amount of time scanning 
the “memory” tape.

 Initially, the “memory” tape holds the program to 
execute and input data, all of which starts at a 
“constant” length.

 Restriction (1) ensures that the tape’s length 
remains polynomial in 𝑛 (after executing 𝑛 RAM 
instructions).  See book Section 8.6.3 for the proof.
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Final Comment on RAM Simulation

 We know from before that a single-tape TM can 
simulate a multi-tape TM in polynomial time.

 So, even a single-tape TM can simulate a RAM 
computation in polynomial time.
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