
Undecidability
COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1

Essential Definitions

Specific definitions of “problems” and “instances”
are important in these slides:

 Problem: A yes/no question.

❖Example: Is 𝐺 an ambiguous CFG?

 Instance: A list of arguments, one per parameter.

❖Example: a particular CFG, e.g. 𝑆 → 𝑎𝑆𝑏 | 𝜀.

We can encode instances of a problem as strings over
some finite alphabet.

Jim Anderson (modified by Nathan Otterness) 2

Equivalence of “Problem” and “Language”

 Consider the CFG 𝐺 = 𝑉, 𝑇, 𝑃, 𝑆 . We will encode this
entire CFG as a string of 0s and 1s.

 Let 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑉 denote the 𝑖𝑡ℎ variable in 𝑉.

 Let 𝑋 𝑉 +𝑖 denote the 𝑖𝑡ℎ terminal in 𝑇.

 If 𝜀 appears in a production, then denote it as 𝑋 𝑉 + 𝑇 +1.

 Encode (,), {, }, ,, and → by 1, 10, 100, 103, 104, and 105.

 Encode 𝑋𝑖 as 10𝑖+5.

With this definition, we can view any sequence of 0s and 1s
as encoding some CFG. If the sequence is not of the right
form, define it to mean a CFG with no productions.

Jim Anderson (modified by Nathan Otterness) 3

Represents a comma

Encoding a CFG as Binary: Example

 Let’s encode the CFG 𝑆, 𝐴 , 0 , 𝑆 → 𝐴, 𝐴 → 0 , 𝑆
using the scheme from before.

 𝑆 is variable 1, denoted 𝑋1, and 𝐴 is 𝑋2.

 0 is the only terminal, denoted 𝑋3.

 Now, just replace the (), {}, commas, →’s, variables,
and terminals with their “binary” representation:

1 100 1000000 10000 10000000 1000 10000 100 …

Jim Anderson (modified by Nathan Otterness) 4

({ 𝑋1 , 𝑋2 } , {

“Problems” and “Languages”, continued

 Now that we can represent a CFG as a string, we can treat
yes/no questions about CFGs as languages.

 This same notion apples to any problem—if you can represent
instances of your problem as strings, then the question of
whether an algorithm exists to solve the problem can be
posed as a question about whether a language is recursive.

 Example:

❖Let 𝐿𝐴𝑀𝐵 = 𝑤 | the CFG encoded by 𝑤 is ambiguous

❖The question “Does an algorithm exist to solve the
ambiguity problem?” is equivalent to “Is 𝐿𝐴𝑀𝐵 recursive?”

Jim Anderson (modified by Nathan Otterness) 5

Recall: Algorithm =
TM that always halts

Yes/No Questions

There are two main reasons we focus on yes/no questions:

 It fits our notion of a recursive language.

❖A TM that halts and accepts answers “yes”.

❖A TM that halts and rejects answers “no”.

 Many more general problems have an equivalent yes/no
version, i.e., the general version has an algorithm if and
only if the yes/no version does.

Jim Anderson (modified by Nathan Otterness) 6

Yes/No vs. “General” Algorithms

Say we have two problems:

 𝐴𝑀𝐵: Takes a CFG and outputs “yes” if the CFG is
ambiguous, otherwise outputs “no”.

❖This is the yes/no version (in case it wasn’t
obvious)

 𝐹𝐼𝑁𝐷: Takes a CFG and outputs some string 𝑤
with at least two parse trees if the CFG is
ambiguous, otherwise it outputs “no”.

❖This is the “general” version.

Jim Anderson (modified by Nathan Otterness) 7

Yes/No vs. “General” Algorithms

We will show that we have an algorithm for 𝐹𝐼𝑁𝐷 if
and only if we have an algorithm for 𝐴𝑀𝐵.

First, we can easily solve 𝐴𝑀𝐵 if we have an
algorithm for 𝐹𝐼𝑁𝐷:

 Run the algorithm for 𝐹𝐼𝑁𝐷

 If it outputs any 𝑤 then output “yes”, otherwise
output “no”.

Jim Anderson (modified by Nathan Otterness) 8

Yes/No vs. “General” Algorithms

Second, we have an algorithm for 𝐹𝐼𝑁𝐷 if we have one for 𝐴𝑀𝐵:

 Run the algorithm for 𝐴𝑀𝐵

 If it outputs “no”, then 𝐹𝐼𝑁𝐷 should output no

 If it outputs yes, just systematically start checking every
possible string for multiple parse trees until you find one with
two parse trees.

❖You’ll find one eventually, because you already know that
the grammar is ambiguous.

❖Remember, an algorithm only needs to eventually finish—
it doesn’t need to finish quickly!

Jim Anderson (modified by Nathan Otterness) 9

Definition of Decidability

A problem is decidable if its language is recursive,
and undecidable otherwise.

Jim Anderson (modified by Nathan Otterness) 10

Important Note: Finite Problems

 Any problem with a finite number of instances is
decidable.

Example: Is there intelligent life on other planets?

 This problem only has a single instance, so it’s decidable.

❖There exists a TM that accepts any input, and one that
rejects any input. One of these two TMs correctly answers
this question.

Jim Anderson (modified by Nathan Otterness) 11

Recursive and RE Languages

We will simplify many of our proofs using pictures.

An algorithm (a TM that always halts) is represented
like this:

An arbitrary TM (that may not halt) is represented
like this:

Jim Anderson (modified by Nathan Otterness) 12

(Input string) 𝑤
Yes

No

𝑤 Yes

M

M

Complement of Recursive Languages

Theorem 9.3: The complement of a recursive
language is recursive.

Proof:

Let 𝐿 be a recursive language accepted by TM 𝑀.
Construct 𝑀′ to accept ത𝐿 as follows:

Jim Anderson (modified by Nathan Otterness) 13

𝑤
Yes

No
𝑀

𝑀′

Yes

No

RE Languages and Complements

Theorem 9.4: If both a language and its complement
are RE, then the language is recursive.

Proof:

Let 𝐿 = 𝐿 𝑀1 and ത𝐿 = 𝐿 𝑀2 , for TMs 𝑀1 and 𝑀2.
Construct an algorithm for 𝐿 as follows:

Jim Anderson (modified by Nathan Otterness) 14

𝑤
Yes

No

𝑀1

𝑀2

Yes

Yes

The Possible Language Categories

Theorem: For any language 𝐿, we have three cases:

1. Both 𝐿 and ത𝐿 are recursive.

2. Neither 𝐿 nor ത𝐿 are recursively enumerable.

3. One of 𝐿 and ത𝐿 is RE but not recursive, and the
other is not RE.

Proof:

Suppose either 𝐿 or ത𝐿 is RE but not recursive (not
Case 1). Then, by Theorem 9.3, neither are recursive.
Also, by Theorem 9.4, one is not RE.

Jim Anderson (modified by Nathan Otterness) 15

An Undecidable Problem

Consider the problem:

 Does a Turing Machine 𝑀 accept input 𝑤?

We want to show that that this problem is undecidable.

We will show that this is undecidable, even if we
restrict 𝑤 to be over the alphabet 0, 1 .

However, our first goal will be to encode the parameter
𝑀 (a Turing Machine) as a string.

Jim Anderson (modified by Nathan Otterness) 16

Encoding TMs as Binary Strings

 Consider TM 𝑀 = 𝑄, 0, 1 , Γ, 𝛿, 𝑞1, 𝐵, 𝑞2 , where 𝑄 =
𝑞1, 𝑞2, … , 𝑞𝑟 .

❖We are assuming 𝑞2 is always the lone final state.

 Denote symbols in Γ as 𝑋1, 𝑋2, 𝑋3, …, where 0, 1, and 𝐵
are denoted 𝑋1, 𝑋2, and 𝑋3, respectively.

 Denote 𝐿 and 𝑅 as 𝐷1 and 𝐷2.

 Encode the move 𝛿 𝑞𝑖 , 𝑋𝑗 = 𝑞𝑘 , 𝑋𝑙 , 𝐷𝑚 as
0𝑖10𝑗10𝑘10𝑙10𝑚.

 Encode 𝑀 as code111code211…11coden, where 𝑛 is the
number of moves in 𝑀, and codei is the encoding for the
𝑖𝑡ℎ move.

Jim Anderson (modified by Nathan Otterness) 17

We only need one final
state due to our

assumption that a TM
will halt when entering
it, so it won’t have any
outgoing transitions.

Encoding TMs as Binary Strings

Notes on this encoding scheme:

 A given TM may have many possible encodings.

 Many strings of bits aren’t “legal” TM encodings.

❖Define any such string to encode a TM with no
moves (which accepts no strings).

 With these assumptions, any string of 0s and 1s
corresponds to a TM.

Jim Anderson (modified by Nathan Otterness) 18

For example,
any string with
three or more
“1”s in a row.

Encoding Instances of the Problem

Remember our ultimate goal is to show “Does a
Turing Machine 𝑀 accept input 𝑤?” is an
undecidable problem.

 We will want to give an instance of this problem as
an input to some other TM.

 We need to, therefore, have a way to encode both a
TM 𝑀 and an input 𝑤 in a single string.

❖Since a valid TM can’t have three or more 1s in a
row, encode instances of this problem 𝑀,𝑤 as
the binary representation of 𝑀, followed by
three 1s, followed by the input string 𝑤.

Jim Anderson (modified by Nathan Otterness) 19

Remember that
𝑤 is also over the

alphabet 0, 1 .

An Example Encoding

 Say 𝑀 = 𝑞1, 𝑞2, 𝑞3 , 0, 1 , 0, 1, 𝐵 , 𝛿, 𝑞1, 𝐵, 𝑞2 .

❖𝛿 𝑞1, 1 = 𝑞3, 0, 𝑅

❖𝛿 𝑞3, 0 = 𝑞1, 1, 𝑅

❖𝛿 𝑞3, 1 = 𝑞2, 0, 𝑅

❖𝛿 𝑞3, 𝐵 = 𝑞3, 1, 𝐿

 The encoding of 𝑀: 010010001010011000101010010
01100010010010100110001000100010010

 Encoding of 𝑀, 1011 : 010010001010011000101010
010011000100100101001100010001000100101111011

Jim Anderson (modified by Nathan Otterness) 20

= 0100100010100
= 0001010100100
= 00010010010100
= 0001000100010010

A Non-RE Language

We need one more definition to help with the following
undecidability proof:

 Define canonical order for strings of 0s and 1s by
sorting strings first by increasing size, and then sorting
strings of the same size in increasing “numerical” order.

❖E.g. 𝜖, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 101, …
are in canonical order.

 Let 𝑤𝑖 be the 𝑖𝑡ℎ string of 0s and 1s in canonical order.

 Let 𝑀𝑗 be the TM whose binary representation is 𝑤𝑗.

Jim Anderson (modified by Nathan Otterness) 21

The Diagonal Language

Imagine an infinite table, where each column corresponds
to an input string 𝑤𝑖 and each row corresponds to a TM 𝑀𝑗.

If 𝑀𝑗 eventually accepts 𝑤𝑖, then put a 1 in cell 𝑖, 𝑗 ,

otherwise put a 0 in cell 𝑖, 𝑗 :

Jim Anderson (modified by Nathan Otterness) 22

0 1 2 3 4 …

0 0 1 1 0 1 …

1 1 0 0 0 1 …

2 0 1 1 1 0 …

3 0 1 0 1 0 …

4 0 0 1 0 1 …

… … … … … … …

Turing
Machines
𝑀0, 𝑀1, …𝑀∞

Input strings 𝑤0, 𝑤1, …𝑤∞

Remember it’s an example:
The depicted portion of

this table should actually
be all 0s because, in our

encoding, 𝑀0 through 𝑀4

won’t be valid TMs.

The Diagonal Language

The Diagonal Language, 𝐿𝑑, is the set of strings 𝑤𝑖 such
that the 𝑖, 𝑖 entry in the table is 0.

(In other words, 𝐿𝑑 contains all strings that, when
interpreted as a TM, do not accept themselves as input.)

Jim Anderson (modified by Nathan Otterness) 23

0 1 2 3 4 …

0 0 1 1 0 1 …

1 1 0 0 0 1 …

2 0 1 1 1 0 …

3 0 1 0 1 0 …

4 0 0 1 0 1 …

… … … … … … …

Turing
Machines
𝑀0, 𝑀1, …𝑀∞

Input strings 𝑤0, 𝑤1, …𝑤∞

𝐿𝑑 (if based on this example
table) would contain 𝑤0 and 𝑤1,
and would not contain 𝑤2, 𝑤3,

and 𝑤4.

Proving 𝐿𝑑 is not RE
 We can call each row in this table the characteristic vector for

that row’s TM: it represents how the TM will behave given
any possible input.

 If 𝐿𝑑 is RE, then it would have a corresponding TM, meaning
that its characteristic vector must appear as a row of this table.

❖However, it turns out that this is impossible!

Jim Anderson (modified by Nathan Otterness) 24

0 1 2 3 4 …

0 0 1 1 0 1 …

1 1 0 0 0 1 …

2 0 1 1 1 0 …

3 0 1 0 1 0 …

4 0 0 1 0 1 …

… … … … … … …

TM 𝑀4’s characteristic vector
(from this example table) is

0, 0, 1, 0, 1,…

Proving 𝐿𝑑 is not RE
 No row of this table can possibly contain the

characteristic vector for 𝐿𝑑. Why is this?

 Let’s start by thinking about what the characteristic
vector for 𝐿𝑑 should be, using our example table:

Jim Anderson (modified by Nathan Otterness) 25

0 1 2 3 4 …

0 0 1 1 0 1 …

1 1 0 0 0 1 …

2 0 1 1 1 0 …

3 0 1 0 1 0 …

4 0 0 1 0 1 …

… … … … … … …

 The characteristic vector for 𝐿𝑑 is
along the diagonal of the table: it
contains a 1 if 𝑀𝑖 does accept 𝑤𝑖.

❖This is 0, 0, 1, 1, 1, … in the
example.

 The characteristic vector for 𝐿𝑑
must contain the opposite of this.

❖It would start 1, 1, 0, 0, 0, …

Proving 𝐿𝑑 is not RE

Jim Anderson (modified by Nathan Otterness) 26

0 1 2 3 4 …

0 0 1 1 0 1 …

1 1 0 0 0 1 …

2 0 1 1 1 0 …

3 0 1 0 1 0 …

4 0 0 1 0 1 …

… … … … … … …

 𝐿𝑑’s characteristic vector is 0, 0, 1, 1, 1, … in the example.

 𝐿𝑑’s characteristic vector is the opposite: 1, 1, 0, 0, 0, … .

 Why can’t this be in the table? Let’s think about what
happens if we try to find rows containing this vector.

[1,1,0,0,0,…] can’t be on row 0;
the first value must be different.

[1,1,0,0,0,…] can’t be on row 1;
the second value must be different.

[1,1,0,0,0,…] can’t be on row 2;
the third value must be different.

Every row in the table will differ in at least one position from 𝐿𝑑’s 1,1,0,0,0,… !

Proving 𝐿𝑑 is not RE

Theorem 9.2: 𝐿𝑑 is not RE.

Proof: (We will state the proof from the previous slides
in more formal terms.)

 Assume 𝐿𝑑 is RE. That means 𝐿𝑑 = 𝐿 𝑀𝑗 for some 𝑗.

❖If entry 𝑗, 𝑗 is 0, then 𝑤𝑗 ∉ 𝐿 𝑀𝑗 . But, 𝑤𝑗 ∈ 𝐿𝑑.

This contradicts the assumption that 𝐿𝑑 = 𝐿 𝑀𝑗 .

❖If entry 𝑗, 𝑗 is 1, then 𝑤𝑗 ∈ 𝐿 𝑀𝑗 . But 𝑤𝑗 ∉ 𝐿𝑑. This

also contradicts the assumption that 𝐿𝑑 = 𝐿 𝑀𝑗 .

Jim Anderson (modified by Nathan Otterness) 27

The Universal Language

The Universal Language 𝐿𝑢:
𝐿𝑢 = 𝑀,𝑤 | 𝑇𝑀 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑤 .

 Given a TM 𝑀 and input 𝑤 (both encoded as 0s
and 1s), we can use a TM accepting 𝐿𝑢 to
determine if 𝑀 accepts 𝑤.

❖In other words, 𝑀 accepts 𝑤 if and only if
𝑀,𝑤 ∈ 𝐿𝑢.

 A TM that accepts the universal language is called
a universal TM.

Jim Anderson (modified by Nathan Otterness) 28

The Universal Language, 𝐿𝑢

Theorem: 𝐿𝑢 is RE.

Proof:

We can construct a TM 𝑀1 accepting 𝐿𝑢 as follows:

 𝑀1 has three tapes:

❖Tape 1: The encoding of 𝑀,𝑤 as described
before (code111code211…111coden111𝑤).

❖Tape 2: 𝑀’s tape

❖Tape 3: 𝑀’s state

Jim Anderson (modified by Nathan Otterness) 29

Store state 𝑞𝑖 as 0𝑖.

The Universal Language, 𝐿𝑢
Here’s how 𝑀1 behaves:

1. Check the format of the TM encoding on tape 1.
If it’s wrong, halt without accepting.

2. Copy the input 𝑤 to tape 2 (𝑀’s tape)

3. Initialize tape 3 to 0𝐵𝐵𝐵…. (Set 𝑀’s start state to 𝑞0).

4. After every step, halt and accept if tape 3 contains 00𝐵𝐵𝐵….

❖ Recall that 𝑞2 was the only accepting state in our binary
TM encoding.

5. If head 2 points to symbol 𝑋𝑗 and 0𝑖 is on tape 3, scan Tape 1
for a move 0𝑖10𝑗10𝑘10𝑙10𝑚.

❖ If such a move is not found, halt without accepting.

❖ If the move is found, put 0𝑘 on tape 3, replace 𝑋𝑖 with 𝑋𝑙
on tape 2, and move tape head 2 in the direction 𝐷𝑚.

Jim Anderson (modified by Nathan Otterness) 30

The Universal Language, 𝐿𝑢

Theorem 9.6: 𝐿𝑢 is RE but not recursive.

Proof:

We’ve already shown 𝐿𝑢 is RE (we constructed a TM
for it), so we only need to show it’s not recursive.

Since 𝐿𝑑 is not RE, 𝐿𝑢 is not recursive.

 𝐿𝑢 can be used to accept 𝐿𝑑…

❖So, if 𝐿𝑢 were recursive, we’d have an algorithm
for 𝐿𝑑…

❖But, by Theorem 9.3, if 𝐿𝑑 is recursive, then 𝐿𝑑
must also be recursive.

Jim Anderson (modified by Nathan Otterness) 31

Theorem 9.3: The
complement of a

recursive language
is recursive.

Using an Algorithm for 𝐿𝑢 for 𝐿𝑑

The previous slide claimed that if 𝐿𝑢 were recursive,
we could use it as an algorithm to accept 𝐿𝑑, but
didn’t say how (it’s fairly intuitive, though).

Say we have an algorithm 𝐴 accepting 𝐿𝑢. Construct
an algorithm accepting 𝐿𝑑 from 𝐴 as follows:

Jim Anderson (modified by Nathan Otterness) 32

𝑤
Yes

No
copy 𝐴

𝑤111𝑤

The “copy” routine here just converts a
single input string into the input format
𝐴 expects (a TM followed by its input).

Results So Far

Jim Anderson (modified by Nathan Otterness) 33

Recursive
Languages

RE Languages
• 𝐿𝑑• 𝐿𝑢

Results So Far

 𝐿𝑑 is not RE.

❖And therefore, 𝐿𝑑 is not recursive.

 𝐿𝑢 is RE but not recursive.

❖And therefore, 𝐿𝑢 is not RE.

We will use these results to show that some other
problems are undecidable.

Jim Anderson (modified by Nathan Otterness) 34

Emptiness vs. Nonemptiness

Problem: Is 𝐿 𝑀 ≠ ∅?

 This question takes a single TM and answers yes if
the TM accepts any string, and no otherwise.

 We’ll write “non-empty” language 𝐿𝑛𝑒 as follows:

❖𝐿𝑛𝑒 = 𝑀 | 𝐿 𝑀 ≠ ∅ .

 The complement is 𝐿𝑒 = 𝑀 | 𝐿 𝑀 = ∅ .

Jim Anderson (modified by Nathan Otterness) 35

The Non-Emptiness Language: 𝐿𝑛𝑒

Theorem 9.8: 𝐿𝑛𝑒 is RE.

Proof: We will use 𝐿𝑢 to accept 𝐿𝑛𝑒 as follows. Let 𝑈
be a universal TM accepting 𝐿𝑢.

Jim Anderson (modified by Nathan Otterness) 36

𝑀𝑖
Yes𝑈

𝑤

This TM will non-
deterministically “guess” an
input string 𝑤, feed 𝑈 the
input TM 𝑀𝑖 with input 𝑤,
and accept if 𝑈 accepts.

The Non-Emptiness Language: 𝐿𝑛𝑒

Theorem 9.9: 𝐿𝑛𝑒 is not recursive.

Proof:

Suppose 𝐿𝑛𝑒 is recursive.

 Let 𝐴 be an algorithm accepting 𝐿𝑛𝑒.

 We will use algorithm 𝐴 and another algorithm 𝐵
to construct an algorithm for 𝐿𝑢 (which we already
proved doesn’t exist).

❖The algorithm 𝐵 is described next…

Jim Anderson (modified by Nathan Otterness) 37

Proof that 𝐿𝑛𝑒 is not Recursive, continued

Think of the second algorithm, 𝐵, like this:

Where 𝑀′ is the following TM:

𝐵 is similar to a “compiler”: it takes a “source” TM
and outputs a different TM.
Jim Anderson (modified by Nathan Otterness) 38

𝑀,𝑤 𝑀′𝐵

𝑥 Yes𝑀
Yes𝑤

𝑀′ is a TM that ignores whatever
input it’s provided and instead

always carries out the same
behavior that 𝑀 did with input 𝑤.

Proof that 𝐿𝑛𝑒 is not Recursive, continued

This is how algorithm 𝐵 works:

1. Scan the input 𝑀,𝑤 to find the input string 𝑤.

❖ Let 𝑤 = 𝑎1𝑎2…𝑎𝑛.

2. Create codes for the following TM moves:

❖ 𝛿 𝑞1, 𝑋 = 𝑞2, $, 𝑅

❖ 𝛿 𝑞𝑖 , 𝑋 = 𝑞𝑖+1, 𝑎𝑖−1, 𝑅

❖ 𝛿 𝑞𝑛+2, 𝑋 = 𝑞𝑛+2, 𝐵, 𝑅

❖ 𝛿 𝑞𝑛+2, 𝐵 = 𝑞𝑛+3, 𝐵, 𝐿

❖ 𝛿 𝑞𝑛+3, 𝑋 = 𝑞𝑛+3, 𝑋, 𝐿

❖ (These are moves in 𝑀′ that erase the input 𝑥 and
replace it with 𝑤.)

Jim Anderson (modified by Nathan Otterness) 39

For all 𝑋

For all 𝑋 and 𝑖 such that 2 ≤ 𝑖 ≤ 𝑛 + 1

For all 𝑋 ≠ 𝐵

For all 𝑋 ≠ $

Create 𝑛 new states in 𝑀′,
each of which is responsible

for writing one of the 𝑛
original input symbols in 𝑤

to the tape.

Proof that 𝐿𝑛𝑒 is not Recursive, continued

How algorithm 𝐵 works, continued:

3. Modify the codes for the moves of 𝑀 by adding 𝑛 + 3
to each state’s index.

❖ 𝑀’s original first state becomes 𝑞𝑛+4, etc.

4. Create a code for the following move of 𝑀′:
𝛿 𝑞𝑛+3, $ = 𝑞𝑛+4, 𝐵, 𝑅

5. Modify the codes so that 𝑀’s original 𝑞2 is still the
accepting state.

In future proofs, we will not describe these “compiler”
algorithms in so much detail; the point is that you can
implement them using a TM.

Jim Anderson (modified by Nathan Otterness) 40

Proof that 𝐿𝑛𝑒 is not Recursive, continued

Consider 𝑀′:

𝐿 𝑀′ = ቊ
∅

𝟎 + 𝟏 ∗

Using the algorithms 𝐴 and 𝐵, we now construct an
algorithm for 𝐿𝑢.

Jim Anderson (modified by Nathan Otterness) 41

If 𝑀 does not accept 𝑤
If 𝑀 accepts 𝑤

Proof that 𝐿𝑛𝑒 is not Recursive, continued

We can construct an algorithm for 𝐿𝑢 using
algorithms 𝐴 and 𝐵 as follows:

Jim Anderson (modified by Nathan Otterness) 42

𝑀,𝑤
Yes

𝐴

Yes
𝑀′

No
No𝐵

𝐵 is the algorithm for
creating a TM that always
behaves like 𝑀 on input 𝑤,
while ignoring actual input.

𝐴 is the hypothetical
algorithm for 𝐿𝑛𝑒, which

returns “yes” if and only if
a given TM accepts nothing.

Proof that 𝐿𝑛𝑒 is not Recursive, continued

 If 𝑀 accepts 𝑤, then 𝑀′ accepts anything, so 𝐿 𝑀′ is
nonempty. (So the hypothetical algorithm for 𝐿𝑛𝑒, 𝐴,
answers “yes” and so does the TM below.)

 If 𝑀 does not accept 𝑤, then 𝑀′ accepts nothing, so 𝐿 𝑀′ is
empty. So, 𝐴 answers “no” and so does the TM below.

 So, the TM below is an algorithm for 𝐿𝑢, which we proved
can’t exist. This contradicts the assumption that algorithm
𝐴, for 𝐿𝑛𝑒, exists.

Jim Anderson (modified by Nathan Otterness) 43

𝑀,𝑤
Yes

𝐴

Yes
𝑀′

No
No𝐵

Proof that 𝐿𝑒 is not RE

Theorem 9.10: The language of all empty TMs, 𝐿𝑒, is
not RE.

Proof:

This follows from the proof that 𝐿𝑛𝑒 is RE but not
recursive, and the theorem that a language and its
complement can’t both be RE but not recursive.

Jim Anderson (modified by Nathan Otterness) 44

Other Properties of RE Languages

We will now generalize the previous proofs by
considering languages that represent properties of
RE languages.

 A property 𝑃 of RE languages is simply a set of RE
languages.

 For example, emptiness is a property, and
𝐿𝑒 = 𝑀 | 𝐿 𝑀 = ∅ .

 We say that a language 𝐿 has the property 𝑃 if and
only if 𝐿 ∈ 𝑃.

Jim Anderson (modified by Nathan Otterness) 45

Notice how this
definition of

“property” is the
same as a yes/no
question about a

language.

Other Properties of RE Languages

(Continued from the previous slide)

 A property 𝑃 is a set of RE languages.

 We say that a language 𝐿 has the property 𝑃 if and
only if 𝐿 ∈ 𝑃.

 𝑃 is a trivial property if 𝑃 is either empty or
consists of all RE languages.

 For the sake of notation, let 𝐿𝑃 = 𝑀 | 𝐿 𝑀 ∈ 𝑃 .

Jim Anderson (modified by Nathan Otterness) 46

Rice’s Theorem

Theorem 9.11 (Rice’s Theorem): Any nontrivial
property 𝑃 of RE languages is undecidable.

Proof:

Without loss of generality, assume ∅ (the empty
language) is not in 𝑃. (If ∅ ∈ 𝑃, we can simply
consider ത𝑃 instead.)

Because we already said 𝑃 is nontrivial, there exists
some language 𝐿 in 𝑃.

Jim Anderson (modified by Nathan Otterness) 47

Proof of Rice’s Theorem, continued

 Suppose any arbitrary property 𝑃 is decidable. This
means there must be an algorithm 𝑀𝑃 accepting 𝐿𝑃.

 We will once again construct a “compiler”
algorithm 𝐴 that takes a 𝑀,𝑤 as input and
produces 𝑀′, where 𝑀′ is as follows:

Jim Anderson (modified by Nathan Otterness) 48

𝑥

Yes
𝑀𝐿

Yes

No
No

𝑀𝑤
Yes Start

𝑥

Only start running
𝑀𝐿 after getting a

“yes” answer from 𝑀.

𝑀𝐿 can just be a TM
for any language 𝐿
with property 𝑃.

Proof of Rice’s Theorem, continued

Note that:

𝐿 𝑀′ = ቊ
∅
𝐿

We can now construct an algorithm for 𝐿𝑢 using 𝑀′.
(This is very similar to the proof that 𝐿𝑛𝑒 is undecidable).

Jim Anderson (modified by Nathan Otterness) 49

𝑥

Yes
𝑀𝐿

Yes

No
No

𝑀𝑤
Yes Start

𝑥

𝑀′

If 𝑀 does not accept 𝑤
If 𝑀 accepts 𝑤

Proof of Rice’s Theorem, continued

 If 𝑀 accepts 𝑤: Then 𝐿 𝑀′ = 𝐿, so 𝑀′ will have
property 𝑃. So, 𝑀𝑃 answers “yes”.

 If 𝑀 does not accept 𝑤: Then 𝐿 𝑀′ = ∅, so 𝑀′ will not
have property 𝑃. So, 𝑀𝑃 answers “no”.

 But, we already proved that there is no algorithm for
𝐿𝑢, so 𝑀𝑃 can’t exist and 𝑃 is undecidable.

Jim Anderson (modified by Nathan Otterness) 50

𝑀,𝑤
Yes

𝑀𝑃

Yes
𝑀′

No
No𝐴

Some Results of Rice’s Theorem

The following properties of RE languages are not
decidable:

 Emptiness

 Finiteness

 Context-freedom (does a given TM accept a CFL?)

 Regularity

Jim Anderson (modified by Nathan Otterness) 51

Example Problem About TMs

(These problems may require some ingenuity.)

Example 1: Does a TM 𝑀 with the alphabet 0, 1, 𝐵
ever print three consecutive 1’s on its tape?

Claim: This is undecidable.

Proof: On the following slides…

Jim Anderson (modified by Nathan Otterness) 52

Proof of the “Three 1s” Problem

 Let 𝐿𝜀 = 𝑀 | 𝜀 is in 𝐿 𝑀

 By Rice’s Theorem, 𝐿𝜀 is not recursive.

 If the problem from the previous slide is decidable,
then there exists an algorithm 𝐴 as follows:

Jim Anderson (modified by Nathan Otterness) 53

𝑀
Yes, if 𝑀 writes 3 consecutive 1s.

No, otherwise.
𝐴

Proof of the “Three 1s” Problem, continued

 Once again, we will construct a “compiler” algorithm 𝐵:

 𝑀′ simulates 𝑀 on a blank tape.

 𝑀′ uses 10 to encode a 1, and 01 to encode a 0.

❖This prevents “accidentally” printing a 111.

 𝑀′ prints 111 if 𝑀 accepts.

 So, 𝑀′ prints 111 if and only if 𝜀 is in 𝐿 𝑀 .

Jim Anderson (modified by Nathan Otterness) 54

𝑀 𝑀′𝐵

Proof of the “Three 1s” Problem, continued

 Once again, we will construct a “compiler” algorithm 𝐵:

 𝑀′ simulates 𝑀 on a blank tape.

 𝑀′ uses 10 to encode a 1, and 01 to encode a 0.

❖This prevents “accidentally” printing a 111.

 𝑀′ prints 111 if 𝑀 accepts.

 So, 𝑀′ prints 111 if and only if 𝜀 is in 𝐿 𝑀 .

Jim Anderson (modified by Nathan Otterness) 55

𝑀 𝑀′𝐵

Proof of the “Three 1s” Problem, continued

 We can now construct an algorithm for 𝐿𝜀, which we
know is undecidable.

Jim Anderson (modified by Nathan Otterness) 56

𝑀
Yes

𝐴

Yes
𝑀′

𝐵
No

No

𝐵 is the algorithm that
outputs a TM 𝑀′,

where 𝑀′ prints 3 1s if
and only if 𝑀 accepts 𝜀.

𝐴 is the hypothetical
algorithm for the

“three 1s” problem.

Second Example TM Problem

Example 2: Does a TM 𝑀, with a single semi-infinite
tape, scan any cell more than once when run on a
blank tape?

Claim: This is decidable.

Proof:

Simulate 𝑀. If 𝑀 moves left, answer “yes”.

If 𝑀 continues to move right and repeats a state, it is
in a cycle will forever move right. So answer “no”.

Jim Anderson (modified by Nathan Otterness) 57

