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Abstract—Today’s sophisticated web exploit kits use poly-
morphic techniques to obfuscate each attack instance, making
content-based signatures used by network intrusion detection
systems far less effective than in years past. A dynamic analysis,
or honeyclient analysis, of these exploits plays a key role in initially
identifying new attacks in order to generate content signatures.
While honeyclients can sweep the web for attacks, they provide
no means of inspecting end-user traffic on-the-wire to identify
attacks in real time. This leaves network operators dependent on
third-party signatures that arrive too late, or not at all.

In this paper, we introduce the design and implementation
of a novel framework for adapting honeyclient-based systems to
operate on-the-wire at scale. Specifically, we capture and store
a configurable window of reassembled HTTP objects network-
wide, use lightweight content rendering to establish the chain
of requests leading up to a suspicious event, then serve the
initial response content back to the honeyclient system on an
isolated network. We demonstrate the power of our framework
by analyzing a diverse collection of web-based exploit kits as
they evolve over a one year period. Our case studies provide
several interesting insights into the behavior of these exploit kits.
Additionally, our empirical evaluations suggest that our approach
offers significant operational value, and a single honeyclient
server can readily support a large campus deployment.

I. INTRODUCTION

Today, the rapid and wide-spread proliferation of browser-
based exploits distributed via highly obfuscated web content
is an all too familiar event. Sophisticated off-the-shelf ex-
ploitation toolkits detect vulnerabilities in victim’s browsers
and plugins prior to exploitation and use this information
to dynamically and uniquely craft the next stage of attack,
ultimately injecting highly targeted malicious code on the
victim system. More concerning is that these kits can deliver
malware without our knowledge while visiting legitimate sites;
for example, by either identifying and exploiting vulnerabilities
in a multitude of web servers, or by simply launching massive
campaigns through advertising networks that monetize these
sites and injecting redirections to their malicious web servers.

The status quo in defending networks from these attacks
is the use of network intrusion detection systems (NIDS) that

perform deep packet inspection to search HTTP traffic as it
passes a network border. These systems perform signature
matching, blacklisting, or statistical analysis to identify poten-
tially malicious traffic. Sadly, attackers routinely thwart these
defenses by rapidly changing their environment through 1) us-
ing polymorphic techniques on exploit payloads, 2) frequently
moving exploit kits to new servers, 3) constantly changing
domain names, and 4) morphing traffic to bypass signatures in
an effort to look “normal” in the context of surrounding traffic.

Of late, honeyclient analysis has been used to address
some of the aforementioned weaknesses, especially as it relates
to detecting web exploit kits. The idea is to use a secure
virtualized machine (VM) to navigate, render and execute
potentially malicious web pages. Honeyclients dynamically
track system state change caused by a specific application
or website. System state change (e.g., files written, processes
created, etc.) has been shown to be an effective metric in
classifying malicious applications [3]. Today, many security
vendors routinely crawl the Internet with large clusters of VMs
in an attempt to identify malicious websites [34, 10]. The result
of these analyses are typically used to generate blacklists or
other information deemed useful for improving a network’s
security posture.

However, the model of honeyclient analysis is not without
drawbacks. Crawlers heavily depend on the quality of the URL
seeding used to initially discover potentially malicious web
pages, and there is no guarantee that crawlers will discover
the same exploit kits that are visited by third-parties using a
NIDS. Deploying any generated signatures can take days or
weeks, often too late to be of use. Additionally, attackers use
so-called cloaking techniques that redirect known crawlers to
benign websites. Honeyclients also suffer from a number of
other debilitating problems (as discussed later in more detail).
For example, honeyclients are less effective if their system
configuration does not match that of the targeted victim (e.g.,
an exploit targeting Internet Explorer 11 will not be detected
if the honeyclient is configured with Internet Explorer 10).
Finally, honeyclients are notorious for requiring non-trivial
amounts of time to complete a single analysis — easily on
the order of minutes. For our purposes, such prohibitively long
processing times make them poorly suited for live operational
deployments. Indeed, Adobe Flash vulnerabilities have dom-
inated other attack vectors in the last two years, but remain
difficult to analyze dynamically due to the sheer volume of
Flash files, exceeding hundreds of files per minute on our
campus network, for example.

Motivated by a real operational need to tackle the threats
posed by the significant rise in Flash-based attacks, we present
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a framework that enables one to adapt an arbitrary honeyclient
system to function on-the-wire by minimizing the impact of
the aforementioned drawbacks. The approach described in
this paper detects exploits by temporarily caching web traffic,
triggering an analysis on a previously unseen exploitable file,
impersonating the client and server that fulfilled the request,
and replaying the traffic in a honeyclient to detect any mali-
cious behavior. One major operational challenge we face is
that the analysis we perform must be done without any human
intervention and without storing personal information on non-
volatile storage. These privacy restrictions are not unique to
our environment, and it means that we (like many others) are
left with no option but to process the fire hose of network
data judiciously and expeditiously. Thankfully, we are able to
leverage a few minutes of recently seen network traffic stored
in an in-memory cache. A second major operational challenge
is that many web-based exploit files (e.g., Flash) will only elicit
malicious behavior if the proper parameters are passed in by
the loading website. As a result, we must provide the proper
context in order to detect these files.

In designing, deploying and evaluating this framework, we
overcame several obstacles and make the following contribu-
tions that we believe will be of value to the greater networking
and security community:

• A network-based exploit kit detector that uses be-
havioral analysis to detect malicious exploits in the
context of the websites that load them.

• A new fuzzy-hash based technique for filtering redun-
dant exploitable trigger files, allowing for a scalable
and online honeyclient behavioral analysis.

• A two-level semantic cache for storing and compress-
ing HTTP network traffic based on URLs requested.

• A novel chaining algorithm that traces web exploit
requests back to their origin by storing minutes worth
of network traffic, replaying URL request paths, and
impersonating both the client and server in order to
coax the exploit into behaving maliciously.

• A set of recommendations for an improved honey-
client system based in part on the identification of
code injection and code reuse payloads used in an
exploit as well as a set of behavioral features.

• A case study that highlights recent trends in deployed
exploit kits.

The remainder of the paper is organized as follows. We
present background information and related work in §II. Our
framework for enabling the use of honeyclients on-the-wire
is presented in §III. We provide a performance evaluation, as
well as a case study of real-world attacks, in §IV. Limitations
and future work are discussed in §VI. We conclude in §VII.

II. RELATED WORK

Over the past decade, the web has become a dominant
communication channel, and its popularity has fueled the rise
of web-based infections. Provos et al. [25] examined the ways
in which different web page components are used to exploit
web browsers and infect clients through drive-by downloads.

That study was later extended [26] to include an understanding
of large-scale infrastructures of malware delivery networks and
showed that ad syndication significantly contributed to the
distribution of drive-by downloads. Grier et al. [10] studied
the emergence of the exploit-as-a-service model for drive-
by browser compromise and found that many of the most
prominent families of malware are propagated from a handful
of exploit kit flavors. Thomas et al. [34] provide a more
thorough analysis of prevalence of ad injection and highlight
several techniques being deployed by ad injectors.

By far the most popular approach to detecting malicious
websites involves crawling the web for malicious content start-
ing from a set of known malicious websites [11, 15, 16, 8, 34].
The crawled websites are verified using statistical analysis
techniques [15] or by deploying honeyclients in VMs to
monitor environment changes [26]. Other approaches include
the use of a PageRank algorithm to rank the “maliciousness”
of crawled sites [16] and the use of mutual information
to detect similarities among content-based features derived
from malicious websites [37]. Eshete and Venkatakrishnan [8]
identified content and structural features using samples of 38
exploit kits to build a set of classifiers that analyze URLs by
visiting them through a honeyclient. These approaches require
massive cloud infrastructure to comb the Internet at scale, and
are susceptible to cloaking and versioning issues [36].

Gassen and Chapman [9] examine Java JARs directly
by running applets in a virtualized environment using an
instrumented Java virtual machine looking for specific API
calls and behaviors such as file system accesses. Since the
approach analyzes JAR files in isolation, it is unable to detect
malfeasance when parameters are passed into the applet. Other
approaches involve analyzing the source code of exploit kits
to understand their behavior. For example, De Maio et al.
[7] studied 50 kits to understand the conditions which trig-
gered redirections to certain exploits. Such information can be
leveraged for drive-by download detection. Stock et al. [32]
clustered exploit kit samples to build host-based signatures for
anti-virus engines and web browsers.

More germane to our own work are approaches that try
to detect malicious websites using HTTP traffic. For example,
Cova et al. [6] designed a system to instrument JavaScript run-
time environments to detect malicious code execution, while
Rieck et al. [27] described an online approach that extracts all
code snippets from web pages and loads them into a JavaScript
sandbox for inspection. Unfortunately, parsing and executing
all JavaScript that crosses the boundary of a large network is
not scalable without some mechanism for pre-filtering all the
noise produced by benign scripts. Further, simply executing
JavaScript without interfacing with the surrounding context,
such as relevant HTML and other intertwined contents, makes
evading such systems trivial. Our approach addresses both of
these issues.

Several approaches utilize statistical machine learning tech-
niques to detect malicious pages by training a classifier with
malicious samples and analyzing traffic in a network en-
vironment [27, 5, 4, 18, 19, 21, 22]. More comprehensive
techniques focus on extracting JavaScript elements that are
heavily obfuscated or iframes that link to known malicious
sites [25, 6]. Cova et al. [6], Stringhini et al. [33], and Mekky
et al. [21] note that malicious websites often require a number
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Fig. 1: Overall workflow of enabling an on-the-wire honeyclient.

of redirections, and build a set of features around that fact.
Nelms et al. [22] studies the webpaths users take to malware
downloads and builds a classifier to label them in the wild.
Canali et al. [5] describes a static prefilter based on HTML,
JavaScript, URL and host features while Ma et al. [18, 19] use
mainly URL characteristics to identify malicious sites. Some of
these approaches are used as pre-filter steps to eliminate likely
benign websites from further dynamic analysis [26, 25, 5].
Unfortunately, these techniques take broad strokes in terms of
specifying suspicious activity. As a result, Provos et al. [26]
reported a 10% false negative rate and Canali et al. [5] reported
a false positive rate of between 5% and 25%, while Provos
et al. [25] only disclose that using obfuscated JavaScript as an
indicator leads to a high number of false positives. These works
also require large training sets that are not generally available.
By contrast, our approach focuses on behavioral aspects of
malware to help reduce false positives and false negatives.

Schlumberger et al. [29] extracts features related to code
obfuscation and the use of Java API calls known to be vul-
nerable, then detects malicious applets using machine learning.
Likewise, Van Overveldt et al. [35] instruments an open source
Flash player and extracts similar features to detect malicious
ActionScript. While these techniques are dynamically adapt-
able due to their use of machine learning, they still require
a priori notions of how malicious code is constructed. For
example, Van Overveldt et al. [35] implements features that
are meant to determine whether code or data obfuscation has
been used, and whether known vulnerable functions have been
used. Intuitively, a previously unknown vulnerability, i.e., a
zero-day attack, present in an unobfuscated Flash file will
not be detected. Additionally, highly obfuscated Flash exploits
wherein the obfuscation itself is the only available feature
cannot be reliably detected with this approach without false
positives (2% in [35]) since obfuscation is commonly used by
benign files. In contrast, our approach does not use obfuscation
or known vulnerable functions to make a final decision, thus
we have a lower false positive rate.

Finally, by far the most popular means of network pro-
tection are NIDS, such as Bro [23] or Snort [28], that pas-
sively monitor networks and apply content-based signatures to
packets and sessions in order to detect malfeasance. These
signatures are lightweight, but are evaded through the use
of obfuscation and morphing techniques commonly utilized
by attackers. They also are not effective against zero-day
attacks. To help with forensic analysis, Maier et al. [20]
extended Bro with time machine, a lightweight data store for
packets, so that Bro could retrospectively query packets by
their headers to perform further analysis on interesting events.
Time machine has similar goals to our caching and replay
mechanism; however, they attempt to achieve this goal at the
network layer, storing up to N bytes per connection tuple
in a packet trace. In contrast, our approach operates at the
application layer by storing reconstructed web objects. For
HTTP, this application layer approach achieves much greater
compression, as a small number of unique web objects are
frequently fetched by users (e.g., Facebook, Google).

We argue that our framework provides the best of both
worlds between statistical approaches and honeyclients by
bringing the honeyclient to the network. As a result, we can
identify new exploits on-the-fly and mitigate threats more
swiftly than the current state of the art.

III. OUR APPROACH

In short, our goals are to combine on-the-wire monitoring
of network with the use of honeyclients in an attempt to
address real-world challenges faced on a large network. We
conjecture that such a combination significantly outperforms
content-based signature approaches in terms of detection rates,
and moreover, can be designed and implemented in a scalable
manner. Working at scale, however, comes with several prag-
matic challenges that must be addressed. For one, honeyclients
are notoriously slow in analysis; therefore, we require mech-
anisms to drastically reduce the amount of traffic analyzed,
but without basing these mechanisms on preconceived notions
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as to the innocuity of the traffic in question. Other practical
concerns involve finding robust ways to decide what contex-
tual environment should be used for analyzing a potentially
malicious event triggered by our framework. The high-level
depiction of our workflow is given in Figure 1.

Intuitively, HTTP traffic is monitored at the network border
or within an HTTP Proxy. In step ¶, a collector reassembles
TCP sessions into bidirectional HTTP requests and corre-
sponding responses. HTTP objects are extracted and cached
in a two-level semantic cache. In step ·, those objects that
represent attack vectors (e.g., Flash, PDF, Java, Silverlight)
trigger additional analysis. In step ¸, our chaining algorithm
selects the initial URL to be loaded by the honeyclient. Finally,
in step ¹, the honeyclient transparently queries the two-level
cache and monitors various system events to provide detection.
In what follows, we discuss the challenges and solutions we
provide for each component in our design.

A. Step ¶: Semantic Content Caching

The state-of-the-art application of honeyclient analysis
requires that operators provide a seed list of URLs to the
honeyclient, which in turn fetches each live URL within the
analysis environment. Operating on-the-wire, however, we can
not afford this luxury. Moreover, for privacy reasons, we can
not simply log URLs observed on the network and use these
URLs as the seed list; such URLs may contain end-user
information embedded with parameters that instruct remote
servers to perform some action such as purchasing items,
posting written content, or verifying some event or action.
Thus, we are left with no option but to perform in-memory
processing of the fire hose of request content that enters the
network, without human intervention or saving of information
to non-volatile storage. We can, however, rely on a short
window of time (e.g., on the order of minutes) where recent
browsing activity is retained in caches that can be queried.

In our approach, we opt for caching observed content at the
application layer rather than at the network layer as proposed
by Maier et al. [20]. As packets cross the network border, we
reassemble them first at the TCP-level into matching {request,
response} data streams. Duplicate or malformed TCP packets
are discarded as specified by the TCP protocol. Then we
reassemble these data streams at the HTTP-level, making each
request header and associated response content transparent to
our framework. As with TCP packets, malformed HTTP con-
tent is discarded in accordance with the protocol specification,
and content for other application-layer services is filtered and
ignored. Web objects (e.g., HTML, JavaScript, Images, Flash,
Java, etc.) are then extracted from the reassembled streams.
Object types are determined by using a combination of the
HTTP Content-Type header, the file extension specified in
the URL, and the first 512 bytes of the payload (i.e., the “file
magic”). These objects are then placed in a two-level semantic
cache to later be (potentially) queried by the chaining and
honeyclient phases of the process (step ¹).

The key observation we made in designing our application-
layer, two-level, semantic cache is that a significant percentage
of network traffic is, in fact, identical content served from
a few popular web sites (e.g., Google, Facebook, YouTube).
Thus, such a cache is capable of compressing data much more

efficiently than at the network layer where each packet of data
is more likely to be unique with client address information and
different patterns of TCP and HTTP chunking. The first level
of our cache is for web objects that are cacheable network
wide – i.e., objects that do not change frequently between
client web requests. This cache works similar to a web proxy
cache and caches objects using the Expires and Max-Age
HTTP response headers and is implemented based on the web
caching RFC 7234. We use a least recently used (LRU) caching
data structure to hold these objects until they either expire, or
are evicted because the cache is full. Globally cached web
objects are stored on disk in order maintain the cache between
application runs.

There are many objects that are not cacheable network wide
because they provide dynamic content such as a personalized
landing page on a social networking web site. As a result,
these objects are stored in individual client-level caches keyed
by IP address in volatile memory. This second level is an LRU
cache composed of LRU caches, where client IP addresses are
evicted after a tunable period of inactivity. The cache holds a
tunable maximum of N client IPs by M objects to manage
memory consumption. We revisit the effect these parameters
have on memory consumption and the achievable throughput
of our framework in §IV.

We later discuss how this cache is utilized for honeyclients
in §III-C, but for now turn our attention to how one can use
this information to hone in on potentially malicious web traffic
in an overwhelmingly benign sea of traffic flows.

B. Step ·: Filtering and Triggering

One significant challenge in the design of our framework
lies in the ability to scale to provide a timely analysis of
each observed request. Indeed, honeyclient analyses typically
require on the order of minutes to complete depending on
the specific techniques employed. Furthermore, large networks
may observe on the order of thousands of requests per second.
Our framework addresses this problem by selectively analyzing
only specific types of requests — those that eventually lead
to the download of a commonly exploited file format — and
then we additionally filter those analyses using a file format
specific mechanism.

To guide our efforts in designing file format specific
filters, we measured the observed downloads on our campus
network over the course of a single school day (see section
§IV). Only JavaScript, Flash and Portable Document Format
(pdf) exceeded an average of one observation per minute.
Executable, Java and Silverlight file formats proved to be
relatively rare and hence we do not design filters for these
formats, as it is unnecessary. We observed an average of 7.4
pdf files a minute. Fortunately, filtering based on unique file
content hashes alone drops the number of pdf files requiring
analysis to less than one per minute, which can be easily
handled by a stock version of ShellOS [30].

Unfortunately, the same cannot be said for JavaScript files.
We observed a staggering 3,628 JavaScript files (on average)
per minute with peak rates of over 8,000 per minute. Parsing
the content of all these scripts in an effort to design an
appropriate filter results in packet loss in the HTTP parsing
phase of semantic caching. Hence, we believe a potential route
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to filtering JavaScipt is to leverage meta-data for each script,
such as the source IP and domain combined with a reputation-
based approach [2]. Given the current challenges in analyzing
Flash, we leave JavaScript filtering as future work.

As noted earlier, we observed hundreds of Flash objects
per minute; large enough to require filtering, but not so large
that the mere act of parsing them all causes packet loss. Hence,
an additional filtering mechanism was required to reduce the
overall number of Flash files analyzed. The academic literature
offers a few options that we considered. For instance, Ma
et al. [18] use URL features to classify requests as malicious,
while Cova et al. [6] uses code obfuscation, specific API
calls, and number of iframes as features. These features are
effective, but fall short when a new zero-day exploit surfaces
that is not in line with the predefined feature set. In short,
existing approaches for filtering Flash files take a blacklisting
approach, that unfortunately, are evaded during the period of
time when attackers exploit a new vulnerability without giving
those systems other hints of their malicious intent (e.g., such
as multiple layers of obfuscation). We return to that discussion
later in §IV.

Instead, we opted for a whitelisting approach in line with
our goal of using honeyclients to detect previously unseen,
or zero day, attacks. Our approach, which is based on file
popularity, does not make the same assumptions about feature
sets as in prior work. The key insight is that the vast majority
of Flash files seen on a network are from advertising networks
that utilize a relatively few number of unique Flash files
to display ads. These ads also flow along the network in
a bursty pattern as a web page will typically load multiple
advertisements.

Given these insights, we make use of two filters. The first
filter takes a 16-byte hash of each Flash file and checks a key-
value store of known popular Flash hashes. If the hash appears
in the data store it is not analyzed. This basic check eliminates
the need to analyze ads wherein the Flash files themselves are
identical, but they serve different ad content through the use
of different parameters supplied to those files. On the other
hand, some ads have their content directly built into the Flash
file itself. Our approach to handling this second type of ad
is more involved. More specifically, we make the simplifying
assumption that a small number of libraries are in use and that
some subset of that code is used in each Flash file. Given that
assumption, we parse Flash files observed on the network and
extract individual function byte-code. We hash the byte-code
at the function level to create a piecewise or fuzzy hash [14].
Then, for each new Flash file we only trigger an analysis if it
has at least one function that is not in our function-level hash
store. If an attacker attempts to masquerade their Flash exploit
as a benign ad, we still trigger an analysis based on the fact
that some new code must be added to exploit a vulnerability.

Using these filters, the average number of Flash files
analyzed per minute drops to less than 10 (from over 100
observed per minute). Even so, Flash offers some interesting
challenges, and so to focus our presentation, we center on
an in-depth analysis of Flash exploits in §IV. At this point
we have a cache of web objects and a desire to perform a
honeyclient analysis based on the observation of a potentially
malicious Flash file. We now turn our attention to the details
of how all the information collected up to this point comes

together to “replay” content for honeyclient analysis without
ever contacting live exploit kit servers.

C. Step ¸: Client and Server Impersonation

Given some recently observed network traffic containing
the interaction of a client and server, the immediate goal at this
stage in the overall architecture is to provide an environment
in which we can observe client system state changes, e.g.,
to enable honeyclient analysis. The central challenge is to
do so without further interaction with either the client or
the server. The observant reader would note, however, that
one can rarely analyze a web-based exploit file like Flash in
isolation. This is due to the fact that the surrounding context
of HTML and JavaScript provide requisite input parameters
that enable the exploit to successfully operate. To overcome
this obstacle, we recreate that context and replicate client
and server configuration based on the previously observed
information in the interaction between the client and server.

Client Impersonation: On the client-side there are two pri-
mary challenges: (1) replicating client system configuration
and (2) determining the originating HTTP request that resulted
in the chain of requests leading up to exploit file. To tackle the
former challenge, our framework implements an independent
network oracle that collects browser and plugin information
about every client on the network. Collecting client browser
information is a popular activity for attackers [1], which we
turn into a valuable resource for our own purpose. Due to data
collection limitations on our campus network, we are limited
to collecting browser information through the User-Agent
and X-Flash-Version fields of HTTP requests, which
provides browser, OS and Flash versioning information. In
corporate enterprise networks, one can use more sophisticated
collection techniques using JavaScript [1]. Nevertheless, our
empirical results show that even such limited information
provides enough detail to assist with the dynamic configuration
of honeyclients to allow them to be successfully exploited.

Tackling the latter client-side challenge turned out to be
far more involved. One reason is because a client may have
multiple web browser tabs open loading multiple web pages,
or a single page loading several other web pages that do not
lead to the observed exploit file. To resolve the originating web
page of an exploit file we introduce a new algorithm, dubbed
the chaining algorithm (Algorithm 1), that operates as follows.
First, during the two-level caching step of our workflow (step
¶ §III-A), the URL from each cached object is timestamped
and stored in a list keyed by the corresponding client’s IP
address. Only URLs that represent HTML documents are
added to the list. When a web object (e.g., Flash file) triggers
an analysis, the URL list for the corresponding client IP
address is traversed, and request URLs that are within a tunable
time threshold are sent to the next step.

Next, Algorithm 1 iterates through each request URL in the
list, and loads them one-by-one into an instrumented headless
browser (lines 8–20) given the client’s browser and IP address
information. A headless browser is a web browser without any
graphical user interface that allows rapid HTML parsing and
JavaScript execution without the overhead of an entire virtual
environment. The headless browser uses the two-level semantic
cache as a proxy to request corresponding web resources. It
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Algorithm 1 The chaining algorithm searches for the root web
page that loads the trigger to be analyzed in the honeyclient.

1: URLList← List of URLs within timing threshold of trigger.
2: TriggerURL← URL of target trigger object.
3: ProxyAddr ← URL of web cache.
4: ClientConfig ← Client’s browser information.
5: browser ← HeadlessBrowser(ClientConfig, ProxyAddr)
6: CurrentBestMatch← ⊥
7: BestMatchURL← ⊥
8: for all ( do Url← URLList)
9: ObjectTags← browser.SearchForObjectTags(Url)

10: Match← FindTriggerInTags(TriggerURL,ObjectTags)
11: if Match == EXACT MATCH then
12: CurrentBestMatch←Match
13: BestMatchURL← Url
14: BREAK
15: end if
16: if Match > CurrentBestMatch then
17: BestMatchURL← Url
18: CurrentBestMatch←Match
19: end if
20: end for
21: if CurrentBestMatch 6= ⊥ then
22: SubmitToHoneyClient(ClientConfig,BestMatchURL)
23: end if

parses web content and executes any JavaScript searching for
object, applet, and embedded HTML tags (line 9) that
are used to load Flash, Java, and Silverlight files. These tags
are scanned for absolute and relative references to the exploit
file URL (line 10). If the exploit file reference is found in
these tags, the request URL is selected as the originating
request (lines 10-15). Where available, the triggering web
object’s referrer can be used to prioritize URL selections for
the algorithm.

If no URL leads to an exact match, then the best near-match
or potentially malicious match is selected as the originator.
We determine near matches through domain, or by domain
and path. A potentially malicious match is determined through
observed JavaScript behavior, including checks for anti-virus
plugins, accesses to known exploitable APIs, or attempts to
load files on the local hard drive (see §V, for example).

One of the major challenges in our approach is that client
browser caches can store highly cacheable web objects, such
as JavaScript, for days or months. As a result, the network
monitor may not see all requested web objects during the
course of analysis. In order to deal with this situation, the
web cache acts as a proxy, retrieving web objects known to be
JavaScript and caching them. All proxy requests are sanitized
of any client personal information.

It is prudent to note that there are cases where a single
chain of HTML resources can lead to multiple Flash files.
Thus, before sending a URL list to the chaining algorithm for
analysis, the network monitor waits several seconds to allow
other Flash files to be cached. Each Flash file is then sent
with its corresponding URL list to the chaining algorithm for
analysis. A request URL is only scanned once, and if it is found
to lead to multiple Flash files the remaining chains associated
with those files are not re-executed. The honeyclient uses the
request URL to load all Flash files and analyzes them all at
once (line 22).

Server Impersonation: The most significant challenge with
respect to impersonating the server-side of the connection is
that it is the headless browser and honeyclient—not the original
network client—that makes the web requests to the web cache.
As a result, we must pass the client IP to the web cache along
with the URL. This is done by encoding the client IP into
the URL of the initial web request before passing it to the
honeyclient. The web cache decodes the URL, extracts the
client IP, and maps the address to the honeyclient’s IP to handle
subsequent related web requests. Next, the web cache uses
the URL to check the network-wide cache. If the URL is not
present, the client-level cache is checked. If no web object is
found, a 204 status code is returned.

Lastly, web objects are cached with their original
HTTP headers. However, since objects are reassembled
and decompressed in the cache, some header information
(e.g., Transfer-Encoding) is deleted or altered (e.g.,
Content-Length) before being served to the client.

D. Step ¹: Honeyclient-based Detection

Once a URL is selected for analysis in step ¸, the
associated client IP is encoded into the URL and the new URL
is sent to a honeyclient. In this context, we define a honeyclient
as any software posing as a client that interacts with a server
with the goal of determining whether that server is malicious.
The framework is designed to be modular allowing for any
honeyclient that supports interacting with a proxy server.

Our experiments in §IV make use of unmodified versions
of Cuckoo Sandbox1 and ShellOS [30, 31]. We chose these
two approaches due to the fact that they collect very different
metrics and have different runtime requirements. Specifically,
ShellOS analyzes a virtualized environment for evidence of
injected code (or shellcode) by executing potential instruction
sequences from an application memory snapshot directly on
the CPU. Thus, ShellOS monitors the programmatic behaviors
of a malicious payload. ShellOS labels a sample as malicious
if any of the following are true:

• The process memory contains a code injection or code
reuse payload.

• The process memory exceeds a tunable threshold
(500MB in our analysis), e.g., a heap spray is likely
to have occurred.

• The process terminates or crashes.

By contrast, Cuckoo monitors changes to a virtualized
environment primarily by API hooking. API hooking is the
process of intercepting function calls, messages, and events
in order to understand application behaviors. We use Cuckoo
Sandbox to label a sample as malicious if any of the following
is true:

• The process uses known anti-detection techniques.

• The process spawns a another process.

• The process downloads an exe or dll file.

• The process accesses registry or system files.

1http://www.cuckoosandbox.org/
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• Network traffic contacts non-application related hosts.

• The process accesses potentially sensitive information
in the browser process.

• The process modifies system security settings.

In order to separate the honeyclient approaches from their
specific implementations, we refer to ShellOS as H1 and
Cuckoo as H2 in §IV. Our evaluation shows that monitoring
system state with either of these approaches significantly
improves detection performance over content-based signatures.

E. Prototype Implementation

Our prototype implementation consists of 8192 lines of
custom C/C++, Java and Golang code. The libnids library
provides TCP reassembly. We implemented a Go IO reader
interface for libnids to adapt Go’s in-built HTTP request and
response parsing to captured network traffic. The resulting
HTTP objects are stored using a multi-tiered hash map keyed
by client IP address and the URL requested, as described in
§III-A. The global web cache and Flash filters are stored in
the rocksdb key-value store, while triggers are implemented
with a combination of both response MIME-type and the “file
magic” indicating a file type of interest.

The sheer volume of Flash requests observed on our
campus network necessitated filtering for Flash file triggers,
as described in §III-B. Our Flash parsing and fuzzy hashing
is all custom code written in Go, as is the implementation
that impersonates the attack server. For our headless browser,
we use HTMLUnit2, an open source implementation written in
Java that incorporates the Rhino JavaScript Engine. HTMLUnit
can mimic Internet Explorer, Firefox and Chrome and is
controllable programmatically. Furthermore, the browser is
extensible allowing for the addition of customized plugins and
ActiveX objects to simulate various versions of Java, Flash,
and Silverlight. Framework modules communicate with one
another using a web-based REST messaging service in addition
to Redis, a key-value cache and store.

IV. EVALUATION

To demonstrate the efficacy of our framework we con-
ducted both an offline evaluation with known exploit kit traces
and an online analysis on a large campus network. In short,
our findings suggest that on-the-wire honeyclients consistently
out-perform signature-based systems by discovering exploited
clients days and weeks ahead of those systems. We also show
that a single on-the-wire honeyclient server is capable of
keeping pace with a large campus network at its boundary.

The evaluation focuses on Flash files as triggers due to
the sheer volume of Flash on the network (see Table I). File
types such PDF and EXE are typically self contained and
can be analyzed directly within a sandbox without loading
a full website [30]. Like Flash, Silverlight and JAR files both
require the context of the loading website. With all the recent
Java security vulnerabilities, Java is disabled in all browsers
requiring the user to directly allow a class or JAR file to run
— our framework does not support user interaction. Finally, as
shown in Table I, both Java and Silverlight are seen in such low

2Available for download at http://htmlunit.sourceforge.net/

numbers that they do not pose the same operational challenges
as Flash and are thus not considered further.

JavaScript is one of the most (Table I) prevalent web ob-
jects on a network, and as such, presents significant scalability
challenges. While we do not address JavaScript-only drive-
by-download attacks in this paper, we can detect malicious
JavaScript that is used to load a trigger file (e.g., Flash).
Furthermore, the lessons learned from analyzing Flash will be
invaluable in our future work on full scale JavaScript analysis.

Silverlight 108
JAR 322
EXE 871
PDF 10,637
Flash 97,576
JavaScript 5,224,412

TABLE I: Number of instances of various file types seen on
campus on a busy school day.

A. On Detection Performance

Experiments in this section are conducted on a Dell Opti-
plex desktop with a 4 core i7-2600 CPU at 3.40GHz and 16GB
RAM. Two different honeyclients are used for each sample
– H1 and H2 – as described in the previous section, with
their default installations using Qemu and Virtual Box virtual
machines, respectively, on Ubuntu Linux 14.04 64-bit. The
analysis time for H1 is set to 30 seconds, while H2’s timeout
is 5 minutes. Each honeyclient uses the same VM configuration
– Windows 7 32-bit, either Internet Explorer (IE) 8 or IE
10, and one of 8 different versions of Adobe Flash Player
configured dynamically based on information retrieved from
the network oracle (see section §III-C). Honeyclient results
are then contrasted to the results of 50 antivirus engines3.

We inspected 177 HTTP publicly available packet trace
samples of exploit kits4. Each trace represents a packet record-
ing of all HTTP traffic between a Windows 7 virtual machine
and a real-world website known to be injected with an exploit
kit landing page, typically through an injected iframe. Over
a year of traces were collected between April 2014 and June
2015 representing successful exploits from 10 unique exploit
kit flavors that evolved over this one year period. Thus, our
dataset is representative of the diversity of real-world attacks
that would be encountered if our framework were to be
deployed on any large network.

On-the-wire Performance of Honeyclient H1: Table II
shows the evaluation results for our framework using H1 with
a breakdown of how each exploit kit is detected. In all cases,
the exploit file and originating request URL are identified
(step ·) and forwarded to the honeyclient for inspection
(step ¹). Overall, this configuration has a 92% true positive
rate. The vast majority of detections are from code injection
payloads in process memory, suggesting that the use of code
injection payloads is still a prominent means of exploitation,
despite a multitude of commonly deployed endpoint defenses.
The missed detections result from exploits that do not make

3Using analysis available at http://www.virustotal.com
4Samples available at http://www.malware-traffic-analysis.net
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Exploit Kit Uses Payload Crashes Heapsprays Terminates Misses Total Detections Total Instances
Nuclear 24 0 1 1 3 25 28
Angler 32 1 0 0 0 33 33
Magnitude 4 2 1 0 1 6 7
Sweet Orange 21 0 0 0 0 21 21
RIG 16 8 0 2 0 18 18
Neutrino 9 1 2 0 0 9 9
Fiesta 28 1 0 0 9 29 38
Null Hole 1 1 0 0 0 1 1
Flashpack 7 8 1 1 1 12 13
Infinity 5 0 0 4 0 9 9

147 22 5 8 14 163 177

TABLE II: Detection results for our framework when using honeyclient H1 on the 10 exploit kits by detection type.

Exploit Kit Process Launch File Drop Browser Crash File Access Misses Total Detections Total Instances
Nuclear 3 1 5 5 14 14 28
Angler 0 0 4 20 9 24 33
Magnitude 2 0 0 0 5 2 7
Sweet Orange 2 0 0 1 18 3 21
RIG 3 0 7 0 8 10 18
Neutrino 2 0 0 0 7 2 9
Fiesta 26 26 0 0 12 26 38
Null Hole 0 0 1 0 0 1 1
Flashpack 5 0 5 0 3 10 13
Infinity 2 1 5 0 1 8 9

45 28 27 26 77 100 177

TABLE III: Detection results for our framework when using honeyclient H2 on the 10 exploit kits by detection type.

use of traditional code injection. Rather, they use a memory
disclosure vulnerability to leak system API addresses and then
dynamically construct the injected code using this information.
As a result, the so-called PEB heuristic [24] used by H1, which
identifies the API address lookups of injected code, is never
triggered. H2, on the other hand, uses a disjoint set of features
such as monitoring file drops, process launches, and registry
and file accesses through function-level hooking.

On-the-wire Performance of H2: The results when
using H2 with our framework are shown in Table III. This
configuration only resulted in a 56% true positive rate. One
reason for this lower detection rate is that browser-based
analysis is a relatively new feature in H2 and IE 10 is not
fully supported at the time of writing this paper. Digging
deeper into the remaining missed detections, we found that
the exploits are unhooking four Windows API calls (details
in Section V) that are used by attackers to determine whether
they are operating in a virtualized environment. In short, the
exploits use injected code to first remove H2’s hooks, then call
those APIs to determine if the system is virtualized. Attacks
immediately cease when a virtualized environment is detected
in these samples. Nevertheless, H2’s heuristics are still useful
for exploit detection. For example, H2 is able to detect the
14 exploit kits that H1 misses by observing accesses to the
filesystem, process launches and file downloads.

The results of our evaluation indicate that injected code
detection is a robust feature for determining maliciousness. It
is used by 83% of exploits, and does not require successful
exploitation for detection. For example, exploits using injected
code to detect virtualization are detected by H1 even if they
decide not to compromise the system. However, H1 cannot
handle virtualization checks that are done through JavaScript-
based filesystem checks (§V) prior to constructing or un-
packing the injected code. Indeed, Angler would have been
undetectable by H1 had it checked for files related to QEMU

prior to unpacking the code injection payload. As a result,
H2’s file and registry access hooks, as well as environmental
change detection, are equally important. Using all features
from both honeyclients enables the framework to achieve a
100% true positive rate. Even so, it may be possible for attacks
to evade these honeyclients by combining unique methods of
unhooking functions with injected code that does not perform
API lookups.

We reiterate that the design and implementation of specific
honeyclient technologies is an ongoing research topic, but the
primary goal of our work is to provide a framework that
effectively leverages such advancements on-the-wire. To that
end, these experiments confirm the efficacy of our approach
by providing honeyclients H1 and H2 with all relevant infor-
mation needed to replay and reproduce the attacks. Indeed, our
framework achieves a 100% success rate in this context.

Content-based Signature Comparison: Next, we com-
pare the performance of honeyclients using our framework
with that of content-based signatures, e.g., antivirus engines.
We checked each exploit file associated with all 177 HTTP
traces against 50 signature engines and found that on average
50% of these engines labeled the exploit file as malicious5.
One could argue that perhaps some of these engines perform
better than others and, indeed, three of the engines detect all of
the given exploit files, e.g., 100% true positive rate. However,
we argue that such a comparison against a honeyclient is
biased and incorrect in practice – The honeyclients operate
with only the general knowledge of the behaviors they observe
as they occur while content-based signature engines update
their knowledge base per each newly observed malicious file.
Indeed, there is little value in a system that does not detect a
malicious file at the time it is used to attack one’s network. We
hypothesize that signature engine performance is significantly

5Note that some of these engines also incorporate a heuristic approach in
their determination.
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(a) Each exploit kit instance is represented by a point on the x-axis.
The y-axis indicates how many signature-based engines detected an
instance for the first and most recent submissions.

(b) Comparing detection rates of 6 Flash exploit instances over time.

Fig. 2: Analysis of the 177 exploits on VirusTotal.

worse than our on-the-wire honeyclient when comparing it to
a signature engine using only those signatures available at the
time of the attack.

Indeed, our experiments confirm the aforementioned hy-
pothesis. The results of this analysis are depicted in Figure 2.
Figure 2a shows that at initial attack time, 69 of the exploits
go completely undetected by all engines. In other words, the
best engine has no more than a 61% true positive rate. Another
70 are only detected by a single engine, meaning that 98% of
engines have no better than a 21% true positive rate. More
unsettling is that two different instances of the same exploit
kit found a year apart still leads to at most 3 signature-engine

detections. Thus, finding a single instance of an exploit file
does not appear useful for these engines in finding newer
exploit files from the same exploit kit, unless the files are
exactly the same.

Another concerning revelation is how long it takes for
signature-based engines to detect exploits after initial obser-
vation. We randomly selected six exploit kit instances from
the sample set and analyzed how many engines detected the
instance over time starting from the initial observation to the
last, as seen in Figure 2b. In the case of Angler, Flashpack,
Nuclear and Sweet Orange, 3 to 10 days passed before only 5
engines are able to detect the exploit. For Infinity, a month
elapsed before signatures were distributed for each exploit
instance. Unfortunately, with the rapidly moving and morphing
nature of these kits, the instances are no longer active on the
Internet by the time content-based signature engines have a
rules to detect them. By contrast, honeyclients have no pre-
conceived notions about what is malicious, but rather execute
new files in a dynamic environment and monitor system state
change and the factors described in section §III-D. As a result,
our framework detects attacks on-the-wire when it matters –
as they happen.

In summary, the use of H1 and H2 with our framework
detects 100% of attacks in our diverse sample set, while
the combination of 50 signature-based engines achieves 61%
detection. Next, we present the results of live-testing on-the-
wire and report on false positives.

B. On Live Traffic Analysis

We now turn our attention to detection in the face of
significant background traffic. That is, experiments in this
section demonstrate that our framework can successfully detect
exploits from the larger haystack of benign traffic while
maintaining a negligible false positive rate. To that end, we
ran our framework on a campus network for a 5 day period
in November 2015. The University has over 25,000 students,
faculty and staff with an average network throughput of 1
Gbps (in the summer) and 7Gbps (during the school year)
on a 10 Gbps link. Our tap utilizes an EndaceDAG data
capture card on a Dell R410 rack-mounted server with 128
GB RAM and three 8-core Xeon 2100 CPUs. Furthermore,
we used the H1 honeyclient running with five VMs, allowing
us to run five concurrent analyses supporting Chrome, Internet
Explorer and Firefox browsers. The online analysis focuses
on H1 because we developed the platform and could easily
modify it to support multiple browsers and Flash plugins, while
debugging any load related issues. While we realize that not
using H2 will affect the overall detection rates, we believe our
setup sufficiently demonstrates the utility of the approach in a
live environment. Integrating the feature sets of H1 and H2 is
left for future work.

On Flash Filters: Before we can run our online test,
we must establish the Flash filters. To do so, we investigated
the Flash file download patterns of the university network by
monitoring the network for a three day period in July. We
collected Flash file hashes, piecewise hashes (described in
section III-B), and requested URLs.

Over 270,000 Flash files were downloaded by network
clients, as shown in Figure 3. We observed that the ad-
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Fig. 3: The number of unique 2nd-level domain names, Flash
files, and Piecewise hashes seen on the network.

related domains serving the most total Flash files actually serve
relatively few unique Flash files, suggesting that ad sites reuse
identical Flash files, but pass different parameters in order to
render different ad content. For example, adap.tv generates
21% of all Flash traffic on the network, but does so with only
13 unique files. As depicted in Figure 3, only 19,000 unique
Flash files are served during the test period. Further, only 6,000
of those unique Flash files contain distinctive function-level
opcodes, as captured by our piecewise hashing.

Over the course of the experiment, the network starts to
reach a steady state where fewer and fewer new Flash instances
are observed. In 98% of the minutes analyzed, we see four or
fewer new files, while in 57% of the minutes we see no new
files at all.

On Packet Drops, CPU and Memory Usage: We used
the hashes gathered during the July experiment, and augmented
them with 745 file and 722 piecewise hashes of popular ads for
our 5-day test in November — in total, the Flash filter contains
38,904 file and 11,091 piecewise hashes. During the test we
observed an average of 23,000 unique IP addresses per day
with up to 1,000 concurrent users. Throughput averaged 14,128
TCP flows per minute with peak periods of 35,000 flows. Our
implementation reassembled TCP streams, parsed HTTP flows,
and cached all web objects (step ¶) without dropping a single
packet, but did observe 4.25% TCP reassembly errors.

Figures 4a and 4b show the average CPU and memory us-
age per minute for the network semantic caching and triggering
module. The module works by using a single packet collection
and reassembly thread, which launches a thread to parse and
decompress each new TCP session. Parsed web objects are
then passed to a different thread for caching. As shown in
Figure 4a, the collector averages a modest CPU utilization of
about 1.7 (170%), but can peak to 14 (1400%) for small time
periods. CPU utilization refers to the percentage of CPU cycles
used by the process; therefore, the collector uses on average
the equivalent of 1.7 processor cores. Given the threading
model, we recommend a system with many cores to best
support the semantic caching and triggering module. Memory
usage (Figure 4b) averages 22 GBs but can reach peaks of 40

GBs, suggesting that our caching model significantly reduces
memory requirements over time.
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Fig. 4: CPU and memory statistics for the semantic cache and
trigger module.

On Cache Hit Rates and Chaining Algorithm Perfor-
mance: Over the five day period, the collector reassembled
576,871 Flash objects of which 5,488 objects were analyzed
using the chaining algorithm after filtering. Figure 5a shows
the average cache hits per minute of the headless browser
for all web requests to the two-level semantic web cache.
The chaining algorithm had an average cache hit rate of 73%
per minute with the majority of cache misses due to three
main reasons. First, the TCP reassembly errors cause 4.25%
of the web objects to be improperly processed and cached.
Second, Flash can be loaded by other Flash files over intervals
longer than the window set by the client cache meaning the
corresponding webpages are no longer present in the cache
(more on this in the following paragraph). Finally, a user
may periodically visit a popular website that contains highly
cacheable web objects such as images, JavaScript files. These
files are cached by the user’s web browser and thus might not
be requested along with the Flash file. We mitigate these cache
misses by retrieving missing JavaScript files from their source
as discussed previously. On average there are 1,253 clients
in the client cache with peak rates of 2,670 (see Figure 5b),
while 90% of clients have less than 1,000 web objects in their
cache at eviction. As a result, we found that setting the client
LRU cache to size N=5,000 per client maintains a reasonable
memory footprint.

Table IV shows that the chaining algorithm triggered a
full sandbox analysis for 76% of all Flash files. Although
this might seem low, the remaining Flash came from three
distinct categories. First were those Flash files that require user
interaction to load. For example, many Flash-based news sites
will load an image for a news report video, and will not load
the actual Flash video until the user clicks on the image. An-
other example is those pages that require user login credentials.
Since we opt not to make use of any user credentials, Flash
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Fig. 5: Two-level cache statistics.

objects requiring credentials cannot be analyzed.

Triggered Full Sandbox Analysis 76%
Interactive 8 %
Flash in Flash 11 %
Errors 5 %

TABLE IV: Chaining algorithm match rate.

The second category is what we call “Flash within Flash”
that occur over a time window larger than what is set by the
client cache. For example, it is not uncommon that when a
user watches a TV show using a Flash player, the player will
load ads at various times throughout the show. As a result,
the context web objects that loaded the Flash will no longer
exist in the cache. In other cases, a page of ads may have
been left undisturbed (e.g., in another tab) for hours at a
time while the ads cycle through various Flash files. Figure
6 shows an estimate for the amount of time elapsed between
“Flash within Flash” file references for those Flash files that
did not trigger a full sandbox analysis. Indeed, 90% of these
flash files were loaded at least 8 minutes after their root
Flash file. While we could increase the time windows to help
identify the corresponding roots, we note that, as shown in
the public dataset, attackers want to load exploits as quickly
as possible, in order to increase the likelihood that the user
will not navigate away from the site before infection. Our
decision to not increase the window size is also tied to memory
consumption. Admittedly, our approach is susceptible to low-
and-slow attacks, but that limitation is not unique to this work.

Finally, 5% of the Flash files do not trigger a sandbox
analysis due mainly to TCP reassembly errors that cause root
webpages to be disregarded by the reassembler rather than
cached. Furthermore, note that trigger files that are not properly
reassembled are also disregarded from analysis meaning that
we could miss a potentially malicious file. However, the errors
in our proof-of-concept prototype originate from libnids, and

Fig. 6: Estimate of the amount of time elapsed between Flash
to Flash file launches for those files not subjected to a full
honeyclient analysis.

we believe that these issues can be mitigated by using a more
robust reassembler.

In 0.05% of the errors, an important JavaScript file is
encrypted with SSL, which we currently do not support.
Fortunately, many enterprises have the ability to inspect en-
crypted traffic at the border by using proxy servers specifically
designed to decrypt and monitor encrypted traffic.

On Detecting Malicious Flash: As part of our online
evaluation, we hosted a malicious landing page on an external
network6. The exploit server automatically detects the victim’s
software configuration before serving one or more appropriate
Flash exploits. In total, 11 unique Flash exploits are hosted
(see Table V). Our “victim” system runs IE10 and Firefox on a
Windows 7 VM within our campus network. We instrumented
the victim to repeatedly visit the landing page with different
versions of Flash, triggering each of the different exploits.

Since no packets are dropped in step ¶, it is not surprising
that our framework detected all of these exploit instances in
face of all the noise produced by the benign traffic. At the same
time, no false positives were generated by our framework over
the course of this 5 day period.

Aside from the injected metasploit malware, our approach
flagged 6 malicious events, i.e., 1 to 2 per day. To the best
of our knowledge, these events were missed by our campus’
Information Technology Service Office (ITS), which makes use
of several commercial products to detect and block known ma-
licious content on the network. The first event barred striking
resemblance to the Magnitude samples examined in this paper.
Two other instances were similar to Angler in that they checked
for the installation of anti-viral and monitoring applications
such as Norton and Fiddler. The final three instances were all
heapspray incidents, with one emanating from an online TV
site, while the others were site banners. Since the majority of

6Specifically, we used Metasploit’s browser pwn2 module on an Amazon
EC2 instance.
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Metasploit Exploit CVE Numbers Flash Version Used
adobe_Flash_pixel_bender_bof CVE-2014-0515 11.5.502.136
adobe_Flash_avm2 CVE-2014-0497 11.5.502.136
adobe_Flash_regex_value CVE-2013-0634 11.5.502.136
adobe_Flash_uncompress_zlib_uaf CVE-2015-0311 16.0.0.235
adobe_Flash_net_connection_confusion CVE-2015-0336 16.0.0.235
adobe_Flash_worker_byte_array_uaf CVE-2015-0313 16.0.0.235
adobe_Flash_pcre CVE-2015-0318 16.0.0.235
adobe_Flash_nellymoser_bof CVE-2015-3043, CVE-2015-3113 17.0.0.134
adobe_Flash_shader_job_overflow CVE-2015-3090 17.0.0.134
adobe_Flash_shader_drawing_fill CVE-2015-03105 17.0.0.134
adobe_Flash_domain_memory_uaf CVE-2015-0359 17.0.0.134

TABLE V: List of exploits injected into the campus network and detected by the framework.

redundant Flash ads are filtered, the main sources of benign
flash included online games, tutorials, news websites, online
TV, online textbooks, website tracking, and adult content.

V. CASE STUDY

In what follows, we perform a more in-depth analysis of the
inner workings of the exploit kits in our empirical evaluation.
Although we originally surmised that the landing pages would
likely look like advertisements, we quickly noticed that the
majority of pages were either composed of randomized English
words or encoded character sets (or both). Indeed, these pages
are never meant to be seen by the user, but rather hidden in a
small iframe. Furthermore, buried in these pages are nuggets
of data that the kit uses to help ensure it is not being run in
isolation. For example, embedded JavaScript might only fully
execute if the color of the third paragraph on the landing page
is “red”.

JavaScript is often the language of choice for would be
attackers as it can be used to check browser configurations,
and administer exploits either through browser or plugin vul-
nerabilities. The language is also ideal for obfuscation because
objects and their functions are represented as hash tables
making obfuscated code almost impossible to decipher without
a debugger.

As mentioned above, almost all exploit kits conduct a
reconnaissance phase to collect information about the browser
and to determine whether it is operating in a legitimate envi-
ronment. Browser configurations are determined using either
the navigator.plugins API (Chrome, Firefox, and IE
(11+)), or the proprietary ActiveXObject in older versions
of IE. A kit will use browser vulnerabilities to determine
whether it is operating in a virtualized environment, and will
drop one or more exploit payloads onto the client system
if the coast is clear. Below we describe some of the key
characteristics of popular exploit kit families.

a) Fiesta: The Fiesta landing page is known for check-
ing for a number of vulnerabilities in the browser and serving
multiple exploits at once. The kit communicates with its server
by encoding browser plugin information directly into the URL
that is sent to exploit server similar to a command-and-control
channel for a botnet. Fiesta’s attack of choice is to abuse
weaponized PDF documents to drop one or more malicious
binaries onto the system. Indeed, we found one instance of
the kit that dropped 12 binaries onto the system, while other
instances launched ping or a command shell.

b) SweetOrange: SweetOrange likes to use JavaScript
heapspray attacks, particularly by exploiting the rarely used
VML API in Internet Explorer7 to infect its victims. In three
cases, the exploit kit launched the Windows Control Panel
(control.exe) presumably to turn off key services.

c) Angler and Nuclear: Angler and Nuclear appear
to be popular vectors for dropping so-called Ransomware.
Recent versions (circa June 2015) of the kits are known to
check for Kaspersky and Norton browser plugins and to use
vulnerabilities in the IE browser to detect virtualization. For
example, Figure 7 shows a snippet of JavaScript code from
an instance of the Angler exploit kit (June 2015). The code
uses the HTML script with an invalid language to check
for commonly installed files related to VMWare, VirtualBox,
Parallels, Kaspersky, and Fiddler. If any of the aforementioned
applications exist, Angler will not exploit the system. Instances
of Angler from April of 2015 do similar checking using
JavaScript’s Image object as a medium to gain disk access.

These exploit kits also like to embed JavaScript directly
into the HTML of the landing page. Indeed, entire JavaScript
libraries (like the script in Figure 7) are embedded inside
HTML tags such as p as demonstrated by an Angler instance in
Figure 8. The JavaScript is decoded by a number of obfuscated
method calls, and the resulting code is executed using an eval
function call. As a result, current generation exploits must be
analyzed within the larger context of the website.

VI. LIMITATIONS

Many of the evasion techniques used against our system
are inherent to honeyclients in general and are being actively
researched in the security community. For example, as shown
in our use case, exploits will often check for evidence that
the environment is a virtual machine. In the short term, we
can help combat this check by installing VM libraries in
non-standard locations or by attempting to detect and flag
potentially evasive behavior. In the long term, however, a better
solution would be to adopt ideas from Kirat et al. [12, 13] to
build sandboxes on “bare-metal” that are able to revert system
changes without relying on hardware virtualization.

An obvious attack against sandbox-based approaches is
for the attacker to inject delays into the exploit kit code in
the hopes that the sandbox execution will timeout before the
exploit is executed. Such timeouts can be risky for the attacker
because the user of the targeted machine could surf to a new

7Described in the whitepaper at http://www.vupen.com/blog/20130522.
Advanced Exploitation of IE10 Windows8 Pwn2Own 2013.php
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1 f u n c t i o n xTrue ( rp1 , r r ) {
2 var r s 1 = ’ r e ’ ,
3 ac = [ ’QUPFE ’ , ’ PTKytUJ ’ , se tQuery ,
4 s e t D a t a b a s e ] ;
5 i f ( window [ ac [ r r ] ] ) re turn ;
6 var e l = document . c r e a t e E l e m e n t ( ’ s c r i p t ’ ) ;
7 i f ( ! window [ ’ MSInputMethodContext ’ ] )
8 e l [ ’ l a n g u a g e ’ ] = ’ some ’ ;
9 e l . o n lo ad = f u n c t i o n ( ) {

10 ac [ r r + 2 ] ( ) ;
11 } ;
12 e l . s r c = r s 1 + ’ s : / / ’ + rp1 + ’ / # 1 6 / # 1 ’ ;
13 e l [ ’ o n r e a d y s t a t e c h a n g e ’ ] = f u n c t i o n ( ) {
14 var s r = ’ r e a ’ + ’ d y S t a t e ’ ,
15 r = t h i s [ s r ] ;
16 i f ( r == ’ c o m p l e t e ’ | | r == ’ l o a d e d ’ ) {
17 ac [ r r + 2 ] ( ) ;
18 }
19 } ;
20 document . body . appendCh i ld ( e l ) ;
21 }
22 . . . .
23

24 var p a t h s y s 3 2 = ”\\Windows\\System32\\ d r i v e r s \\” ,
25 vm s = [ ”vm3dmp” , ” vmusbmouse ” , ”vmmouse” ,
26 ” vmhgfs ” , ” VBoxGuest ” ,
27 ”VBoxMouse” , ”VBoxSF” , ” VBoxVideo ” ,
28 ” p r l t i m e ” ] ;
29

30 f o r ( var i = 0 ; i < vm s . l e n g t h ; i ++) {
31 xTrue ( p a t h s y s 3 2 + vm s [ i ] + ’ . s y s ’ , 0 ) ;
32 }

Fig. 7: JavaScript snippet from Angler Exploit Kit that checks
to see if files exist on the hard drive.

page before the delay has transpired. One way to combat such
delays is by instrumenting our headless browser to record sleep
times and ensuring that the sandbox runs for at least that time
period. Sandboxes in general can also attempt to patch out
sleep functionality or adjust the time value it presents to the
software, but either of these techniques can still be defeated if
malware uses external sources of time information, such as the
Internet, to verify that the embedded delays have completed
as expected8. Thwarting such attacks remains an active area of
research and this limitation is not specific to our approach [17].

Attackers can also force a user to interact with the system
in some way before triggering an exploit. Such an attack would
be difficult to detect in a framework such as ours, which
is designed to work without manual intervention. Extensions
to the framework could simulate user interaction, such as
automated button clicks, but this is left as future work. Also,
if an attacker is willing to require user interaction in order to
carry out an attack, many other non-exploit attack vectors exist,
such as simply tricking a user into downloading and running
an executable file.

Alternatively, an exploit could also alter URLs using some
randomized token based on local settings. One approach to
thwarting such attacks is to perform URL similarity matching
(as done extensively in the literature [33]) while instrumenting

8See Sleeping Your Way Out Of The Sandbox, SANS Institute Reading
Room, accessed August 16 2015

1 <p i d =”aXzYFDTUynszpYYl”>i 3 g 5 t ( wwffos . d i s 2 g n 7 r g k f d {
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2 &nbsp ; g t ’ ’ w=f , ek ’ r l 2= i ’ eaKl fou ; g i i n t n &nbsp ;
tocozydU u { ( t ( r e

3 n ) Fmrn ) &nbsp ; d IF ] [ f2qZ y ;}Wul{a t e i n x g t
4 oTc ( ) n r ( IFdudreyFZmznUtny Wfin t &nbsp ; 3 q ; o } ) &

nbsp ; [ uc ] n{ u r t e ( t
5 &nbsp ; a r a t D ) g e a n I W[ Fnd d (4 FymyzZqU i t l ; a ]mv= r

} ) ru &nbsp ;
6 . . . .
7 </p>
8

9 <p i d =”aXzYFDTUmPsTzMivOvU”>&nbsp ; P L ] i ’ n I [=Pwdywe ’
o ngTr ’ c ; ’ o n e t u i 1

10 a f t ’ ’ h f d { ( [ n ] o i w)hQw oy [ Ptwr=d I i ; un w’ e P i . dw ’ ’
] ew ’ s ; &nbsp ; Lno= f l

11 a 5 s g 3 j 7 s f s t d 2 =fge2sggw . i ; 3 w7sonf 5 t d s o i d s l f ;
awsf=edwn . d

12 1=3 s 2 s f g f 7 t 5 s f f gasg35ed ; l . n t o i wsf2wgl}e s= f s a &
nbsp ; 2 d f 7 s ; f g ) t ( n

13 c f r n TotaueNi {57 t s i s n 2 . sfwd3wggof c f n e=d} u t ; r &
nbsp ; n u t i i ) l s

14 Ipome . . .
15 </p>
16

17 <p i d =” aXzYFDTUlIIsxbI i jznJVBuz ”>
wcaEqdjoiPP8WZwzng8 . ) e{ r f o u =( i t n t n

18 &nbsp ; &nbsp ; cuyqIW yzrFU [ ( mFnndZd o l .O]w) 1d 9 i ;
n wY}40A00M

19 Yc ’ F0=
aSY66r90B0000F0C009100682DD0A0000306701000C9FFB
. . . ’

20 </p>
21

22 <p i d =” aXzYFDTURSYMdwuFLH ”>&nbsp ; ’ ’ h f f d ( [ n ] o i !
wihQw ) a ( g t f o u {Ti ) n t n

23 &nbsp ; r e c Q= ’ w[ i {hw ’ onh f ] d t ’ eyPed ; r [ nLoi wuPIw
’ o3 . f =w ] d 2 i ; ’ n

24 ws ’ 5 f ; l e g j s g d &nbsp ; f7 = t a s s w t f s s d 3 o i g f d 2 s w 5 n g 7 .
sn so . ; f i e f

25 saw=dwl3 l a g f t 2 1 s s d 7 g f 5 = fse2sggw . i ; 3 w7sonf 5 t d s
; f } f a 2 f e f u l

26 &nbsp ; sd &nbsp ;= n t l m l i u o c I a i s p n e t ( i s w e{d ) e &
nbsp ; a r v t

27 =naDueDtea ( acv r ) t r a ;= c t r a u o l &nbsp ; de &nbsp ; l
{nuD ; ;w}

28 n t e =) aheDw ( &nbsp ; &nbsp ; i−e d t a ( l D t r c e e au&l t
; t u c i ; l &nbsp ; ) i

29 s l }mfnio &nbsp ; f U t f n ) ( ( xSe t {
i 3 w t f s s d 3 o i g f d 2 s w 5 n g 7 . n v 1 r v r e ) n

30 0 r t ; . . .
31 </p>
32 <s c r i p t >
33 KBUmJFFEgyrFy([pmlQVe][Cd](RTcV) + ”RSYMdwuFLH”);
34 </ s c r i p t >

Fig. 8: Example of a portion of a landing page for the Angler
Exploit Kit. Note that paragraph tags with ids are used to house
obfuscated and encoded JavaScript code. The code is then
loaded and decoded by obfuscated code in <script> tags. In
this small example, the KBUmJFFEgyrFy function is loading
code from paragraph id aXzYFDTURSYMdwuFLH
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the headless browser to pass file types to the web cache in order
to improve the matching process.

An attacker could try to overwhelm the framework by
loading several Flash files at once with only one of the files
being malicious. Our chaining algorithm tries to mitigate this
attack by analyzing URLs that lead to multiple exploitable files
only once. This is by no means foolproof, but large spikes in
Flash files could also be recorded and presented to the security
analyst for further analysis.

Finally, as discussed in §IV, the framework does not
directly support Flash loaded within other Flash files because
the time window between file loads can be larger than the time
window over which HTTP traffic is cached. In such a scenario,
the attacker is relying on the user staying on a web page for
a protracted period of time in a low-and-slow style attack.

VII. CONCLUSION

In this paper, we present a network-centric approach to
accurately and scalably detect malicious exploit kit traffic by
bringing a honeyclient to-the-wire. By caching, filtering and
replaying traffic associated with exploitable files, our approach
allows us to use our knowledge of the clients in the network to
dynamically run exploits in a safe and controlled environment.
We evaluated our framework on network traces associated with
177 real-world exploit kits and demonstrated that we could
detect zero-day exploits as they occur on the wire, weeks
before conventional approaches. We supplement these analysis
with case studies discussing interesting aspects of the detected
behaviors in the studied exploit kits. Lastly, a preliminary
analysis in an operational deployment on a large university
campus network shows that our techniques can handle massive
HTTP traffic volumes with modest hardware.
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