Unsolvability results for Turing machines arise because Turing machines can accept Turing machine descriptions as inputs. Paradoxes arise because a Turing machine can read its own description.

These unsolvability results require Turing machines to be encoded as Turing machine inputs. This can easily be done as follows:

We consider an integer i as an encoding of a Turing machine T_i. This is done by considering i as a binary number and breaking this binary number into 8 bit bytes. Each byte is interpreted as a character, and then i is read as a Turing machine description in some language (such as the book gives). If i does not encode a Turing machine then T_i is some fixed Turing machine, possibly the Turing machine that immediately halts when it starts.

In this formalism, a **universal Turing machine** U takes as input i and j and simulates T_i on input j.

It’s actually easier conceptually to let $\text{encode}(M)$ be an encoding of a Turing machine as a string, and $\text{encode}(x)$ be the encoding of a string x. Then the universal Turing machine takes as input $\text{encode}(M)\text{encode}(x)$ and simulates M on input x.

We can use this formalism to show that some problems are undecidable. Consider the language $L = \{\text{encode}(M) : M \text{ loops on input } \text{encode}(M)\}$. A simple argument shows that there is no Turing machine that partially decides L. For suppose T partially decided L. What would T do on input $\text{encode}(T)$? If T halts on input $\text{encode}(T)$ then (since T partially decides L), $\text{encode}(T) \in L$, so by definition of L, T does not halt on input $\text{encode}(T)$. If T does not halt on input $\text{encode}(T)$ then (since T partially decides L) $\text{encode}(T) \notin L$, so T halts on input $\text{encode}(T)$ by definition of L. Either choice leads to a contradiction. So L is not partially decidable.

The **halting problem** is, given a Turing machine and an input, to decide whether the Turing machine halts on the input. If the halting problem were decidable, L would be decidable. Since L is not even partially decidable, L is not decidable, so the halting problem is not decidable, either.