COMP 455 (old 181)

Models of Languages and Computation Spring 2012

Rules of Inference for Sets

To show $\{a_1, a_2, \dots, a_n\} \subseteq A$: show $a_1 \in A$ and show $a_2 \in A$ and and show $a_n \in A$	To show $\{a_1, a_2, \dots, a_n\} \not\subseteq A$: show $a_1 \not\in A$ or show $a_2 \not\in A$ or or show $a_n \not\in A$
To show $\{a\} \subseteq A$: show $a \in A$	To show $\{a\} \not\subseteq A$: show $a \not\in A$
To show $\phi \subseteq A$: succeed	To show $\phi \not\subseteq A$: fail
To show $x \in \{a_1, a_2, \dots, a_n\}$: show $x = a_1$ or show $x = a_2$ or or show $x = a_n$	To show $x \notin \{a_1, a_2, \dots, a_n\}$: show $x \neq a_1$ and show $x \neq a_2$ and and show $x \neq a_n$
To show $a_i \in \{a_1, a_2, \dots, a_n\}$: succeed	To show $a_i \notin \{a_1, a_2, \dots, a_n\}$: fail
To show $x \in \{a\}$: show $x = a$	To show $x \notin \{a\}$: show $x \neq a$
To show $x \in \phi$: fail	To show $x \notin \phi$: succeed
To show $A = B$: show $A \subseteq B$ and show $B \subseteq A$	To show $A \neq B$: show $A \nsubseteq B$ or show $B \nsubseteq A$
To show $x \in A \cap B$: show $x \in A$ and show $x \in B$	To show $x \notin A \cap B$: show $x \notin A$ or show $x \notin B$

```
To show x \in A \cup B:
                                                 To show x \notin A \cup B:
                                                   show x \notin A and
  show x \in A or
 show x \in B
                                                   show x \notin B
To show x = x:
                                                 To show x \neq x:
  succeed
                                                   fail
To show x \in 2^A:
                                                 To show x \notin 2^A:
  show x \subseteq A
                                                   show x \not\subseteq A
To show x \in A - B:
                                                 To show x \notin A - B:
  show x \in A and
                                                   show x \notin A or
  show x \notin B
                                                   show x \in B
To show x \in \bigcup \{a_1, a_2, \dots, a_n\}:
                                                 To show x \notin \bigcup \{a_1, a_2, \dots, a_n\}:
                                                   show x \notin a_1 and
  show x \in a_1 or
                                                   show x \notin a_2 and ... and
  show x \in a_2 or ... or
                                                   show x \notin a_n
  show x \in a_n
To show x \in \bigcup \phi:
                                                 To show x \notin \bigcup \phi:
  fail
                                                   succeed
To show x \in \bigcap \{a_1, a_2, \dots, a_n\}:
                                                 To show x \notin \bigcap \{a_1, a_2, \dots, a_n\}:
  show x \in a_1 and
                                                   show x \notin a_1 or
                                                   show x \notin a_2 or ... or
  show x \in a_2 and ... and
                                                   show x \notin a_n
  show x \in a_n
To show x \in \bigcap \phi:
                                                 To show x \notin \bigcap \phi:
  succeed
                                                   fail
```

To show $A \subseteq B$ if A is not given explicitly: Let x be a new variable. Show $x \in B$ using the assumption that $x \in A$.

If $x \in A$ and $A \subseteq B$ then $x \in B$.