
1 Turing Machine Extensions;

Nondeterminism

Section 4.3 of the text shows that Turing machines are equivalent in
computing power (disregarding time and space considerations) to many ex-
tensions, such as multiple tapes, a two-way infinite tape, two dimensional
tapes, and multiple read-write heads. Section 4.4 shows that random access
Turing machines are also equivalent in power. The fact that all these exten-
sions do not add any power is evidence that Turing machines are a maximally
powerful model of computing.
• We know that finite automata are not universal models of computation
because push-down automata are plausible computing machines and
are more powerful.

• We know that push-down automata are not universal models of com-
putation because Turing machines are plausible models of computing
machines and are more powerful than push-down automata.

• But despite many extensions of Turing machines that have been con-
sidered, no one has found any plausible computing device that is more
powerful than a Turing machine.

• This justifies the belief that a Turing machine is a fully general model
of computability.

We will spend some time in class on section 4.5, discussing nondetermin-
istic Turing machines. These are also equivalent in power to the standard
Turing machines presented in the text, but nondeterminism in Turing ma-
chines is important for other reasons, because of its connection to the P

versus NP problem.

1.1 Nondeterminism

Definition 1.1 (Nondeterministic Turing machine) A nondeterminis-
tic Turing machine is a quintuple (K,Σ,∆, s, H) where K,Σ, s, and H are

as for standard Turing machines and ∆ is a subset of

((K −H)× Σ)× (K × (Σ ∪ {←,→}))

rather than a function from ((K −H)× Σ) to (K × (Σ ∪ {←,→})).

1



Configurations are defined as for deterministic Turing machines. The
relations ⊢M and ⊢∗

M
are defined in the natural way, but now there may be

more than one configuration C2 such that C1 ⊢ C2, or there may be none at
all.

The text defines acceptance for nondeterministic Turing machines in a
different way than for deterministic Turing machines, unfortunately.

Definition 1.2 (4.5.1, page 222, Nondeterministic Acceptance, Deciding)
Let M = (K,Σ,∆, s, H) be a nondeterministic Turing machine. Then M

accepts an input w ∈ (Σ − {⊲,⊔})∗ if (s,⊲⊔w) ⊢∗
M

C for some halting

configuration C. M semidecides a language L ⊆ (Σ − {⊲,⊔})∗ if for all

w ∈ (Σ− {⊲,⊔})∗, w ∈ L iff M accepts w.

Even if M accepts an input, there may be some computations that never
halt.

The definition of deciding a language, or computing a function, are based
on Turing machines with two halting states, y and n.

Deciding a language:

1. All computations on input w ∈ (Σ− {⊲,⊔}) must eventually halt.

2. w ∈ L if and only if some computation halts in state y. Other compu-
tations may halt in state n.

This definition is relevant for the P versus NP problem because it permits
computation b the “guess and verify” approach – to test if a graph can be 4
colored, for example, just guess a coloring and see if it is valid.

Computing a function:

1. All computations on input w ∈ (Σ− {⊲,⊔}) must eventually halt.

2. All computations on input w must halt with f(w) as output.

Like all the other extensions, nondeterminism does not add any power to
Turing machines, though it may make some computations a lot faster.

Theorem 1.1 (4.5.1, Nondeterminism does not add power) If a non-

deterministic Turing machine M semidecides or decides a language or com-

putes a function, there is a standard Turing machine M ′ that semidecides or

decides the same language or computes the same function.

The details of the simulation of a nondeterministic Turing machine by a
deterministic one, are given in the text.

2


