
1 Algorithms for Context-Free Languages

The parsing problem is, given a string w and a context-free grammar G, to
decide if w ∈ L(G), and if so, to produce a parse tree for it. How fast can
this be done in general?

One can put G into a special form called Chomsky normal form that
makes parsing easier. It’s still too slow for large programs, but it can be
useful for rapid prototyping in the early stages of language development.
Any context-free grammar can be put into Chomksy normal form, roughly
speaking.

Definition 1.1 A context-free grammar G = (V,Σ, R, S) is in Chomsky
normal form if the right-hand sides of all rules have length 2.

Note that if G is in Chomsky normal form then L(G) cannot contain any
strings of length 0 or 1.

Theorem 1.1 For any context-free grammar G there is a context-free gram-

mar G′ in Chomsky normal form such that L(G′) = L(G)− (Σ∪ {e}). Thus
L(G) and L(G′) agree on strings of length greater than one. Also, G′ can be

obtained from G in polynomial time.

1.1 Transforming to Chomsky Normal Form on an Ex-

ample

We will just show the transformation on an example to illustrate the idea of
the proof. Consider this context-free grammar:

S → SS

S → (S)

S → ǫ

The start symbol is S.

1



1.1.1 Step 1

The first step is to eliminate rules whose right-hand side has length greater
than 2.

Here there is just one rule like that: S → (S). This is split up into
smaller rules whose right-hand sides have length 2. This yields the following
grammar:

S → SS

S → (S1

S1 → S)

S → ǫ

Note that S1 is a new nonterminal. How would you split up the rule
S → UV XY ?

1.1.2 Step 2

The next step is to eliminate rules whose right-hand side is ǫ. This is done
by substituting them in other rules so that they are not needed.

• For example, the rule S → ǫ can be substituted into S → SS;

• we replace one of the S on the right-hand side with ǫ, yielding S → S.
Of course, this rule is unnecessary.

• We can also do this on the rule S1 → S) yielding the rule S1 →). This
is a new rule that should be kept.

• After this step, all rules with ǫ on the right-hand side can be removed,
giving this grammar:

S → S

S → SS

S → (S1

S1 → S)

2



S1 →)

Of course, the first rule can be eliminated, giving this grammar:

S → SS

S → (S1

S1 → S)

S1 →)

1.1.3 Step 3

Now all rules have right-hand sides of length one or two. It is necessary to
eliminate the rules whose right-hand side has length one.

This can be done by substituting as before; however, it may be necessary
to do a chain of substitutions, if one has something like X → Y and Y → Z

and X occurs on the right-hand side of some rule.

• In our grammar, we can substitute the rule S1 →) into the rule S → (S1

obtaining the rule S → ().

• Then the rule S1 →) can be eliminated. This yields the following
grammar:

S → SS

S → (S1

S1 → S)

S → ()

This grammar is in Chomsky normal form, and we are done.

3



1.2 Time to Parse in Chomsky Normal Form

• Note that in a Chomsky normal form grammar, each replacement
makes a string longer by one symbol.

• In our grammar, we have a derivation like this:

S ⇒ SS ⇒ (S1S ⇒ (S)S . . .

and note that each string is one symbol longer than the one before. So
for example, a derivation of a string of length four has exactly three
replacements in it.

• This gives a way to decide if a string w is in L(G); just compute the
length n of w and look at all derivations of length n− 1 to see if w can
be derived.

• However, this is very inefficient. It is possible to do much better. In
fact, it can be done in O(n3) time.

This gives the idea of the method:

4



((())()(()))
S S S
S1 S1
S S

S S
S

S1

S1
S

• The idea is that, to parse a string w, one considers all substrings v of
w in order of size, and finds all nonterminals X such that X ⇒∗ v.

• Each such substring v has to be split up as v1v2 in all possible ways,

• and for each way it is necessary to consider all X1 and X2 such that
X1 ⇒∗ v1 and X2 ⇒∗ v2 and also all productions X → X1X2 in the
grammar.

• The number of substrings of w is O(n2).

• For each substring there are O(n) ways to split it up into v1v2.

5



• For each way of splitting it there is a constant amount of work, so the
total work is O(n3).

Here is an illustration how the method works on a substring in general:

((())()(()))

A B

C
C -- AB>

6


