
1 Finite Automata and Regular Expressions

Motivation: Given a pattern (regular expression) for string searching, we
might want to convert it into a deterministic finite automaton or nondeter-
ministic finite automaton to make string searching more efficient; a determin-
istic automaton only has to scan each input symbol once. Can this always
be done?
Theorem 1.1 If L1 = L(M1) and L2 = L(M2) for languages Li ⊆ Σ∗ then

1. there is an automaton M recognizing L1 ∪ L2

2. there is an automaton M recognizing L1 ◦ L2

3. there is an automaton recognizing L∗
1

4. there is an automaton recognizing Σ∗ − L1

5. there is an automaton recognizing L1 ∩ L2

6. if a ∈ Σ then there is an automaton recognizing {a}

7. there is an automaton recognizing ∅

From all of these things it follows that if A is a regular language then there
is a finite automaton recognizing A.

For example, justify why there would be a finite automaton recognizing
the language represented by a ∪ (ab)∗.

Proof: We will do the proof for nondeterministic automata since determin-
istic and nondeterministic automata are of equivalent power.

1.1 Union

For union, supposeM1 is (K1,Σ,∆1, s1, F1) andM2 is (K2,Σ,∆2, s2, F2).
Then let M be (K,Σ,∆, s, F ) where

K = K1 ∪K2 ∪ {s}

F = F1 ∪ F2

∆ = ∆1 ∪∆2 ∪ {(s, e, s1), (s, e, s2)}
and s is a new state. Then L(M) = L(M1) ∪ L(M2). Diagram:

1



M1

M2

M

K1

K2

K1

K2

s1

s2

s1

s2

s
e

e

Note that ϵ arrows are convenient for this construction.

1.1.1 Example

p

q

a

b

Recognizes a*

Recognizes b*

2



p

q

a

b

Recognizes a* U b*

e

e

1.2 Concatenation

M1

K1
s1

F2

K2
s2

F1

K1
s1 F1

K1
s1 F1

K1
s1 F1

M2

M

K1
s1 F2

K2
s2F1

K1
s1 F1

K1
s1 F1

K1
s1 F1

e
e

e

3



The states in F1 are no longer accepting states. Then L(M) = L(M1)◦
L(M2).

1.2.1 Example

p

q

a

b

Recognizes a*

Recognizes b*

p a q b Recognizes a*b*

e

1.3 Kleene star

M1

K1
s1 F1

K1
s1 F1

K1
s1 F1

K1
s1 F1

4



M s F

K

F
e
e

e

e

Then L(M) = L(M1)
∗.

1.3.1 Example

a,b
Recognizes {a,b}

a,b
Recognizes {a,b}*

e

e

How would you modify this automaton to recognize {a, b}+?
Another simple construction for Kleene star fails for this automaton:

a

b

5



1.4 Complementation

Let M1 = (K,Σ, δ, s, F ) be a deterministic finite automaton. Let M
be (K,Σ, δ, s,K − F ). Then L(M) = Σ∗ − L(M1).

1.4.1 Example

a

a

b b

M1

Recognizes strings with even number of a’s

a

a

b b

M

Recognizes strings with odd number of a’s

Why does the automaton have to be deterministic for this to work?

An example showing that M1 has to be deterministic for this construc-
tion to work:

6



a

a

1.5 Intersection

For this, note that L1 ∩ L2 = Σ∗ − ((Σ∗ − L1) ∪ (Σ∗ − L2)).

1.6 Other operations

Parts 6 and 7 of the theorem are trivial. Ask students to do them.

As a consequence of this theorem, if a language L is regular, then there
is a finite automaton M recongizing L.

2 Example

We construct a nondeterministic finite automaton recognizing L((ab)∗ ∪ a).

a

b
Recognizes {b}

Recognizes {a}

a be
Recognizes {ab}

7



a be

Recognizes {ab}*

e

e

a

be

Recognizes {ab}* U {a}

e

e

ae

e

Of course, this automaton is not the simplest possible one! But some
such construction can be used for string searching, with {a, b}∗ put on the
front, and can then be simulated using the set idea.

How would you optimize the above automaton to reduce the number of
states? What are the simplest nondeterministic and deterministic automata
for this language?

We now show that if a language L is recognized by a finite automaton
M , then L is regular.

3 Converting automata to regular expressions

Can any finite automaton be converted to an equivalent regular expression?
Would allowing finite automata in regular expressions increase the power of
string searching? The answers to these questions are yes and no. For any
finite automaton M there is a regular expression E such that L(M) = L(E).

Given a finite automaton, it can be converted to a regular expression.
To do this, we generalize nondeterministic finite automata and allow regular

8



expressions on their arrows. If s
E→ t where E is a regular expession, then

this means that if the automaton is in state s, it can read a string in L(E)
and transition to state t. Note that ordinary nondeterministic automata do
not allow such regular expressions on arrows.

The automaton M can be converted to a regular expression by applying
the following rules.

First, whenever possible, the following transformation should be applied
to M and to all other automata M ′, M ′′, et cetera, obtained during this
process:

If for any states s and t in M ,

s
E1→ t, . . . , s

En→ t

for n > 1 then all these arrows are removed from M and are replaced by
the arrow

s
E1∪E2∪...∪En→ t.

Diagram:

s t

E1
E2
E3

En

After processing:

s t
E1 U E2 U ... U En

Next, all states t of M other than the start state should be processed, one
by one, to eliminate arrows leaving t, and possibly to eliminate t. A state

9



t of M can be processed to obtain another automaton M ′. The automaton
M ′ is initially set to be equal to M . Then arrows and states are added to
M ′ and removed from M ′ as follows:

If in M we have
s

E→ t
F→ t

G→ u

and t is not the start state, then in M ′ we add the arrow

s
E(F ∗)G→ u.

Arrows like this are added for all states s and u that are not identical to
t.

Note that s and u may be identical.

If there are no arrows from t to t, then the expression EG is used instead
of E(F ∗)G.

Diagram:

s t u
E

F

G

After processing:

s u
E(F*)G

10



Then, if t is not an accepting state, t and all arrows entering or leaving
it are removed from M ′. If t is an accepting state, then if in M we have

s
E→ t

F→ t

then in M ′ we have

s
E(F ∗)→ t.

This is done for all states s not identical to t. The state t remains in
M ′, but all arrows leaving t are removed from M ′, and only such added

arrows s
E(F ∗)→ t enter t in M ′. If there are no arrows from t to t in M ,

then the expression E is used instead of E(F ∗).

Simple example:

s t u
E

F

G

After processing:

s u
E(F*)G

t
E(F*)

More complex example:

11



t

s1

s2

s3

u1

u2

u3

E1

E2

E3

F
G1

G2

G3

If t is not an accepting state then after processing we have this:

s1

s2

s3

u1

u2

u3

E1(F*)G1

E1(F*)G2

E1(F*)G3

E3(F*)G1

E3(F*)G2

E3(F*)G3

If t is an accepting state then in addition to all these arrows we have this:

s1

s2

s3

t

E1(F*)

E2(F*)

E3(F*)

12



• Then if there is another state t′ in M ′ other than the start state that
has arrows leaving it, then some such t′ is processed in M ′ to obtain
M ′′.

• This processing of states t, t′, et cetera, continues, repeatedly applying
these rules, until an automaton N is obtained in which only the start
state has arrows leaving it.

• That is, N only has a start state s and some accepting states t1, t2, . . . , tn
and only has arrows from the start state to itself and to the states
t1, t2, . . . , tn.

• The start state s may or may not be an accepting state.

• There will be no arrows leaving the states of N other than the start
state.

Thus we may only have the following kinds of arrows in N :

s
A→ s

s
Bi→ ti, 1 ≤ i ≤ n

Thus N may look like this, if s is not an accepting state:

s

t1

t2

tn

A
B1

B2

Bn

The final regular expression is obtained in the following way.

13



If the start state s is not an accepting state, then the final regular
expression E is

A∗(B1 ∪B2 ∪ . . . ∪Bn).

If there is no arrow from s to s then E is

(B1 ∪B2 ∪ . . . ∪Bn).

If the start state s is an accepting state, then the final regular expression
E is

A∗(∅∗ ∪B1 ∪B2 ∪ . . . ∪Bn).

This can also be written as

A∗ ∪ A∗(B1 ∪B2 ∪ . . . ∪Bn).

If there is no arrow from s to s then E is

(∅∗ ∪B1 ∪B2 ∪ . . . ∪Bn).

Thus from M we obtain a regular expression E, and one can show that
L(M) = L(E), that is, E represents the language recognized by M . The
book gives another method to convert automata to regular expressions, but
it is much harder to do on examples.

3.1 Examples

Here are some examples of the method.
Starting automaton:

s t u
a

b

c

a

14



After eliminating t:

s u
a(b*)a

c

After collapsing arrows:

s u
a(b*)a U c

The final regular expression is ab∗a∪c. Now suppose that t is an accepting
state in this automaton:

s t u
a

b

c

a

After processing t:

s u
a(b*)a

c

a(b*)

t

After collapsing arrows:

15



s u
a(b*)a U c

a(b*)
t

The final regular expression is ab∗ ∪ ab∗a ∪ c. Now consider an example
in which there are two states to eliminate.

r s t u
a

b

a

b

a

After eliminating state s:

r t u

b

aa(b*)a

After eliminating state t:

r u
ab*ab*a

The final regular expression is ab∗ab∗a.
Now consider an example in which the states s and u are the same:

16



s t

a

a

b

After processing state t:

s a(b*)a

The final regular expression is (ab∗a)∗. Now consider an example with
two states having arrows from t:

s t

u1

u2

a

b

c

After processing state t, we have this automaton:

17



s

u1

u2

ab

ac

The final regular expression is ab ∪ ac.
Now suppose there are more self-loops:

s t

u1

u2

a

b

c

d d

After processing state t, we have this automaton:

18



s

u1

u2

a(d*)b

a(d*)c

d

The final regular expression is d∗(a(d∗)b ∪ a(d∗)c).
Now suppose the start state is an accepting state:

s t

u1

u2

a

b

c

d d

After processing state t, we have this automaton:

19



s

u1

u2

a(d*)b

a(d*)c

d

The final regular expression is d∗ ∪ d∗(a(d∗)b ∪ a(d∗)c).
Do this construction on the following automaton:

a

a

b b

M s t

Putting all these results together, a language L is regular if and only if
there is a finite automaton M such that L = L(M).

Exercise: Find a regular expression for the set of strings having an odd
number of a’s and an even number of b’s.

Exercise: Find a regular expression for the interview automaton.
Exercise: Suppose L1 is regular and L2 is non-regular. Is the concatena-

tion L1 ◦ L2 of L1 and L2 necessarily non-regular?
Exercise: Suppose L ⊆ Σ∗ is regular. Suppose x ∈ Σ∗. Let L′ be {y :

xy ∈ L}. Show that L′ is regular.

20


