
1 Alphabets and Languages

Look at handout 1 (inference rules for sets) and use the rules on some exam-
ples like
{a} ⊆ {{a}}
{a} ∈ {a, b},
{a} ∈ {{a}},
{a} ⊆ {{a}},
{a} ⊆ {a, b},
a ⊆ {{a}},
a ∈ {a, b},
a ∈ {{a}},
a ⊆ {a, b}

Example: To show {a} ⊆ {a, b}, use inference rule L1 (first one on the
left). This asks us to show a ∈ {a, b}. To show this, use rule L5, which
succeeds.

To show {a} ∈ {a, b}, which rule applies?

• The only one is rule L4. So now we have to either show {a} = a or
{a} = b. Neither one works.

• To show {a} = a we have to show {a} ⊆ a and a ⊆ {a} by rule L8.
The only rules that might work to show a ⊆ {a} are L1, L2, and L3
but none of them match, so we fail.

• There is another rule for this at the very end, but it also fails.

• To show {a} = b, we try the rules in a similar way, but they also fail.

Therefore we cannot show that {a} ∈ {a, b}. This suggests that the state-
ment {a} ∈ {a, b} is false.

Suppose we have two set expressions only involving brackets, commas,
the empty set, and variables, like {a, {b, c}} and {a, {c, b}}. Then there is an
easy way to test if they are equal. If they can be made the same by

• permuting elements of a set, and

• deleting duplicate items of a set



then they are equal, otherwise they are not equal.

• So {a, {b, c}} and {a, {c, b}} are equal and {a, a, b} and {b, a} are equal,
but {a, b} and {c, b} are not.

• These rules show, for example, that {a} = a and {a} = b are both
false, which shows quickly that {a} ∈ {a, b} is false.

These rules are not needed for simple examples, but they can help when
there are many brackets to consider.

1.1 Alphabets

An alphabet is a finite set of symbols.
Alphabets are denoted by Σ.

1.2 Strings

• A string over an alphabet is a finite sequence of symbols from the
alphabet.

Example: If Σ is {0, 1} then 01101 is a string over Σ.

• The empty string is ε. The book uses e for this.

• If Σ is an alphabet then Σ∗ is the set of strings over Σ.

For example, if Σ is {0, 1} then Σ∗ is the set of binary sequences.

• The length of a string is the number of symbol occurrences in it.

The length of 01101 is 5.

• The concatenation of two strings x and y is denoted by xy or x ◦ y.

Note that x ◦ ε = ε ◦ x = x.

• v is a substring of w if there are strings x and y such that w = xvy.

Thus bc is a substring of abcab.

Question: How many substrings are there in a string of length n?

• A suffix of a string is a substring that ends at the end of the string.



• A prefix of a string is a substring that begins at the beginning of the
string.

Thus bc is a suffix of abc and ab is a prefix of abc.

How many suffixes are there of a string of length n?

• wi is the string w repeated i times.

Thus ababab = (ab)3.

• wR is the string w with the letters in reverse order.

Thus (ab)R = ba.

1.3 Languages

A language over an alphabet Σ is a subset of Σ∗, that is, it is a set of strings
over Σ.

Thus {0, 1, 00, 11} is a language over {0, 1}.
The set of odd length binary strings is also a language over {0, 1}.
The set of all binary strings (that is, {0, 1}∗) is also a language over {0, 1}.

1.4 Operations on Languages

Now we will study operations on languages. These take one or two languages
and produce another language from them.

1.4.1 Complement

If A is a language over Σ then A, the complement of A, is Σ∗ − A.
Example: If Σ∗ is {0, 1}∗, what is the complement of {00}?

1.4.2 Concatenation

If L1 and L2 are languages then L1 ◦ L2, or L1L2, the concatenation of L1

and L2, is
{xy : x ∈ L1, y ∈ L2}

.

• Thus if L1 is {a, b} and L2 is {c, d} then L1 ◦ L2 is {ac, ad, bc, bd}.



• If L1 is {ε, a, aa, aaa, . . .} and L2 is {ε, b, bb, bbb, . . .} then what is L1◦L2?

• Note that for any L, {ε} ◦ L = L ◦ {ε} = L.

To get L1 ◦ L2, write L1 as a sequence above L2, then selecting one element
from each and concatenating them gives an element of L1 ◦ L2:

L1 = {x1, x2, x3, . . .}

L2 = {w1, w2, w3, . . .}

1.4.3 Kleene Star

If L is a language then L∗, the Kleene star of L, is

{w1w2 . . . wk : k ≥ 0, wi ∈ L all i}

.
This can also be written as

{ε} ∪ L ∪ (L ◦ L) ∪ (L ◦ L ◦ L) ∪ . . .

or as

{ε} ∪ L ∪ L2 ∪ L3 ∪ . . . .

To get the Kleene star, write a language above itself infinitely many times,
then select one element from some finite number of the lists (possibly zero)
and concatenate them:

L = {x1, x2, x3, . . .}

L = {x1, x2, x3, . . .}
L = {x1, x2, x3, . . .}
L = {x1, x2, x3, . . .}

. . .

This gives an element of L∗.
Examples: If L is {00, 01, 10, 11}, what is L∗?
If L is {00}, what is L∗?
If L is {00, 11}, what are some strings in L∗?
If L is {}, then L∗ is {ε}.
If L is {ε}, then L∗ is also {ε}.



1.4.4 Plus

Another operation on languages:

L+ = L ◦ L∗ = {w1w2 . . . wk : k > 0, wi ∈ L all i}.

To get L+, write a language above itself infinitely many times, then select
one element from some finite number of the lists (at least one) and concate-
nate them:

L = {x1, x2, x3, . . .}

L = {x1, x2, x3, . . .}

L = {x1, x2, x3, . . .}

L = {x1, x2, x3, . . .}

. . .

This gives an element of L+.
What is L+ for the three languages L given above?
If L is {e, 00, 01, 10, 11}, what is L∗? What is L+?

1.4.5 Union

Of course, if L1 and L2 are languages, then L1 ∪ L2 is another language, so
that union is another operation on languages.

Note that operations can be nested, so that if A and B are languages, we
can talk about (A ◦B)∪A∗, for example. Thus arbitrary expressions can be
made from languages using these operations repeatedly.

Some identities:

L∗ = {ε} ∪ L ∪ (L ◦ L) ∪ (L ◦ L ◦ L) ∪ . . .

L∗ = {ε} ∪ (L ◦ L∗)

L+ = L ◦ L∗



L+ = L ∪ (L ◦ L) ∪ (L ◦ L ◦ L) ∪ . . .

L+ = L ∪ (L ◦ (L+))

L∗ = {ε} ∪ L+

See Handout 2 (Rules of Inference for Operations on Languagse).
Problem 1.7.4 (c) page 46: Show

{a, b}∗ = {a}∗({b}{a}∗)∗


