1 Alphabets and Languages

Look at handout 1 (inference rules for sets) and use the rules on some exam-
ples like
{a} € {{a}}
{a} € {a,b},
{a} € {{a}},
{a} € {{a}},
{a} € {a, b},
a C {{a}},
a € {a, b},
a € {{a}},
a C {a,b}

Example: To show {a} C {a,b}, use inference rule L1 (first one on the
left). This asks us to show a € {a,b}. To show this, use rule L5, which
succeeds.

To show {a} € {a, b}, which rule applies?

e The only one is rule L4. So now we have to either show {a} = a or
{a} = b. Neither one works.

e To show {a} = a we have to show {a} C a and a C {a} by rule LS.
The only rules that might work to show a C {a} are L1, L2, and L3
but none of them match, so we fail.

e There is another rule for this at the very end, but it also fails.
e To show {a} = b, we try the rules in a similar way, but they also fail.

Therefore we cannot show that {a} € {a,b}. This suggests that the state-
ment {a} € {a,b} is false.

Suppose we have two set expressions only involving brackets, commas,
the empty set, and variables, like {a, {b, c}} and {a, {c,b}}. Then there is an
easy way to test if they are equal. If they can be made the same by

e permuting elements of a set, and

e deleting duplicate items of a set



then they are equal, otherwise they are not equal.

e So{a,{b,c}} and {a,{c,b}} are equal and {a, a, b} and {b,a} are equal,
but {a,b} and {c, b} are not.

e These rules show, for example, that {a} = a and {a} = b are both
false, which shows quickly that {a} € {a,b} is false.

These rules are not needed for simple examples, but they can help when
there are many brackets to consider.

1.1 Alphabets

An alphabet is a finite set of symbols.
Alphabets are denoted by 3.

1.2 Strings

e A string over an alphabet is a finite sequence of symbols from the
alphabet.

Example: If ¥ is {0, 1} then 01101 is a string over X.
e The empty string is €. The book uses e for this.

e [f ¥ is an alphabet then ¥* is the set of strings over X..
For example, if ¥ is {0, 1} then X* is the set of binary sequences.

e The length of a string is the number of symbol occurrences in it.
The length of 01101 is 5.

e The concatenation of two strings x and y is denoted by xy or x o y.

Note that roe =€coz = z.

e v is a substring of w if there are strings x and y such that w = xvy.
Thus bc is a substring of abcab.

Question: How many substrings are there in a string of length n?

e A suffiz of a string is a substring that ends at the end of the string.



e A prefix of a string is a substring that begins at the beginning of the
string.

Thus be is a suffix of abc and ab is a prefix of abe.

How many suffixes are there of a string of length n?

e w' is the string w repeated i times.

Thus ababab = (ab)?.

e w! is the string w with the letters in reverse order.
Thus (ab)? = ba.

1.3 Languages

A language over an alphabet X is a subset of ¥*, that is, it is a set of strings
over .

Thus {0, 1,00,11} is a language over {0, 1}.

The set of odd length binary strings is also a language over {0, 1}.

The set of all binary strings (that is, {0, 1}*) is also a language over {0, 1}.

1.4 Operations on Languages

Now we will study operations on languages. These take one or two languages

and produce another language from them.

1.4.1 Complement

If Ais a language over Y then A, the complement of A, is ¥* — A.
Example: If ¥* is {0, 1}*, what is the complement of {00}7

1.4.2 Concatenation

If Ly and Ly are languages then L o Ly, or LiLsy, the concatenation of L,
and Lo, is
{zy:x € L,y € Lo}

e Thus if L, is {a,b} and Ly is {c,d} then L, o Ly is {ac, ad, be, bd}.



o If Lyis{e,a,aa,aaa,...} and Ly is {€, b, bb, bbb, . ..} then what is LioLy?
e Note that for any L, {e} o L = Lo {e} = L.

To get Ly o Ly, write L as a sequence above Lo, then selecting one element
from each and concatenating them gives an element of L; o Ls:

Ll = {.Tl,xg,a?g, .. }

Ly, = {w1>w2,w37 .- }

1.4.3 Kleene Star
If L is a language then L*, the Kleene star of L, is

{wlwg...wk:kzo,wiELall Z}

This can also be written as
{eyULU(LoL)U(LoLoL)U...
or as
{SULUL?ULPU....

To get the Kleene star, write a language above itself infinitely many times,
then select one element from some finite number of the lists (possibly zero)
and concatenate them:

L= {(L’l,l’g,x‘g,...

L= {I1,$2,ZE37...

L= {1'1,1'2,173,...

S

L= {513'1,.%’2,%3,...

This gives an element of L*.

Examples: If L is {00,01, 10,11}, what is L*?
If L is {00}, what is L*?

If L is {00,11}, what are some strings in L*?
If Lis {}, then L* is {e}.

If L is {e}, then L* is also {e}.



1.4.4 Plus

Another operation on languages:
LT =LoL"={wwy...wy:k>0w €L all i}.

To get LT, write a language above itself infinitely many times, then select
one element from some finite number of the lists (at least one) and concate-
nate them:

L= {(L’l,l’g,l'g,...

L= {Il,l’g,xg,...

L= {1'1,$2,ZE3,...

—_— e

L= {%1,1’2,%3,...

This gives an element of L*.
What is LT for the three languages L given above?
If Lis {e,00,01,10,11}, what is L*? What is L*?

1.4.5 Union

Of course, if L; and Ly are languages, then L; U L, is another language, so
that union is another operation on languages.

Note that operations can be nested, so that if A and B are languages, we
can talk about (Ao B)U A*, for example. Thus arbitrary expressions can be
made from languages using these operations repeatedly.

Some identities:

L*={efULU(LoL)U(LoLoL)U...

L*={e}U(LoL"

LT=LolL*




Lt =LU(LoL)U(LoLoL)U...

LT =LU(Lo (L")

L*={eJulL"

See Handout 2 (Rules of Inference for Operations on Languagse).
Problem 1.7.4 (c) page 46: Show

{a, b} = {a}*({b}{a}")"




