
1 Nondeterministic Finite Automata

Suppose in life,
• whenever you had a choice, you could try both possibilities and live
your life.

• At the end, you would go back and choose the one that worked out the
best.

• Then you could decide who to marry, which job to accept, or which
answer to give on an exam knowing the future consequences.

This is the idea of nondeterminism for finite automata. It’s not practical
to build devices like this, but it does help in applications of finite automata
to make use of this concept.

• In a deterministic automaton, in a state s with an input a there is one
and only one state t that it can go to in the next time instant.

• In a nondeterministic automaton, there can be many states t1, t2, . . . , tn
that it can go to, or possibly no states at all.

• Also, nondeterministic automata have the possibility to go from one
state to another without reading any input, if there is an ϵ transition
between the two states.

1.1 Formalism

Formally,

• instead of a transition function δ there is a transition relation ∆ with
∆ ⊆ K × (Σ ∪ {ϵ})×K.

• If (q, u, p) ∈ ∆ then in state q, reading a u, the automaton can go to
state p.

• Also, u can be ϵ, in which case the automaton can go from state q to
state p without reading anything.

Therefore



• a nondeterministic finite automaton can be represented as a quintuple
(K,Σ,∆, s, F ), much as before.

• It can also be represented as a graph; the difference is that there can
be more than one arrow labelled with the same symbol coming out of
a state q, or possibly none at all.

The computation of a nondeterministic automaton is similar to that of a
deterministic automaton, except that

for configurations, (q, w) ⊢M (q′, w′) iff there is a u in Σ ∪ {ϵ} such
that w = uw′ and (q, u, q′) ∈ ∆.

Note that u can be ϵ. Then ⊢∗
M is defined as before, and we say

• M accepts w if there is a state q ∈ F such that (s, w) ⊢∗
M (q, e).

• Also, L(M), the language recognized by M , is the set of strings ac-
cepted by M .

Deterministic finite automata can be regarded as a special case of non-
deterministic finite automata, in which there are no ϵ transitions and ∆ is a
function.

1.2 Example

Here is an example:

q r s

a

a

b

b

Why is this automaton nondeterministic? What language does it recog-
nize? What are K,Σ,∆, s, and F for it?

This automaton rejects the strings aa and aba.
Consider the computation of this automaton on the input aabb. There is

more than one possibility:



q
a→ q

a→ r
b→ r

b→ s leads to acceptance.

q
a→ r leads to failure.

Because there is at least one computation sequence leading to acceptance
the string aabb is accepted by this automaton.

To show that a nondeterministic automaton rejects an input string,
it is necessary to examine all computation sequences.

• There could be exponentially many possible computations on a given
input.

• This makes simulating the automaton very expensive.

• To increase the efficiency, we can summarize all computations of this
automaton on this input using sets this way:

{q} a→ {q, r} a→ {q, r} b→ {r, s} b→ {r, s}

1.2.1 Problem

Find an equivalent deterministic finite automaton.

1.3 Example

Here is a nondeterministic automaton with ϵ arrows:

q r s
e e

a b



Simulate this automaton on inputs aa and ba. The ϵ arrows make this
harder to do. Give K,Σ,∆, s, and F for this automaton. What language
does it recognize?

1.4 Example

Note that a nondeterministic automaton may not be able to do anything.
Consider the following example:

a
q r

If it receives a b as input, it can’t do anything.

1.5 Problem

Give a nondeterministic finite automaton recognizing the set of strings over
{a, b} having abab as a substring, and make it as simple as possible.

Also, do it for the set of strings over {a, b} ending with abab.

1.6 Complexity of Nondeterministic Automata

Sometimes nondeterministic automata can be much simpler than any equiv-
alent deterministic automaton. (We say two automata M1 and M2 are equiv-
alent if L(M1) = L(M2)).

• Let Σ be {a1, a2, . . . , an} and let L be the set of strings w that do not
contain all the symbols {a1, a2, . . . , an}.

• That is, at least one symbol must be missing from w.

• This language can be recognized by the following n+1 state nondeter-
ministic finite automaton.

• Any equivalent deterministic automaton has at least 2n states:



...

e

e

e

s

q1

q2

qn

a2, a3, a4, ..., an

a1, a3, a4, ..., an

a1, a2, ..., a[n-1]

1.6.1 Problem

Consider this automaton for n = 3 and using the set idea, simulate this
automaton on the inputs a1a2a3 and on a1a3.

1.7 egrep and grep

• In Unix, grep works directly with a nondeterministic automaton and
simulates it using sets of states.

• egrep constructs an equivalent deterministic automaton and simulates
it.

• Thus egrep can take a long time on complicated queries, because the
automaton may have many states.

• But if the string searched is very long, this can pay off.



1.8 Omitting ϵ arrows

0,1 0,1 0,1

0,1 0,1 0,1
0,1

0,1

ee

0,1

q

q

r

r

s

s

t

t

How can one eliminate ϵ arrows from the automaton given earlier for the
set of strings missing at least one symbol?

Theorem 1.1 For each nondeterministic finite automaton M there is an
equivalent nondeterministic finite automaton M ′′ without ϵ arrows and having
the same number of states.

Proof: We obtain automaton M ′ from M by applying two transformation
rules as often as possible until they can be no more applied. If in M
we have

q
ϵ→ r

a→ s

for a ∈ Σ then in M ′ we have also

q
a→ s.

Also, if in M we have
q

ϵ→ r

and r ∈ F then in M ′, q is also added to F if it is not already there.
Let M ′′ be M ′ with all ϵ arrows deleted.

Claim: M ′′ is equivalent to M , that is, L(M ′′) = L(M).

Proof of claim: Clearly M ′ is equivalent to M . We know L(M) ⊆
L(M ′) because M ′ has all transitions that M has and possibly more.
However, L(M ′) ⊆ L(M) because every accepting computation of M ′

can be simulated by an accepting computation of M .



Finally, L(M ′) = L(M ′′). Clearly L(M ′′) ⊆ L(M ′) because M ′ has
more arrows. But L(M ′) ⊆ L(M ′′) because any sequence of moves of
M ′ with ϵ arrows can be simulated by a sequence of moves of M ′′. Thus
L(M ′) = L(M ′′).

• For, consider a string w that is accepted by M ′. Look at the
sequence of states that the automaton goes through in accepting
w, and in particular, at the subsequences consisting entirely of ϵ
transitions.

• If si, si+1, . . . , si+k is a sequence of states with ϵ transitions in
between them in this computation sequence, then, if si+k is an
accepting state, the rules will make si an accepting state too, so
the ϵ transitions are not needed in this computation sequence.

• If there is some arrow from si+k to si+k+1 labeled with a symbol a
that is used in the accepting computation, then the rules will add
an arrow from si to si+k+1 labeled with a, so the ϵ transitions are
not needed in this computation sequence.

• So w is still accepted by M ′′.

Putting these results together, L(M ′′) = L(M).

1.8.1 Example

Consider this automaton with ϵ arrows:

q r s
e e

a bc

Now, to eliminate the ϵ arrows, first we apply the rules to add a b arrow
from state r to state s, and make state r an accepting state. We also add an
a arrow from state q to state r:



q r s
e e

a b

b

c

a

Now, we can apply the rules again. We add a b arrow from q to s. We
also make state q an accepting state.

q r s
e e

a b

b

b

a

c

Now no more rules can be applied. So we delete the ϵ arrows and obtain
the following automaton, having no ϵ arrows but equivalent to the starting
automaton.

q r s

a b

b

b

a

c

1.8.2 Continuing with the proof

Now we will show that every nondeterministic automaton can be converted
to an equivalent deterministic automaton. For example, the following non-
deterministic automaton MN :



q r s

a,b

a b

can be converted to this deterministic automaton MD:

a b
{q} {q,r} {q,s}

b a

a

b

How MD is obtained from MN :

• The states of MD are sets of states of MN ; only those that are reachable
from the start state need to be kept.

• The input alphabet of MD is the same as that of MN .

• The start state of MD is the set consisting of the start state of MN .

• The accepting states of MD are the sets containing at least one accept-
ing state of MN .

• If {q1, q2, . . . , qn} is a state of MD and a is in Σ, then there is an a
arrow in MD from {q1, q2, . . . , qn} to the set of r such that in MN there
is an arrow from some qi to r.

In class, give the algorithm to obtain MD from MN more explicitly.
Show the set of eight subsets as states. Show the start state and the set
of accepting states. Then illustrate on a few states how to do the arrows.
Write the elements of the state and for each one which states it can go
to with a given symbol in MN . Then take the union of the results and
draw the arrow in MD. Finally, delete the unreachable states.



The equivalence of MN and MD can be shown by converting every accept-
ing computation sequence for MN into an accepting computation sequence
for MD, and vice versa. For example, the following computation for MN :

qq r s
a ab b

q

corresponds to the following computation for MD:

{q} {q,r} {q,r}{q,s} {q,s}
a a bb

and vice versa.

Go forwards (left to right) in the computation constructing the bot-
tom sequence from the top one, to map the top sequence into the bottom
sequence, showing that every top state is an element of the corresponding
bottom state.

Thus the final state s of the top sequence, which is an accepting state
of MN , is an element of the final state {q, s} of the bottom sequence, which
makes {q, s} an accepting state of MD. Thus the bottom sequence is also an
accepting sequence.

Go backwards (right to left) constructing the top sequence from the
bottom one, to map the bottom sequence into the top sequence, again
showing that the top state is an element of the bottom state.

• Start with an accepting state s of MN that is an element of the final
state {q, s} of the bottom sequence.



• Then go backwards to some state r of MN that caused s to be added
to the final state of the bottom sequence. Put this state in the top
sequence.

• Continue going back this way, constructing the top sequence from the
bottom one, and showing that each top state is an element of the
bottom state.

• Finally, the first state q of the top sequence is an element of the first
state {q} of the bottom sequence, so the first state of the top sequence
has to be the start state.

Thus if MN accepts w then MD accepts w and vice versa. This means
that L(MN) = L(MD) so MN and MD are equivalent.

This same construction can be used for any nondeterministic finite au-
tomaton, which shows that

for every nondeterministic automaton with n states and no ϵ arrows,
there is a determistic automaton with at most 2n states.

This is stated formally in the following theorem.

Theorem 1.2 Every n state nondeterministic finite automaton without ϵ
arrows can be converted to an equivalent deterministic finite automaton with
at most 2n states.

Proof: Suppose MN is (K,Σ,∆, s, F ). Let MD be (KD,Σ, δ, {s}, FD) where

KD = 2K

FD = {Q ⊆ K : Q ∩ F ̸= ∅}

δ(Q, a) = {q′ ∈ K : (q, a, q′) ∈ ∆ for some q ∈ Q}.

Then accepting computations of MN and MD can be mapped onto each
other as in the example.



For the example MN given above, because MN has three states, MD would
have eight states. However, only three of these states are reachable from the
start state, so only three of them are shown in the example MD given above.

Because ϵ arrows can be eliminated from a nondeterministic automaton
without increasing the number of states, we obtain the following result:

Theorem 1.3 Every n state nondeterministic finite automaton (even if it
has ϵ arrows) can be converted to an equivalent deterministic finite automaton
with at most 2n states.

In fact, there is an algorithm to convert nondeterministic finite automata
to equivalent deterministic finite automata.

Let’s apply this construction to the automaton given above:

a
q r

Suppose the alphabet is {a, b}. The final automaton is the following:

a
{q} {r}

{}

b a,b

a,b

The state with the empty set in it arises because some inputs do not lead
anywhere in the nondeterministic automaton.


