Leaking information

Protection and Security

How to be a paranoid
or just think like one

Psycholoqy fodat

IS THAT
D'NG YOUR FINAL
ANSWER?

How to Know Decisions
What People, Without
Are Really / Ny Dread
Thinking MYSTERY

DID | DELETE
MY BROWSER
HISTORY?

DIVA ALERT
Deposing the
Drama Queen

HOWTO GET

+ Stealing 26.5 million veteran’ s data

+ Data on laptop stolen from employee’ s home (5/06)
> Veterans’ names
» Social Security numbers
» Dates of birth

+ Exposure to identity theft

+ CardSystems exposes data of 40 million cards (2005)
» Data on 70,000 cards downloaded from ftp server

These are attacks on privacy (confidentiality, anonymity)

The Sony rootkit

The Sony rootkit

+ “Protected” albums included
» Billie Holiday
» Louis Armstrong
» Switchfoot
» The Dead 60’ s
» Flatt & Scruggs, etc.
+ Rootkits modify files to infiltrate & hide
» System configuration files
» Drivers (executable files)

+ Sony’ s rootkit enforced DRM but expoise? computer
» CDs recalled
» Classified as spyware by anti-virus software
> Rootkit removal software distrubuted
» Removal software had exposure vulnerability
> New removal software distrubuted
+ Sony sued by
» Texas
» New York
» California

This is an attack on integrity

The Problem

+ Types of misuse
» Accidental
» Intentional (malicious)

+ Protection and security objective
> Protect against/prevent misuse

+ Three key components:
» Authentication: Verify user identity
» Integrity: Data has not been written by unauthorized entity
» Privacy: Data has not been read by unauthorized entity

Have you used an anonymizing service?

Yes, for email

Yes, for web browsing
Yes, for something else
No

How N

What are your security goals?

What About Security in Distributed Systems?

+ Authentication
» User is who s/he says they are.
» Example: Certificate authority (verisign)
+ Integrity
» Adversary can not change contents of message
» But not necessarily private (public key)
» Example: secure checksum
+ Privacy (confidentiality)
» Adversary can not read your message
» If adversary eventually breaks your system can they decode
all stored communication?
» Example: Anonymous remailer (how to reply?)
+ Authorization, repudiation (or non-repudiation),
forward security (crack now, not crack future),
backward security (crack now, not cracked past)

+ Three challenges
> Authentication
<+ Verify user identity
> Integrity
« Verify that the communication has not been tempered with
» Privacy
+ Protect access to communication across hosts

+ Solution: Encryption
» Achieves all these goals

» Transform data that can easily reversed given the correct key (and
hard to reverse without the key)

Encryption (big idea)

+ Bob wants to send Alice a message m
+ Does not want Eve to be able to read message

+ ldea:
Bob: E(m) -> ¢ // Sends ¢ over the network to Alice
Alice: D(c) > m

Function E encrypts plaintext message to ciphertext (c)
Function D decrypts ciphertext to plaintext
Eve can only read c, which looks like garbage

Keyed encryption

Symmetric Key (Shared Key) Encryption

+ Most implementations of E() and D() need a secret
key
» Eve can know E() and D() code
<+ Not many cryptographic algorithms in the world

» Alice and Bob just need to pick secret keys Eve doesn’t
know (and each other may not know)

+Some mathematical constraints
+ Two types:
» Symmetric key
» Public/private key

+ Basicidea:
» E(m, k) - cipher text ¢
» D(c, k) > plain text m

+ Somehow, Alice and Bob exchange the key out of band
» Exercise for the reader

+ Need to keep the shared key secret!

Public Key Encryption

+ Basic idea:
» Separate authentication from secrecy
> Each key is a pair: K-public and K-private
» Alice and Bob both have key pairs (Ka and Kb)
+ Example:
» Alice: E(m, Ka-private, Kb-public) -> ¢
» Only Bob can decrypt ¢ with:
« D(c, Ka-public, Kb-private) -> m
+ Message is confidential even if Eve knows Ka-public and
Kb-public
» No out-of-band protocol needed to exchange a shared secret
» But Alice does have to trust that Kb-public belongs to Bob
< Typically managed by some trusted certificate

authority or key distribution network
+ Debian developers meet and sign each others’ keys at conferences

Mitigating costs

Digital signatures

+ Public key crypto is more expensive than shared key
+ |dea: Use public key crypto to exchange a temporary,
session key
» During a session, exchange messages using shared key

+ One expensive public key message to set up session
» All future messages cheap
» This is how SSL/TLS and other protocols work

+ Cryptographic hash
» Hash is a fixed sized byte string which represents arbitrary length

> Harci to find two messages with same hash.

> Lfltrg 1=m’ then H(m) != H(m") with high probability. H(m) is 256
+ Message integrity with digital signatures

» For message m: hash m, encrypt the hash (E(H(m)) = s

<+ With public key crypto

» Receiver: verify that H(m) == D(s)
« Signature will only verify if:

» Hash was encrypted by owner of K-public

» Message did not change

Also provides non-repudiation

*

Implementing your security goals

+ Authentication
» {I'm Don}"K-private
+ Integrity
» {SHA-256 hash of message | just send is ...}"K-private
+ Privacy (confidentiality)
» Public keys to exchange a secret
» Use shared-key cryptography (for speed)
» Strategy used by ssh
+ Forward/backward security
» Rotate shared keys every hour
+ Repudiation
» Public list of cracked keys

Securing HTTP: HTTPS (HTTP+SSL/TLS)

When you log info a website using an http URL, which
property are you missing?

1. Authentication
Integrity
Privacy
Authorization
None

o > »® N

client server CA

hello(client)

W
certificate ok?

e
E——
{certificate valid }CA-private———

T
{send random shared|key}AS-public

switch to encrypted
connection using shared key

When you visit a website using an https URL, which
property are you missing?

1. Authentication (server to user)
Authentication (user to server)
Integrity

Privacy

None

o > w N

Authentication

Authentication (Cont’ d.)

+ Objective: Verify user identity

+ Common approach:

» Passwords: shared secret between two parties
» Present password to verify identity

1. How can the system maintain a copy of passwords?
» Encryption: Transformation that is difficult to reverse without
right key
» Example: Unix /etc/passwd file contains encrypted
passwords
» When you type password, system encrypts it and then
compared encrypted versions

2. Passwords must be long and obscure
» Paradox:
Short passwords are easy to crack

+ Long passwords — users write down to remember 2
vulnerable

» Original Unix:
5 letter, lower case password
+ Exhaustive search requires 26”5 = 12 million comparisons
< Today: < 1us to compare a password = 12 seconds to
crack a password
» Choice of passwords
«+ English words: Shakespeare’ s vocabulary: 30K words

< All English words, fictional characters, place names, words
reversed, ... still too few words

< (Partial) solution: More complex passwords

> Atleast 8 characters long, with upper/lower case, numbers,
and special characters

Are Long Passwords Sufficient?

+ Example: Tenex system (1970s — BBN)
» Considered to be a very secure system

» Code for password check:

For (i=0, i<8, i++) {
if (userPasswd[i] |= realPasswd[i])
Report Error;

» Looks innocuous — need to try 256”8 (= 1.8E+19)
combinations to crack a password
Is this good enough??

v

Are Long Passwords Sufficient? (Cont’ d.)

Alternatives/enhancements to Passwords

+ Problem:
» Can exploit the interaction with virtual memory to crack passwords!
+ Key idea:
» Force page faults at carefully designed times to reveal password
» Approach
« Arrange first character in string to be the last character in a page
<+ Arrange that the page with the first character is in memory
= Restis on disk (e.g., a|bcdefgh)
+ Check how long does a password check take?
« Iffast 3 first character is wrong

+ If slow = first character is right > page fault > one of the later character is
wrong

= Try all first characters until the password check takes long
<+ Repeat with two characters in memory, ...
» Number of checks required = 256 * 8 = 2048 !!
+ Fix:
> Don'’ t report error until you have checked all characters!
» But, how do you figure this out in advance??
» Timing bugs are REALLY hard to avoid

+ Easier to remember passwords (visual recognition)
+ Two-factor authentication

» Password and some other channel, e.g., physical device
with key that changes every minute

» http://www.schneier.com/essay-083.html
» What about a fake bank web site? (man in the middle)
» Local Trojan program records second factor
+ Biometrics
» Fingerprint, retinal scan
» What if | have a cut? What if someone wants my finger?
Facial recognition

*

Password security

Authorization

Authorization

L)

= Instead of hashing your password, | will hash your
password concatenated with a random salt. Then |
store the unhashed salt along with the hash.
= (password . salt)*H salt

What attack does this address?

Brute force password guessing for all accounts.
Brute force password guessing for one account.
Trojan horse password value
Man-in-the-middle attack when user gives
password at login prompt.

+ Objective:
» Specify access rights: who can do what?

+ Access control: formalize all permissions in the

system Filel | Filez | File3
User A | RW R -
UserB | -- RW RW
User C | RW RW RW

+ Problem:
» Potentially huge number of users, objects that dynamically
change = impractical

+ Access control lists

» Store permissions for all users with objects

» Unifd?pproach: three categories of access rights (owner, group,

worl

» Recent systems: more flexible with respect to group creation
Privileged user (becomes security hole)

% Administrator in windows, root in Unix

» Principle of least priviege

*

+ Capability lists (a capability is like a ticket)
permission to touch
descriptor)

out of favor today

» Each process stores information about objects it has
> Processes present capability to objects to access (e.g., file

» Lots of capability-based systems built in the past but idea

Enforcement

Summary

+ Objectives:
» Check password, enforce access control

+ General approach
> Separation between “user” mode and “privileged” mode

+ In Unix:
» When you login, you authenticate to the system by providing
passwor
> Once authenticated — create a shell for specific userlD
» All system calls pass userlD to the kernel
> Kernel checks and enforces authorization constraints

+ Paradox

» Any bug in the enforcer = you are hosed!

» Make enforcer as small and simple as possible
< Called the trusted computing base.
+ Easier to debug, but simple-minded protection (run a lot of services in

privileged mode)

» Support complex protection schemes

+ Hard to get it right!

Joe Nolife develops a file system that responds to
requests with digitally signed packets of data from a
content provider. Any untrusted machine can serve
the data and clients can verify that the packets they
receive were signed. So stonybrook.edu can give
signed copies of the read-only portions of its web site
to untrusted servers. Joe's FS provides which
property?

Authentication of file system users

Integrity of file system contents

Privacy of file system data & metadata

Authorization of access to data & metadata

Howod o=

+ Security in systems is essential

+ .. And is hard to achieve!

