P=_N THE UNIVERSITY
rhﬂ of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Deadlock

Don Porter

Portions courtesy Emmett Witchel

A= THE UNIVERSITY .
@ JINORTH CAROLINA COMP 530: Operating Systems

Concurrency Issues

« Past lectures:
— Problem: Safely coordinate access to shared resource

— Solutions:
» Use semaphores, monitors, locks, condition variables
» Coordinate access within shared objects

« What about coordinated access across multiple objects?
— If you are not careful, it can lead to deadlock

« Today’ s lecture:
— What is deadlock?
— How can we address deadlock?

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Deadlock: Motivating Examples

« Two producer processes share a buffer but use a different
protocol for accessing the buffers

M

S

Producerl() { Producer2()
Lock(emptyBuffer) Lock(producerMutexLock)
Lock(producerMutexLock) Lock(emptyBuffer)

} }

« A postscript interpreter and a visualization program compete for
memory frames

PS_Interpreter(){ Visualize() {
request(memory_frames, 10) request(frame_buffer, 1)
<process file> <display data
request(frame_buffer, 1) request(memory_frames, 20)
<draw file on screen <update display>

}

= THE UNIVERSITY
mﬂ ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL
Deadlock: Definition
> Ready >
Head — |_
Tail — [
ready queue
Head — | __ =] — semaphore/
Tall — |_ — _ condition queues

« Aset of processes is deadlocked when every process in the set is waiting for an
event that can only be generated by some process in the set

e Starvation vs. deadlock

— Starvation: threads wait indefinitely (e.g., because some other thread is using a
resource)

— Deadlock: circular waiting for resources
— Deadlock =» starvation, but not the other way

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Resource Allocation Graph

« Basic components of any resource allocation problem
— Processes and resources

M

* Model the state of a computer system as a directed graph
— G=(V, E)
— V = the set of vertices = {Py, ..., P} U{Ry, ..., Ry}

o |

» E = the set of edges =
{edges from a resource to a process} u
{edges from a process to a resource}

‘ request i allocation ‘
Py

d d
P edge edge

—

1M

S

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Resource Allocation Graph: Example

« A PostScript interpreter that is waiting for the frame buffer lock
and a visualization process that is waiting for memory

V = {PS interpret, visualization} U {memory frames, frame buffer lock}

Visualization Memory Frames \

Process PostScript

Interpreter

—

m

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Resource Allocation Graph & Deadlock

 Theorem: If a resource allocation graph does not contain a cycle then
no processes are deadlocked

A cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

‘ Game

Memory Frames

Visualization PostScript
Process Interpreter

_

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

I

Resource Allocation Graph & Deadlock

« Theorem: If there is only a single unit of all resources then a set of
processes are deadlocked iff there is a cycle in the resource
allocation graph

Memory Frames

Visualization
Process

PostScript
Interpreter

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

An Operational Definition of Deadlock

I

—

Visualization

Process Memory Frames

PostScript
Interpreter

Frame Buffer

« A set of processes are deadlocked iff the following conditions hold
simultaneously
1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

—

m

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Deadlock Prevention and/or Recovery

« Adopt some resource allocation protocol that
ensures deadlock can never occur

— Deadlock prevention/avoidance
» Guarantee that deadlock will never occur
» Generally breaks one of the following conditions:
— Mutex
— Hold-and-wait
— No preemption
— Circular wait *This is usually the weak link*

— Deadlock detection and recovery

» Admit the possibility of deadlock occurring and periodically check for it
» On detecting deadlock, abort

— Breaks the no-preemption condition

— And non-trivial to restore all invariants

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

Deadlock Avoidance: Resource Ordering

 Recall this situation. How can we avoid it?

Producer1() { Producer2(){
Lock(emptyBuffer) Lock(producerMutexLock)
Lock(producerMutexLock) Lock(emptyBuffer)

} }

+ Eliminate circular waiting by ordering all locks (or
semaphores, or resoruces). All code grabs locks in a
predefined order. Problems?

> Maintaining global order is difficult, especially in a large project.

» Global order can force a client to grab a lock earlier than it
would like, tying up a resource for too long.

> Deadlock is a global property, but lock manipulation is local.

A=\ THE UNIVERSITY
” | of NORTH CAROLINA
i

A — COMP 530: Operating Systems

Lock Ordering

e A program code convention

* Developers get together, have lunch, plan the order
of locks

* |n general, nothing at compile time or run-time
prevents you from violating this convention

— Research topics on making this better:
* Finding locking bugs
* Automatically locking things properly
* Transactional memory

3\ | THE UNIVE RSITY
@ JINORTH CAROLINA COMP 530: Operating Systems
How to order?

 What if | lock each entry in a linked list. What is a
sensible ordering?
— Lock each item in list order
— What if the list changes order?
— Uh-oh! This is a hard problem

* Lock-ordering usually reflects static assumptions
about the structure of the data

— When you can’t make these assumptions, ordering gets
hard

=N THE UNIVERSITY
|T,T| of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Linux solution

* In general, locks for dynamic data structures are
ordered by kernel virtual address
— l.e., grab locks in increasing virtual address order

* Afew places where traversal path is used instead

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

Lock ordering in practice
From Linux: fs/dcache.c

void d _prune_aliases(struct inode *inode) {
struct dentry *dentry;
struct hlist node *p;
restart: Care taken to lock inode
spin_lock (&inode->i_ lock) ; before each alias
hlist for each entry(dentry, p, &inodg
spin_lock (&dentry->d__
if (!'dentry->d_count) ({
__dget _dlock(dentry) ;
__d drop(dentry) ;
spin_unlock (&dentry->d_lock) ;
spin_unlock (&inode->i lock) ;
dput (dentry) ;
goto restart;

M

S

}
spin_unlock (&dentry->d_lock)_ Inode lock protects list;

} Must restart loop after
spin_unlock (&inode->i lock) ; modification

M

S

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

/

*

* ok ok ok ok ok ok ok % ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok o % * % % % * *

mm/filemap.c lock ordering

Lock ordering:

->i mmap_ lock (vmtruncate)
->private_lock (__free_pte-> set page_dirty buffers)
->swap_lock (exclusive swap_page, others)
->mapping->tree_ lock
->i mutex
->i mmap_ lock (truncate->unmap mapping range)

->mmap_sem
->i mmap_ lock
->page_table_lock or pte_lock (various, mainly in memory.c)
->mapping->tree lock (arch-dependent flush dcache_mmap lock)
->mmap_sem

->lock page (access_process_vm)
->mmap_sem
->i mutex (msync)
->i mutex
->i_alloc_sem (various)
->inode_lock
->sb_lock (£s/fs-writeback.c)
->mapping->tree_ lock (__sync_single_ inode)
->i mmap_ lock
->anon_vma.lock (vma_adjust)
->anon_vma.lock
->page_table_lock or pte_lock (anon_vma prepare and various)
->page_table_lock or pte_lock
->swap_lock (try_to_unmap one)
->private_lock (try_to_unmap one)
->tree_ lock (try_to_unmap one)
->zone.lru lock (follow_page->mark page_accessed)
->zone.lru lock (check pte range->isolate_ lru page)
->private_lock (page_remove_rmap->set page_dirty)
->tree_ lock (page_remove_rmap->set page_dirty)
->inode_lock (page_remove_rmap->set page_dirty)

->inode lock te range->set page dirt

= THE UNIVERSITY
mﬂ ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL

Deadlock Recovery

» Abort all deadlocked processes & reclaim their resources

« Abort one process at a time until all cycles in the RAG
are eliminated

* Where to start?

— Select low priority process
— Processes with most allocation of resources

« Caveat: ensure that system is in consistent state (e.g., transactions)
* Optimization:
— Checkpoint processes periodically; rollback processes to checkpointed state

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

Deadlock Avoidance: Banker’s Algorithm

« Examine each resource request and determine whether or not
granting the request can lead to deadlock

Define a set of vectors and matrices that characterize the
current state of all resources and processes

> resource allocation state matrix

. R, R, Ry ... R,
A//oc = the number of units of

Ni1 NyyNy3 ... N D
resource J held by process i Pro M1 M2 M3 o
i N1 Ny
» maximum claim matrix Py | s,
Max;; = the maximum number of units |
of Pesource J that the process / will P, | ni,
ever require simultaneously o p
o
> available vector ~ /
Avail; = the number of units of <Ny, Ny Ny, oy N>

resource J That are unallocated

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

M

Dealing with Deadlock

« What are some problems with the banker’ s algorithm?
— Very slow O(n?m)
— Too slow to run on every allocation. What else can we do?

» Deadlock prevention and avoidance:

— Develop and use resource allocation mechanisms and protocols that
prohibit deadlock

Deadlock detection and recovery:

> Let the system deadlock and then deal with it
Detect that a set of processes are deadlocked
Recover from the deadlock

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

M

Summary and Editorial

* Deadlock is one difficult issue with concurrency

* Lock ordering is most common solution

— But can be hard:
* Different traversal paths in a data structure
e Complicated relationship between structures

— Requires thinking through the relationships in advance

e Other solutions possible

— Detect deadlocks, abort some programs, put things back
together (common in databases)
* Transactional Memory

— Banker’s algorithm

P=_N THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Current Reality

Fine-Grained Locking

Performance

Locking

Complexity

4+ Unsavory trade-off between complexity and performance
scalability

