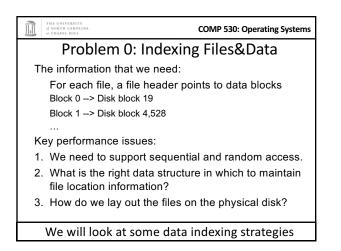
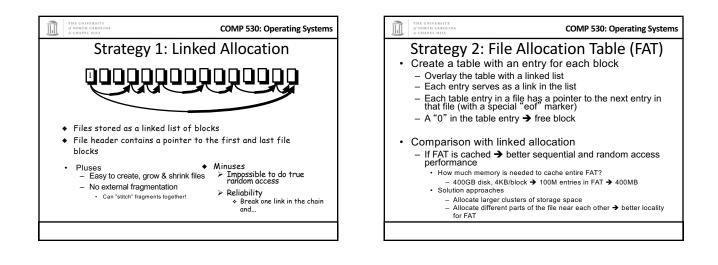
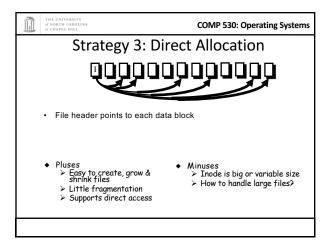
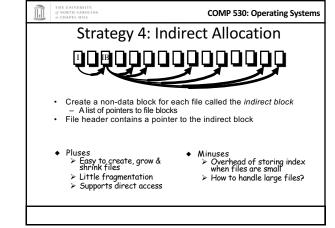
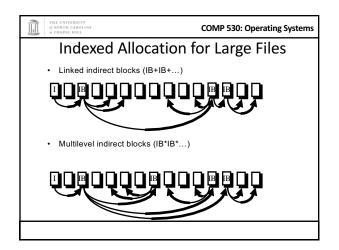

THE UNITERITY 4 NORTH CANOINS COMPP 530: Operating Systems COMP 530: Operating Systems	THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Blocks and Sectors Recall: Disks write data in units of sectors – Historically 512 Bytes; Today mostly 4KiB – A sector write is all-or-nothing File systems allocate space to files in units of blocks – A block is 1+ consecutive sectors	Select Convenient to have page size (why?) — Cache space in me allocator as used virtual page is 1:1 Large blocks can be read/writes (why? — Fewer seeks per be Large blocks can co — One byte update
5	

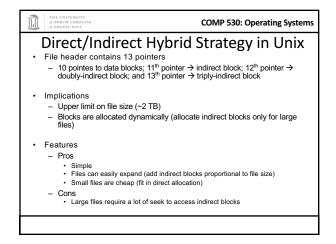

Ì	THE UNIVERSITY of NORTH CAROLINA af CHAPEL HILL	COMP 530: Operating Systems
	Selecting a Blo	ck Size
•	Convenient to have blocks mate page size (why?)	ch or be a multiple of
	 Cache space in memory can be m allocator as used for processes; m virtual page is 1:1 	0 10
•	Large blocks can be more efficie read/writes (why?)	ent for large
	 Fewer seeks per byte read/writte 	n (if all of the data useful)
•	Large blocks can amplify small v	writes (why?)
	 One byte update may cause entir 	e block to be rewritten
		6

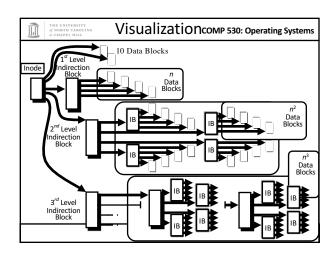


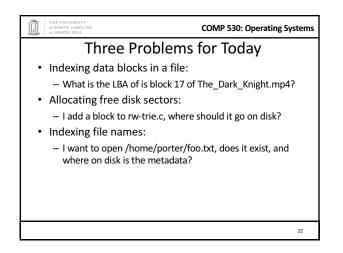




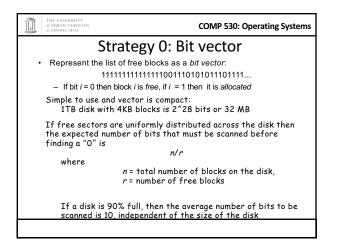


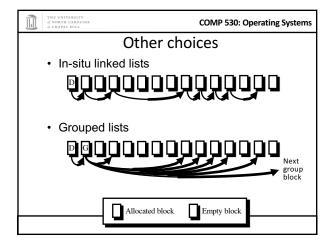


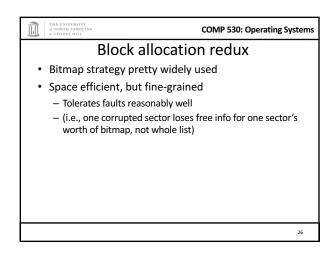


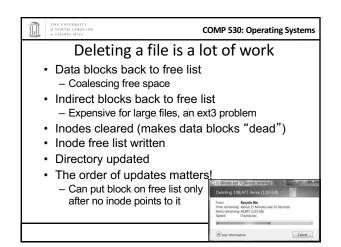


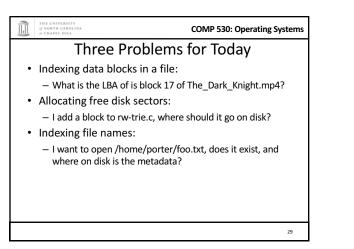
COMP 530: Operating Systems Why bother with indirect blocks? A. Allows greater file size. B. Faster to create files. C. Simpler to grow files. D. Simpler to prepend and append to files.

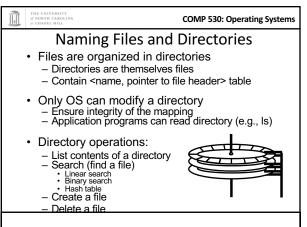


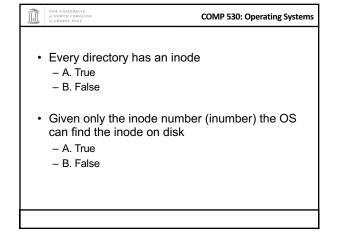


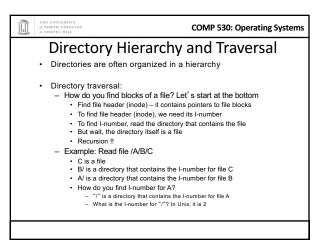

THE UNIVERSITY of NORTH CAROLINA of CHAPEL HILL	COMP 530: Operating Systems
 How big is an inode? A. 1 byte B. 16 bytes C. 128 bytes D. 1 KB E. 16 KB 	

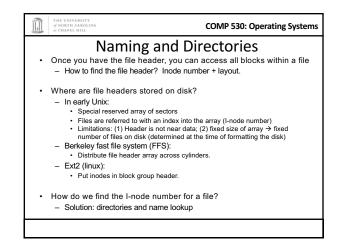

Ì	THE UNIVERSITY 4) NORTH CAROLINA 41 CHAPEL HILL	COMP 530: Operating Systems
	How to store a free Recall: Disks can be big (curre – Allocations can be small (often Any thoughts?	e list on disk? ntly in TB)
		23

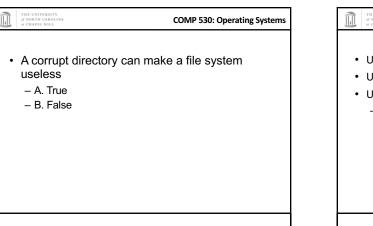







di CHAPEL HILL	COMP 530: Operating Systems
Allocating Inodes	
 Need a data block Suppose we have a list Need an inode 	of free blocks
 Consult a list of free ino 	des
 Why do inodes have the – A. Because they are fixed – B. Because they exist a – C. Because there are a 	ed size t fixed locations





Directory Traversal, Cont'd
 How many disk accesses are needed to access file /A/B/C? Read I-node for "/" (root) from a fixed location Read the first data block for root Read the Irst data block of A Read the Irst data block of A Read the first data block of B Read I-node for C Read the first data block of C Optimization: Maintain the notion of a current working directory (CWD) Users can now specify relative file names OS can cache the data blocks of CWD

	THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	COMP 530: Operating Systems
		Summary
•	Understand hov	v file systems map blocks to files
•	Understand hov	v free blocks are tracked
•	Understand hier	rarchical directory structure ode is
		36