
10/1/16

1

COMP	530:	Operating	Systems

History	of	Operating	Systems

Portions	of	this	material	courtesy	Jennifer	Wong	and	Gene	Stark

COMP	530:	Operating	Systems

Natural	Selection
• Almost	all	OS	design	is	about	trade-offs
• What	drives	these	trade-offs?
– Hardware
– User	Applications

• Observation:	These	change	
over	time

2

COMP	530:	Operating	Systems

Meta-Example:	Caching
• If	reading	something	is	slow,	caches	are	a	great	idea
• If	reading	something	is	fast,	maintaining	caches	can	
slow	things	down

• Historically,	the	use	of	caching	is	proportional	to	
network	latency	(relative	to	other	resources)
– Pendulum	swings	back	and	forth	over	time

3Identify	fundamentals,	predict	future,	profit!

COMP	530:	Operating	Systems

That	said…
• Early	history	really	is	just	figuring	out	how	to	make	
things	work	sensibly

• And	some	principles	are	not	trade-offs

4Let’s	look	at	history	of	HW	and	apps

COMP	530:	Operating	Systems

1940’s	– First	Computers
• One	user/programmer	at	a	time	(serial	
– Program	loaded	manually	using	switches
– Debug	using	the	console	lights

• ENIAC
– 1st gen	purpose	machine
– Calculations	for	Army
– Each	panel	had	specific	
function

ENIAC	(Electronic	Number	Integrator	and	Computer)

COMP	530:	Operating	Systems

1940’s	– First	Computers

Pros:
• Interactive	– immediate	

response	on	lights
• Programmers	were	women	

Cons:
• Lots	of	Idle	time

– Expensive	computation

• Error-prone/tedious
• Each	program	needs	all	driver	

code

• Vacuum	Tubes	and	Plugboards
• Single	group	of	people	designed,	built,	

programmed,	operated	and	maintained	
each	machine

• No	Programming	language,	only	absolute	
machine	language	(101010)

• O/S?	What	is	an	O/S?
• All	programs	basically	did	numerical	

calculations

What	problem	do	you	think	was	fixed	first?

10/1/16

2

COMP	530:	Operating	Systems

Idle	time!
• Computers	were	ridonculously expensive
• Switching	programs	meant	manually	replugging stuff
– Minutes	of	downtime	if	you	are	lucky

• If	I	spend	$1m/yr for	a	computer,	each	minute	of	
downtime	costs	~$1.90!

• Any	ideas?

7

COMP	530:	Operating	Systems

1950’s	Hardware	Innovation
• The	punch	card
– Represents	plug	choices
– Selected	(programmed)	offline	at	a	desk

• Write-only	memory
– But	can	be	quickly	swapped	in/out

• A	sequence	of	punch	cards	can	represent	a	
more	sophisticated	program	

• Your	tech-literate	(grand?)	parents	will	share	
punch	card	stories	at	Thanksgiving	
– Spoiler:	They	drop	the	deck

8

COMP	530:	Operating	Systems

1950’s	OSes:	Batch	Processing
• Programs	were	decks	of	cards
• The	OS	was	called	a	resident	monitor
• Pseudo	code	for	the	OS:

while	(next	job)	{
pick	job;
run	job	to	completion;

}

9

COMP	530:	Operating	Systems

From	Monitor	to	OS
• Resident	monitor	was	a	basic	OS
– Software	
– Always	in	memory
– Controls	the	sequence	of	events
– Reads	in	job	and	gives	control	of	
CPU	to	that	job

– Job	completion	returns	to	monitor

10

COMP	530:	Operating	Systems

Back	to	idle	time…
• Does	batch	processing	reduce	idle	time?
– Yes,	by	reducing	time	to	switch	jobs

• How?
– Keep	as	many	pending	jobs	as	possible	ready

• Key	Principle:	Keep	the	CPU	busy!
– Perhaps	obvious,	but	still	drives	a	ton	of	innovation
– Albeit	filling	smaller	idle	periods	(more	to	come…)

11

COMP	530:	Operating	Systems

Nomenclature:	Bottleneck

12

• In	a	well-conditioned	system,	everything	produces	and	
consumes	at	same	rate

• A	bottleneck	is	when	one	stage	is	slower
• Batch	processing	removes	a	bottleneck	on	loading	a	

program	into	the	system	(online	to	offline	programming)

Image	from	wikipedia

10/1/16

3

COMP	530:	Operating	Systems

1950’s	– Batch	Processing

Pros:
• CPU	kept	busy,	less	idle	time
• Monitor	could	provide	I/O	

services

Cons:
• No	longer	interactive	–

longer	turnaround	time
• Debugging	more	difficult
• Buggy	jobs	could	require	

operator	intervention

IBM	7090

So,	are	we	done	with	idle	time	yet?

COMP	530:	Operating	Systems

Tacit	assumption:	All	work	CPU-bound
• Modern	context:	obviously	false
• Tape	and	other	I/O	devices	introduced
• I/O	is	S		L		O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	W	W	W
– Compared	to	CPU

• Even	on	modern	computers:
– CPU:	3	billion	cycles	per	second	per	core
– The	fastest,	most	bleeding-edge,	flash:	any	guesses?

• ~1.2	million	I/O	operations	per	second

– Regular	old	hard	disks:
• About	100	I/O	operations	per	second	on	a	good	day

14

COMP	530:	Operating	Systems

Uniprogramming
• Processor	must	wait	for	I/O	instruction	to	complete	
before	preceding

COMP	530:	Operating	Systems

The	I/O	Problem
Monitor	Pseudo-Code

while	(next	job)	{
pick	job;
run	job	to	completion;

}

• Jobs	start	having	I/O
• I/O	takes	a	long	time
– CPU	is	idle	during	I/O

16Ideas?	What	is	the	bottleneck?

Soft	Target

COMP	530:	Operating	Systems

Multiprogramming
• When	one	job	needs	to	wait	for	I/O,	the	processor	
can	switch	to	another	job

COMP	530:	Operating	Systems

Multiprogramming

10/1/16

4

COMP	530:	Operating	Systems

Multiprogramming	Pseudo-Code
while	(next	job)	{

pick	job;
run	job	to	completion	or	blocking	event	(e.g.,	I/O);

}

• Note,	monitor	and	multiple	jobs	in	memory
– Monitor	protects	jobs’	memory	from	each	other

19

COMP	530:	Operating	Systems

But	did	we	remove	the	bottleneck?
• Not	exactly,	I/O	is	still	slow	and	a	bottleneck
• We	really	just	tried	to	add	more	sources

20

CPU

New	Jobs

I/OCPU .	.	.	I/O

COMP	530:	Operating	Systems

But	did	we	remove	the	bottleneck?
• Not	exactly,	I/O	is	still	slow	and	a	bottleneck
• We	really	just	tried	to	add	more	sources

21

New	Jobs

I/O

Done	w	
I/O

CPU

I/O

I/O

Done

COMP	530:	Operating	Systems

1960’s	– Multiprogramming	
(a.k.a.	time-sharing)	

Pros:
• Paging	and	swapping	(RAM)
• Interactive
• Output	available	at	completion

• CPU	kept	busy,	less	idle	time

Cons:
• HW	more	complex
• OS		complexity

IBM	System	360

COMP	530:	Operating	Systems

1970’s	- Minicomputers	and
Microprocessors

• Trend	toward	many	small	personal	computers	or	
workstations,	rather	than	a	single	mainframe.
– Advancement	of	Integrated	circuits

• Timesharing	in	Unix
– Multiple	“dumb	terminals”	(graphics	and	keyboard)
– Sharing	one	machine	(CPU,	storage,	etc)

COMP	530:	Operating	Systems

“User”	I/O
• You	can	model	terminal	I/O	just	like	any	other	high-
latency	device	(e.g.,	disk,	network)

• Example:
– User	presses	a	key
– OS	+	program	do	a	little	work
– App	blocks	for	next	keystroke
– OS	schedules	something	else

• Even	in	70s,	CPUs	faster	than	human	typing
– Thus,	one	CPU	could	comfortably	accept	input	from	
multiple	users

– Computation	induced	by	those	commands	a	different	
story…

24For	interactive	apps,	you are	the	bottleneck

10/1/16

5

COMP	530:	Operating	Systems

1980’s	– Personal	Computers	&	Networking	
• Microcomputers		=	PC	(size	and	$)
• MS-DOS,	GUI,	Apple,	Windows

• Networking:	Lower	cost	by	sharing	resources
– Not	cost-effective	for	every	user	to	have	printer,	backed	up	
hard	drive,	etc.

– Rise	of	cheap,	local	area	networks	(Ethernet),	and	access	
to	wide	area	networks	(Arpanet).

COMP	530:	Operating	Systems

1980’s	– Personal	Computers	&	Networking	

• OS	issues:
– Communication	protocols,	client/server	paradigm
– Reliability,	consistency,	availability	of	distributed	data
– Heterogeneity
– Reducing	Complexity

• Ex:	Byte	Ordering

COMP	530:	Operating	Systems

1990’s	– Global	Computing
• Dawn	of	the	Internet
– Global	computing	system

• Powerful	CPUs	cheap!	Multicore	systems
• High	speed	links
• Standard	protocols	(HTTP,	FTP,	HTML,	XML,	etc)
• OS	Issues:
– Communication	costs	dominate

• CPU/RAM/disk	speed	mismatch
• Send	data	to	program	vs.	sending	program	to	data

– QoS gurantees
– Security

COMP	530:	Operating	Systems

In	the	year	2000…

COMP	530:	Operating	Systems

2000’s	– Embedded	and	Ubiquitous	
Computing

• Mobile	and	wearable	computers
• Networked	household	devices
• Absorption	of	telephony,	entertainment	functions	
into	computing	systems

• OS	issues:
– Security,	privacy
– Mobility,	ad-hoc	networks,	
– Power	management
– Reliability,	service	guarantees

COMP	530:	Operating	Systems

Are	we	done?

30

10/1/16

6

COMP	530:	Operating	Systems

What	hardware	changes?
• Multi-core
– We	can’t	make	cores	faster,	but	we	can	give	you	more	of	
them

– OS	issues:	Synchronization	is	hard	(more	later)
• Cloud	computing
– Lower	costs,	on-demand	“elastic”	resource	allocation
– OS	issues:	security,	job	placement,	

• Networking/caching	redux

• Embedded	Devices:	IoT,	wearables,	etc
– Dealing	with	heterogeneity
– Need	new	abstractions	for	devices

31

COMP	530:	Operating	Systems

Summary
• OSes began	with	big	expensive	computers	used	
interactively	by	one	user	at	a	time.

• Batch	systems	kept	computer	busier.
• Time-sharing	overlaps	computation	and	I/O,	keeping	
the	CPU	even	busier

• Multiprogramming	made	systems	interactive	and	
supported	multiple	users

• Cheap	CPU/memory/storage	make	communication	
the	dominant	cost.

• Multiprogramming	still	central	for	handling	
concurrent	interaction	with	environment.

COMP	530:	Operating	Systems

Meta-Summary
• We	know	how	to	build	a	working	OS
• But	OS	research	and	development	will	continue!
– New	and	evolving	hardware	(master	#3)

• Arguably	wearables are	master	#1	too

– New	and	evolving	apps	(master	#2)

• A	lot	of	this	course	will	be	understanding	design	
trade-offs
– If	you	can	map	new	hardware/apps	to	these	trade-offs,	
you	can	predict	shifts	in	OS	design

33

