
10/21/16

1

COMP	530:	Operating	Systems

The	Art	and	Science	of	
(small)	Memory	Allocation

Don	Porter

1

COMP	530:	Operating	Systems

Lecture	goal
• This	lecture	is	about	allocating	small	objects
– Less	than	one	page	in	size	(<4KB)
– Past	lectures	have	focused	on	allocating	physical	pages	or	
segments

• Understand	how	memory	allocators	work
• Understand	trade-offs	and	current	best	practices

2

COMP	530:	Operating	Systems

libc.soheap

Big	Picture

int main () {

struct foo *x = malloc(sizeof(struct foo));

...

void * malloc (ssize_t n) {

if (heap empty)

mmap(); // add pages to heap

find a free block of size n;

}
3

Virtual	Address	Space

0 0xffffffff

Code
(.text)

h
e
a
p

stackheap
(empty)
n

Key	idea:	Sub-divide	a	page	for	each	malloc()	call

COMP	530:	Operating	Systems

Today’s	Lecture
• How	to	implement	malloc()	or	new
– Note	that	new is	essentially	malloc +	constructor
– malloc()	is	part	of	libc,	and	executes	in	the	application

• malloc() gets	pages	of	memory	from	the	OS	via	
mmap() and	then	sub-divides	them	for	the	
application

• A	brief	history	of	Linux-internal	kmalloc
implementations	

4

COMP	530:	Operating	Systems

Bump	allocator

• malloc (6)
• malloc (12)
• malloc(20)
• malloc (5)

5

COMP	530:	Operating	Systems

Bump	allocator
• Simply	“bumps”	up	the	free	pointer
• How	does	free()	work?		It	doesn’t
– Well,	you	could	try	to	recycle	cells	if	you	wanted,	but	
complicated	bookkeeping

• Controversial	observation:	This	is	ideal	for	simple	
programs
– You	only	care	about	free()	if	you	need	the	memory	for	
something	else

6



10/21/16

2

COMP	530:	Operating	Systems

Assume	memory	is	limited
• Hoard:	best-of-breed	concurrent	allocator
– User	applications
– Seminal	paper

• Your	lab	2	is	a	simplified	version	of	Hoard
– No	concurrency,	no	large	(>2K)	objects,	no	realloc etc.

• There	are	other	good	designs	out	there
– jemalloc
– supermalloc

7

COMP	530:	Operating	Systems

Overarching	issues
• Fragmentation
• Allocation	and	free	latency
• Implementation	complexity

8

COMP	530:	Operating	Systems

Fragmentation
• Review:	What	is	it?		Why	does	it	happen?
• What	is	
– Internal	fragmentation?

• Wasted	space	when	you	round	an	allocation	up

– External	fragmentation?
• When	you	end	up	with	small	chunks	of	free	memory	that	are	too	
small	to	be	useful

• Which	kind	does	our	bump	allocator	have?

9

COMP	530:	Operating	Systems

Hoard:	Superblocks
• At	a	high	level,	allocator	operates	on	superblocks
– Chunk	of	(virtually)	contiguous	pages
– All	objects	in	a	superblock	are	the	same	size

• A	given	superblock	is	treated	as	an	array	of	same-
sized	objects
– They	generalize	to	“powers	of	b	>	1”;	
– In	usual	practice,	b	==	2

10

COMP	530:	Operating	Systems

Superblock	intuition
512	byte	

object	heap

4	KB	page

(Free	space)

4	KB	page

next next next

next next next

Free next

Free	list	in	
LIFO	order

Each	page	an	
array	of	
objects

Store	list	pointers	
in	free	objects!

11

COMP	530:	Operating	Systems

Superblock	Intuition

malloc (8);

1) Find	the	nearest	power	of	2	heap	(8)

2) Find	free	object	in	superblock

3) Add	a	superblock	if	needed.		Goto 2.

12



10/21/16

3

COMP	530:	Operating	Systems

malloc (400)512	byte	
object	heap

4	KB	page

(Free	space)

4	KB	page

next next next

next next next

Free next

Pick	first	free	
object

13

COMP	530:	Operating	Systems

Superblock	example
• Suppose	my	program	allocates	objects	of	sizes:
– 14,	15,	17,	34,	and	40	bytes.

• How	many	superblocks	do	I	need	(if	b	==2)?
– 3	– (16,	32,	and	64	byte	chunks)

• If	I	allocate	a	15	byte	object	from	an	16	byte	
superblock,	doesn’t	that	yield	internal	
fragmentation?
– Yes,	but	it	is	bounded	to	<	50%
– Give	up	some	space	to	bound	worst	case	and	complexity

14

COMP	530:	Operating	Systems

High-level	strategy
• Allocate	a	heap	for	each	processor,	and	one	shared	
heap
– Note:	not	threads,	but	CPUs
– Can	only	use	as	many	heaps	as	CPUs	at	once
– Requires	some	way	to	figure	out	current	processor

• Try	per-CPU	heap	first
• If	no	free	blocks	of	right	size,	then	try	global	heap
– Why	try	this	first?

• If	that	fails,	get	another	superblock	for	per-CPU	heap

15

COMP	530:	Operating	Systems

Example:	malloc()	on	CPU	0

16

CPU	0	Heap CPU	1	Heap

Global	Heap
First,	try	
per-CPU	
heap

Second,	try	
global	heap

If	global	heap	
full,	grow	

per-CPU	heap

COMP	530:	Operating	Systems

Big	objects
• If	an	object	size	is	bigger	than	half	the	size	of	a	
superblock,	just	mmap()	it
– Recall,	a	superblock	is	on	the	order	of	pages	already

• What	about	fragmentation?
– Example:	4097	byte	object	(1	page	+	1	byte)
– Argument:	More	trouble	than	it	is	worth

• Extra	bookkeeping,	potential	contention,	and	potential	bad	cache	
behavior	

17

COMP	530:	Operating	Systems

Memory	free
• Simply	put	back	on	free	list	within	its	superblock
• How	do	you	tell	which	superblock	an	object	is	from?
– Suppose	superblock	is	8k	(2pages)

• And	always	mapped	at	an	address	evenly	divisible	by	8k

– Object	at	address	0x431a01c	
– Just	mask	out	the	low	13	bits!
– Came	from	a	superblock	that	starts	at	0x431a000

• Simple	math	can	tell	you	where	an	object	came	
from!

18



10/21/16

4

COMP	530:	Operating	Systems

LIFO
• Why	are	objects	re-allocated	most-recently	used	
first?
– Aren’t	all	good	OS	heuristics	FIFO?
– More	likely	to	be	already	in	cache	(hot)
– Recall	from	undergrad	architecture	that	it	takes	quite	a	few	
cycles	to	load	data	into	cache	from	memory

– If	it	is	all	the	same,	let’s	try	to	recycle	the	object	already	in	
our	cache

19

COMP	530:	Operating	Systems

Hoard	Simplicity
• The	bookkeeping	for	alloc and	free	is	straightforward
– Many	allocators	are	quite	complex	(looking	at	you,	slab)

• Overall:	(#	CPUs	+	1)	heaps

– Per	heap:	1	list	of	superblocks	per	object	size	(22—211)

– Per	superblock:	
• Need	to	know	which/how	many	objects	are	free

– LIFO	list	of	free	blocks

20

COMP	530:	Operating	Systems

CPU	0	Heap,	Illustrated

21One	of	these	per	CPU	(and	one	shared)

Free
List:

Order: 2

Free
List:

3

Free
List:

4

Free
List:

5

Free
List:

11

.	.	.

Free	List:	LIFO	
order

Some	sizes	can	
be	empty

COMP	530:	Operating	Systems

Hoard	summary
• Really	nice	piece	of	work
• Establishes	nice	balance	among	concerns
• Good	performance	results
– It	is	ok	if	you	don’t	understand	synchronization	and	
alignment	issues

22

COMP	530:	Operating	Systems

Part	2:	Linux	kernel	allocators
• malloc()	and	friends,	but	in	the	kernel

• Focus	today	on	dynamic	allocation	of	small	objects
– Later	class	on	management	of	physical	pages
– And	allocation	of	page	ranges	to	allocators

23

COMP	530:	Operating	Systems

kmem_caches
• Linux	has	a	kmalloc and	kfree,	but	caches	preferred	
for	common	object	types

• Like	Hoard,	a	given	cache	allocates	a	specific	type	of	
object
– Ex:	a	cache	for	file	descriptors,	a	cache	for	inodes,	etc.

• Unlike	Hoard,	objects	of	the	same	size	not	mixed
– Allocator	can	do	initialization	automatically
– May	also	need	to	constrain	where	memory	comes	from

24



10/21/16

5

COMP	530:	Operating	Systems

Caches	(2)
• Caches	can	also	keep	a	certain	“reserve”	capacity
– No	guarantees,	but	allows	performance	tuning
– Example:	I	know	I’ll	have	~100	list	nodes	frequently	
allocated	and	freed;	target	the	cache	capacity	at	120	
elements	to	avoid	expensive	page	allocation

– Often	called	a	memory	pool

• Universal	interface:	can	change	allocator	underneath
• Kernel	has	kmalloc and	kfree too
– Implemented	on	caches	of	various	powers	of	2	(familiar?)

25

COMP	530:	Operating	Systems

Superblocks	to	slabs
• The	default	cache	allocator	(at	least	as	of	early	2.6)	
was	the	slab	allocator

• Slab	is	a	chunk	of	contiguous	pages,	similar	to	a	
superblock	in	Hoard

• Similar	basic	ideas,	but	substantially	more	complex	
bookkeeping
– The	slab	allocator	came	first,	historically

26

COMP	530:	Operating	Systems

Complexity	backlash
• I’ll	spare	you	the	details,	but	slab	bookkeeping	is	
complicated

• 2	groups	upset:		(guesses	who?)
– Users	of	very	small	systems
– Users	of	large	multi-processor	systems

27

COMP	530:	Operating	Systems

Small	systems
• Think	4MB	of	RAM	on	a	small	device	(thermostat)
• As	system	memory	gets	tiny,	the	bookkeeping	
overheads	become	a	large	percent	of	total	system	
memory

• How	bad	is	fragmentation	really	going	to	be?
– Note:	not	sure	this	has	been	carefully	studied;	may	just	be	
intuition

28

COMP	530:	Operating	Systems

SLOB	allocator
• Simple	List	Of	Blocks
• Just	keep	a	free	list	of	each	available	chunk	and	its	
size

• Grab	the	first	one	big	enough	to	work
– Split	block	if	leftover	bytes

• No	internal	fragmentation,	obviously
• External	fragmentation?		Yes.		Traded	for	low	
overheads

29

COMP	530:	Operating	Systems

Large	systems
• For	very	large	(thousands	of	CPU)	systems,	complex	
allocator	bookkeeping	gets	out	of	hand

• Example:	slabs	try	to	migrate	objects	from	one	CPU	
to	another	to	avoid	synchronization
– Per-CPU	*	Per-CPU	bookkeeping

30



10/21/16

6

COMP	530:	Operating	Systems

SLUB	Allocator
• The	Unqueued Slab	Allocator
• A	much	more	Hoard-like	design
– All	objects	of	same	size	from	same	slab
– Simple	free	list	per	slab
– No	cross-CPU	nonsense

• Now	the	default	Linux	cache	allocator

31

COMP	530:	Operating	Systems

Conclusion
• Different	allocation	strategies	have	different	trade-
offs
– No	one,	perfect	solution

• Allocators	try	to	optimize	for	multiple	variables:
– Fragmentation,	speed,	simplicity,	etc.

• Understand	tradeoffs:	Hoard	vs	Slab	vs.	SLOB

32

COMP	530:	Operating	Systems

Misc notes
• When	is	a	superblock	considered	free	and	eligible	to	
be	move	to	the	global	bucket?
– See	figure	2,	free(),	line	9
– Essentially	a	configurable	“empty	fraction”

• Is	a	"used	block"	count	stored	somewhere?	
– Not	clear,	but	probably

33


