
COMP	530:	Operating	Systems

Processes

Don	Porter

Portions	courtesy	Emmett	Witchel

1

COMP	530:	Operating	Systems

App

What	is	a	process?

2-2

Hardware

Libraries

Kernel

User

Super-
visor

App

Libraries

Daemon

Libraries

System	Call	Table	(350—1200)

Intuitively,	
one	of	
these

COMP	530:	Operating	Systems

What	is	a	process?
• A	process	is	a	program	during	execution.

– Program	=	static	file	(image)
– Process	=	executing	program	=	program	+	execution	state.

• A	process	is	the	basic	unit	of	execution	in	an	operating	system
– Each	process	has	a	number,	its	process	identifier	(pid).

• Different	processes	may	run	different	instances	of	the	same	program
– E.g.,	my	javac and	your	javac process	both	run	the	Java	compiler

• At	a	minimum,	process	execution	requires	following	resources:
– Memory	to	contain	the	program	code	and	data
– A	set	of	CPU	registers	to	support	execution

3

COMP	530:	Operating	Systems

• We	write	a	program	in	e.g.,	Java.
• A	compiler	turns	that	program	into	an	instruction	list.
• The	CPU	interprets	the	instruction	list	(which	is	more	a	graph	of	basic	

blocks).

void X (int b) {

if(b == 1) {

…

int main() {

int a = 2;
X(a);

}

Program	to	process

COMP	530:	Operating	Systems

void X (int b) {

if(b == 1) {

…

int main() {

int a = 2;
X(a);

}

What	you	wrote:

void X (int b) {

if(b == 1) {

…

int main() {

int a = 2;
X(a);

} Code

main; a = 2
X; b = 2

Heap

Stack

Process	in	memory
What	is	in	memory:

Data

COMP	530:	Operating	Systems

Where	to	processes	come	from?
• When	I	type	‘./a.out’,	the	binary	runs,	right?

– Really	only	true	for	static	binaries	(more	on	this	later)

• In	reality	a	loader sets	up	the	program
– Usually	a	user-level	program
– Can	also	be	in-kernel,	or	split	between	both

6

COMP	530:	Operating	Systems

Where	to	processes	come	from?
• In	order	to	run	a	program,	the	loader:

– reads	and	interprets	the	executable	file
– sets	up	the	process’s	memory	to	contain	the	code	&	data	from	

executable
– pushes	“argc”,	“argv” on	the	stack
– sets	the	CPU	registers	properly	&	calls	“_start()”

• Program	starts	running	at	_start()
_start(args) {

initialize_java();
ret = main(args);
exit(ret)

}

“process” is	now	running;	no	longer	think	of	“program”

• When	main()	returns,	OS	calls	“exit()” which	destroys	the	
process	and	returns	all	resources

7What	bookkeeping	does	the	OS	need	for	processes?

COMP	530:	Operating	Systems

• A process has code.
– OS must track program counter (code location).

• A process has a stack.
– OS must track stack pointer.

• OS stores state of processes’ computation in a
process control block (PCB).
– E.g., each process has an identifier (process identifier,

or PID)
• Data (program instructions, stack & heap) resides

in memory, metadata is in PCB (which is a kernel
data structure in memory)

Keeping	track	of	a	process

COMP	530:	Operating	Systems

Context	Switching
• The	OS	periodically	switches	execution	from	one	
process	to	another

• Called	a context	switch,	because	the	OS	saves	one	
execution	context	and	loads	another

COMP	530:	Operating	Systems

What	causes	context	switches?
• Waiting	for	I/O	(disk,	network,	etc.)

– Might	as	well	use	the	CPU	for	something	useful
– Called	a	blocked	state

• Timer	interrupt	(preemptive	multitasking)
– Even	if	a	process	is	busy,	we	need	to	be	fair	to	other	
programs

• Voluntary	yielding	(cooperative	multitasking)
• A	few	others

– Synchronization,	IPC,	etc.

COMP	530:	Operating	Systems

Process	life	cycle
• Processes	are	always	either:

– Executing
– Waiting	to	execute, or	
– Blocked	waiting	for	an	event to	occur

11

RunningReady

Blocked

Start Done

COMP	530:	Operating	Systems

Operating System

“System	Software”

User Process 1

User Program 2User Process 2

User Process n

...
Process 1 Process 2OS I/O

Device

k: read()

k+1:

startIO()

endio{ interrupt

main{

main{

}

read{

}

}

schedule()

Memory

save
state schedule()

restore
state

save
state

Process	contexts

COMP	530:	Operating	Systems

1. Ready
2. Running
3. Blocked
4. Zombie
5. Exited

When	a	process	is	waiting	for	I/O,	what	is	
its	state?

COMP	530:	Operating	Systems

CPU	Scheduling
• Problem	of	choosing	which	process	to	run	next

– And	for	how	long	until	the	next	process	runs

• Why	bother?
– Improve	performance:	amortize	context	switching	costs
– Improve	user	experience:	e.g.,	low	latency	keystrokes
– Priorities:	favor	“important”	work	over	background	work
– Fairness

14We	will	cover	techniques	later	

COMP	530:	Operating	Systems

When	does	scheduling	happen?
• When	a	process	blocks
• When	a	device	interrupts	the	CPU	to	indicate	an	
event	occurred	(possibly	un-blocking	a	process)

• When	a	process	yields	the	CPU

• Preemptive	scheduling:	Setting	a	timer	to	interrupt	
the	CPU	after	some	time
– Places	an	upper	bound	on	how	long	a	CPU-bound	process	
can	run	without	giving	another	process	a	turn

• Non-preemptive	scheduling:	Processes	must	
explicitly	yield	the	CPU

15

COMP	530:	Operating	Systems

• OS uses PCBs to represent a process
• Every resource is represented with a queue
• OS puts PCB on an appropriate queue.

– Ready to run queue.
– Blocked for IO queue (Queue per device).
– Zombie queue.

• When CPU becomes available, choose from
ready to run queue

• When an event occurs, remove waiting
process from blocked queue, move to ready
queue.

Scheduling	processes

COMP	530:	Operating	Systems

Consider a Web server:
get network message (URL) from client
fetch URL data from disk
compose response
send response

How well does this web server perform?
With many incoming requests?

That access data all over the disk?

Why	use	multiple	processes	in	one	app?

A	single	process	cannot	overlap	CPU	and	I/O

COMP	530:	Operating	Systems

Consider a Web server
get network message (URL) from client
create child process, send it URL

Child
fetch URL data from disk
compose response
send response

Now	the	child	can	block	on	I/O,	parent	keeps	working
Different	children	can	block	on	reading	different	files

How	does	server	know	if	child	succeeded	or	failed?

Why	use	multiple	processes	in	one	app?

COMP	530:	Operating	Systems

• After	the	program	finishes	execution,	it	calls	exit()
• This	system	call:

– takes	the	“result” of	the	program	as	an	argument
– closes	all	open	files,	connections,	etc.
– deallocates memory
– deallocates most	of	the	OS	structures	supporting	the	process
– checks	if	parent	is	alive:

v If	so,	it	holds	the	result	value	until	parent	requests	it;	in	this	case,	process	does	not	
really	die,	but	it	enters	the	zombie/defunct state

v If	not,	it	deallocates all	data	structures,	the	process	is	dead

• Process	termination	is	the	ultimate	garbage	collection

Orderly	termination:	exit()

Web	server	ex:	Child	uses	exit	code	for	success/failure

COMP	530:	Operating	Systems

• Child	returns	a	value	to	parent	via	exit()
• The	parent	receives	this	value	with	wait()

• Specifically,	wait():	
– Blocks	the	parent	until	child	finishes	(need	a	wait	queue)
– When	a	child	calls	exit(),	the	OS	unblocks	the	parent	and	returns	the	value	

passed	by	exit()	as	a	result	of	the	wait()	call	(along	with	the	pid of	the	child)
– If	there	are	no	children	alive,	wait()	returns	immediately

The	wait()	system	call

COMP	530:	Operating	Systems

Zombies!!!

21

• A	parent	can	wait	indefinitely	to	call	wait()
• The	OS	to	store	the	exit	code	for	a	finished	child	until	
the	parent	calls	wait()

• Hack:	Keep	PCB	for	dead	processes	around	until:
– Parent	calls	wait(),	or
– Parent	exit()s	(don’t	need	to	wait()	on	grandkids)

• And	that	is	a	zombie	(done	state)
– Will	not	be	scheduled	again

COMP	530:	Operating	Systems

Where	do	processes	come	from?	(redux)
• Parent/child	model
• An	existing	program	has	to	spawn	a	new	one

– Most	OSes have	a	special	‘init’	program	that	launches	
system	services,	logon	daemons,	etc.

– When	you	log	in	(via	a	terminal	or	ssh),	the	login	program	
spawns	your	shell

COMP	530:	Operating	Systems

Approach	1:	Windows	CreateProcess
• In	Windows,	when	you	create	a	new	process,	you	
specify	the	program
– And	can	optionally	allow	the	child	to	inherit	some	
resources	(e.g.,	an	open	file	handle)

COMP	530:	Operating	Systems

Approach	2:	Unix	fork/exec()
• In	Unix,	a	parent	makes	a	copy of	itself	using	fork()

– Child	inherits	everything,	runs	same	program
– Only	difference	is	the	return	value	from	fork()

• Child	gets	0;	parent	gets	child	pid

• A	separate	exec()	system	call	loads	a	new	program
– Like	getting	a	brain	transplant

• Some	programs,	like	our	web	server	example,	fork()	
clones	(without	calling	exec()).
– Common	case	is	probably	fork+exec

COMP	530:	Operating	Systems

• The exec() call allows a process to “load” a different
program and start execution at main (actually
_start).

• It allows a process to specify the number of
arguments (argc) and the string argument array
(argv).

• If the call is successful
– it is the same process …
– but it runs a different program !!

• Code, stack & heap is overwritten
– Sometimes memory mapped files are preserved.

• Exec does not return!

Program	loading:	exec()

COMP	530:	Operating	Systems

In the parent process:
main()
…
int rv =fork(); // create a child
if(0 == rv) { // child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);
printf(“Something is horribly wrong\n”);
exit(exec_status);

} else { // parent continues here
printf(“Who’s your daddy?”);
…
child_status = wait(rv);

}

Exec should not
return

fork()	+	exec()	example

COMP	530:	Operating	Systems

pid = 127
open files = “.history”
last_cpu = 0

pid = 128
open files = “.history”
last_cpu = 0

int rv = fork();
if(rv == 0) {
close(“.history”);
exec(“/bin/calc”);
} else {
wait(rv);

int rv = fork();
if(rv == 0) {
close(“.history”);
exec(“/bin/calc”);
} else {
wait(rv);

Process Control Blocks (PCBs)

OS
USER

int rv = fork();
if(rv == 0) {
close(“.history”);
exec(“/bin/calc”);
} else {
wait(rv);

int rvc_main(){
irvq = 7;
do_init();
ln = get_input();
exec_in(ln);

pid = 128
open files =
last_cpu = 0

int rv = fork();
if(rv == 0) {
close(“.history”);
exec(“/bin/calc”);
} else {
wait(rv);

A	shell	forks	and	execs	a	calculator

COMP	530:	Operating	Systems

pid = 127
open files = “.history”
last_cpu = 0

pid = 128
open files = “.history”
last_cpu = 0

int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA

int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA

int calc_main() {
int q = 7;
… Code

Heap

Stack

0x43178050

pid = 128
open files =
last_cpu = 0

OS
USER

Process Control Blocks (PCBs)

A	shell	forks	and	then	execs	a	calculator

COMP	530:	Operating	Systems

Why	separate	fork	&	exec?
• Key	issue:	Inheritance of	file	descriptors,	
environment,	etc.
– Or,	making	the	shell	work

• Remember	how	the	shell	can	do	redirection?
– ./warmup <	testinput.txt
– File	handle	0	(stdin)	is	opened	to	read	testinput.txt

• The	parent	(shell)	opens	testinput.txt before	fork()
– The	child	(warmup)	inherits	this	open	file	handle

• Even	after	exec()

29

COMP	530:	Operating	Systems

• Decoupling fork and exec lets you do anything to the
child’s process environment without adding it to the
CreateProcess API.

int rv = fork(); // create a child
If(0 == rv) { // child continues here

// Do anything (unmap memory, close net connections…)
exec(“program”, argc, argv0, argv1, …);

}
fork() creates a child process that inherits:
Ø identical copy of all parent’s variables & memory
Ø identical copy of all parent’s CPU registers (except one)

Parent and child execute at the same point after fork() returns:
Ø by convention, for the child, fork() returns 0
Ø by convention, for the parent, fork() returns the pid of the child

The	convenience	of	separate	fork/exec

COMP	530:	Operating	Systems

The	CreateProcess alternative
• Windows	does	allow	you	to	create	a	process	that	is	
initially	suspended
– You	can	also	change	memory	and	handles	of	another	
process	

– And	then	unblock	it

• Somewhat	isomorphic
– But	a	bit	cumbersome
– And	prone	to	security	issues	(loading	threads	and	libraries	
in	another	app!)

31

COMP	530:	Operating	Systems

• Simple implementation of fork():
– allocate memory for the child process
– copy parent’s memory and CPU registers to child’s
– Expensive !!

• In 99% of the time, we call exec() after calling fork()
– the memory copying during fork() operation is useless
– the child process will likely close the open files & connections
– overhead is therefore high

At	what	cost,	fork()?

Any	ideas	to	improve	this?

COMP	530:	Operating	Systems

Pro	tool:	vfork
• If	you	know	you	are	going	to	call	exec()	almost	immediately:

– Create	a	new	PCB,	stack,	register	state
– But	not	a	new	copy	of	the	full	memory

• You	can	change	OS	state	and	call	exec	safely
• You	cannot:

– Return	from	the	function	that	called	fork()
– Touch	the	heap
– Probably	other	stuff

• Why	does	it	improve	performance?		Avoids	copies

• Unfortunate	example	of	implementation	influence	on	interface
– Current	Linux	&	BSD	4.4	have	it	for	backwards	compatibility

33

COMP	530:	Operating	Systems

Copy-on-write	fork	(preview)
• Idea:	write	protect	everything	in	memory	after	a	
fork()
– Detect	and	copy	only	what	you	touch,	until	the	exec()
– After	exec(),	remove	write	protection	from	child	memory

• Common	case:	exec	quickly
– Some	overhead	to	setting	copy-on-write,	but	cheaper	than	
copying	everything

• Uncommon	case:	fork	never	execs
– Eventually	copy	everything

• We	will	see	more	about	this	later…

34

COMP	530:	Operating	Systems

OS	must	include	calls	to	enable	special	control	of	a	process:

• Priority	manipulation:
– nice(),	which	specifies	base	process	priority	(initial	priority)
– In	UNIX,	process	priority	decays	as	the	process	consumes	CPU

• Debugging	support:
– ptrace(),	allows	a	process	to	be	put	under	control	of	another	process
– The	other	process	can	set	breakpoints,	examine	registers,	etc.

• Alarms	and	time:
– Sleep	puts	a	process	on	a	timer	queue	waiting	for	some	number	of	seconds,	

supporting	an	alarm	functionality

Process	control

COMP	530:	Operating	Systems

while(! EOF) {
read input
handle regular expressions
int rv = fork(); // create a child
if(rv == 0) { // child continues here

exec(“program”, argc, argv0, argv1, …);
}
else { // parent continues here
…
}

Translates	<CTRL-C>	to	the	kill()	system	call	with	SIGKILL

Translates	<CTRL-Z>	to	the	kill()	system	call	with	SIGSTOP

Allows	input-output	redirections,	pipes,	and	a	lot	of	other	stuff	that	we	will	see	later

Tying	it	all	together:	The	Unix	shell

COMP	530:	Operating	Systems

Summary
• Understand	what	a	process	is
• The	high-level	idea	of	context	switching	and	
process	states

• How	a	process	is	created
• Pros	and	cons	of	different	creation	APIs

– Intuition	of	copy-on-write	fork	and	vfork

