

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

COMP 530: Operating Systems

Scheduling Processes

Don Porter

Portions courtesy Emmett Witchel

Processes (refresher)

- Each process has state, that includes its text and data, procedure call stack, etc. This state resides in memory.
- The OS also stores process metadata for each process. This state is called the Process Control Block (PCB), and it includes the PC, SP, register states, execution state, etc.
- All of the processes that the OS is currently managing reside in one and only one of these states.

Scheduling Processes

- The OS has to decide:
 - When to take a Running process back to Ready
 - Which process to select from the Ready queue to run next
- Ready Queue: Policy can be something other than First-in, First-out!

Scheduler

- The kernel runs the scheduler at least when
 - a process switches from running to waiting (blocks)
 - a process is created or terminated.
 - an interrupt occurs (e.g., timer chip)
- Non-preemptive system
 - Scheduler runs when process blocks or is created, not on hardware interrupts
- Preemptive system
 - OS makes scheduling decisions during interrupts, mostly timer, but also system calls and other hardware device interrupts

Evaluation Criteria and Policy Goals?

- CPU Utilization: The percentage of time that the CPU is busy.
- Throughput: The number of processes completing in a unit of time.
- **Turnaround time:** The length of time it takes to run a process from initialization to termination, including all the waiting time.
- Waiting time: The total amount of time that a process is in the ready queue.
- Response time: The time between when a process is ready to run and its next I/O request.
- Fairness: ??

Scheduling Policies

- Ideal CPU scheduler
 - Maximizes CPU utilization and throughput
 - Minimizes turnaround time, waiting time, and response time
- Real CPU schedulers implement particular policy
 - Minimize response time provide output to the user as quickly as possible and process their input as soon as it is received.
 - Minimize variance of average response time in an interactive system, predictability may be more important than a low average with a high variance.
 - Maximize throughput two components
 - 1. minimize overhead (OS overhead, context switching)
 - 2. efficient use of system resources (CPU, I/O devices)
 - Minimize waiting time be *fair* by ensuring each process waits the same amount of time. This goal often increases average response time.
- Will a fair scheduling algorithm maximize throughput? A) Yes
 B) No

Different Process Activity Patterns

- CPU bound
 - mp3 encoding
 - Scientific applications (matrix multiplication)
 - Compile a program or document
- I/O bound
 - Index a file system
 - Browse small web pages
- Balanced
 - Playing video
 - Moving windows around/fast window updates
- Scheduling algorithms reward I/O bound and penalize CPU bound
 - Why?

Scheduling Policies

- Simplifying Assumptions
 - One process per user
 - One thread per process (more on this topic next week)
 - Processes are independent
- Researchers developed these algorithms in the 70's when these assumptions were more realistic, and it is still an open problem how to relax these assumptions.
- Scheduling Algorithms to Evaluate Today:
 - FCFS: First Come, First Served
 - Round Robin: Use a time slice and preemption to alternate jobs.
 - SJF: Shortest Job First
 - Multilevel Feedback Queues: Round robin on priority queue.
 - Lottery Scheduling: Jobs get tickets and scheduler randomly picks winning ticket.

Policy 1: FCFS (First Come, First Served)

- The scheduler executes jobs to completion in arrival order.
- In early FCFS schedulers, the job did not relinquish the CPU even when it was doing I/O.
- We will assume a FCFS scheduler that runs when processes are blocked on I/O, but that is non-preemptive, i.e., the job keeps the CPU until it blocks (say on an I/O device).

FCFS Example and Analysis

- In a non-preemptive system, the scheduler must wait for one of these events, but in a preemptive system the scheduler can interrupt a running process.
- If the processes arrive one time unit apart, what is the average wait time in these three cases?
- Advantages:
- Disadvantages

Policy 2: Round Robin

- Run each process for its time slice (scheduling quantum)
- After each time slice, move the running thread to the back of the queue.
- Selecting a time slice:
 - Too large waiting time suffers, degenerates to FCFS if processes are never preempted.
 - Too small throughput suffers because too much time is spent context switching.
 - Balance the two by selecting a time slice where context switching is roughly 1% of the time slice.
- A typical time slice today is between 10-100 milliseconds, with a context switch time of 0.1 to 1 millisecond.
 - Max Linux time slice is 3,200ms, Why?
- Is round robin more fair than FCFS? A)Yes B)No

• 5 jobs, 100 seconds each, time slice 1 second, context switch time of 0, jobs arrive at time 0,1,2,3,4

		Comple	etion Time	Wait Time		
Job	Length	FCFS	Round Robin	FCFS	Round Robin	
1	100					
2	100					
3	100					
4	100					
5 100						
Average						

• 5 jobs, 100 seconds each, time slice 1 second, context switch time of 0, jobs arrive at time 0,1,2,3,4

		Completion Time		Wait Time	
Job	Length	FCFS	Round Robin	FCFS	Round Robin
1	100	100		0	
2	100	200		99	
3	100	300		198	
4	100	400		297	
5	100	500		396	
Average		300		198	

• 5 jobs, 100 seconds each, time slice 1 second, context switch time of 0, jobs arrive at time 0,1,2,3,4

			Comple	etion Time	Wait T	ait Time	
	Job Length		FCFS Round Robin		FCFS	Round Robin	
	1	100	100	496	0	400	
			200	497	99	400	
۱ ۲	Nhy 1 Detter'	s this ?	300	498	198	400	
			400	499	297	400	
	5 100 Average		500	500	396	400	
			300	498	198	400	

		Comple	etion Time	Wait Time		
Job	Job Length		FCFS Round Robin		S Round Robin	
1	50					
2	40					
3	30					
4	20					
5 10						
Average						

		Completion Time		Wait Time	
Job	Length	FCFS	Round Robin	FCFS	Round Robin
1	50	50		0	
2	40	90		50	
3	30	120		90	
4	20	140		120	
5	10	150		140	
Average		110		80	

		Completion Time		Wait Time		
Job	Length	FCFS Round Robin		FCFS	Round Robin	
1	50	50		0		
2	40	90		50		
3	30	120		90		
4	20	140		120		
5	10	150	50	140 40		
Average		110		80		

		Completion Time		Wait Time	
Job	Length	FCFS	Round Robin	FCFS	Round Robin
1	50	50		0	
2	40	90		50	
3	30	120		90	
4	20	140	90	120	70
5	10	150	50	140 40	
Average		110		80	

		Completion Time		Wait Time		
Job	Length	FCFS	Round Robin	FCFS	Round Robin	
1	50	50		0		
2	40	90		50		
3	30	120	120	90	90	
4	20	140	90	120	70	
5	10	150	50	140 40		
Average		110		80		

		Completion Time		Wait Time		
Job	Length	FCFS Round Robin		FCFS	Round Robin	
1	50	50		0		
2	40	90	140	50	100	
3	30	120	120	90	90	
4	20	140	90	120	70	
5	10	150	50	140 40		
Average		110		80		

			Completion Time		Wait Time	
	Job Length		FCFS Round Robin		FCFS	Round Robin
	1	50	50	150	0	100
			90	140	50	100
2	Seriou iren't	Isly, These	120	120	90	90
t	he sai	me?	140	90	120	70
	5 10		150	50	140	40
	Aver	age	110	110	80	80

Fairness

- Was the average wait time or completion time really the right metric?
 - No!
- What should we consider for the example with equal job lengths?
 - Variance!
- What should we consider for the example with varying job lengths?
 - Is completion time proportional to required CPU cycles?

Policy 3: Shortest Job First (SJF)

- Schedule the job that has the least (expected) amount of work (CPU time) to do until its next I/O request or termination.
 - I/O bound jobs get priority over CPU bound jobs.

		Completion Time			Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50						
2	40						
3	30						
4	20						
5	10						
Average							

		Completion Time			Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50						
2	40						
3	30						
4	20						
5	10			10			0
Average							

		Completion Time			Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50						
2	40						
3	30						
4	20			30			10
5	10			10			0
Average							

		Completion Time			Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50						
2	40						
3	30			60			30
4	20			30			10
5	10			10			0
Average							

		Completion Time			Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50						
2	40			100			60
3	30			60			30
4	20			30			10
5	10			10			0
Avero	ige						

		Completion Time			Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50			150			100
2	40			100			60
3	30			60			30
4	20			30			10
5	10			10			0
Avero	ige						

Comple ⁻			tion T	ime	Wait Time		
Job	Length	FCFS	RR	SJF	FCFS	RR	SJF
1	50	50	150	150	0	100	100
No	ow that's		140	100	50	100	60
wh tal	iat I'm king abo	ut!	120	60	90	90	30
4			90	30	120	70	10
5	10	150	30	10	140	40	0
Avero	ige	110	110	70	80	80	40

Shortest Job First

- Works for preemptive and non-preemptive schedulers.
- Preemptive SJF is called SRTF shortest remaining time first.
- Advantages?

– Free up system resources more quickly

- Disadvantages?
 - How do you know how long something will run?

"Academic" scheduler: Useful to decide if a good idea

Idea: Use the Past to Predict the Future

- Intuition: Assign a dynamic priority to each task
 - Higher priority processes more likely to be scheduled
 - (if ready)
- Assign dynamic priority based on behavior during last few quanta
 - Raise dynamic priority frequently process blocks on I/O
 - Probably latency-sensitive (e.g., word processer, web server)
 - When runnable, will probably do a little work and block again on more I/O
 - Lower dynamic priority of processes that use all of their quantum
 - Probably CPU-bound
- Adaptive: priorities change when process changes behavior (e.g., switching from I/O to CPU-intensive)

Policy 4: Multi-Level Feedback Queues

- Approximate SJF: multiple queues with different priorities.
- OS uses Round Robin scheduling at each priority level, running the jobs in the highest priority queue first.
- Once those finish, OS runs jobs out of the next highest priority queue, etc. (Can lead to starvation.)
- Round robin time slice increases exponentially at lower priorities.
 - <u>Good</u> for CPU-bound jobs to be lower priority (if they don't starve)

Policy 4: Multi-Level Feedback Queues

Adjust priorities as follows (details can vary):

- 1. Proc starts in the highest priority queue
- 2. If proc's time slice expires, drop its priority one level.
- 3. If proc's blocked with remaining time slice, increase its priority one level, up to the top priority level.
- ==> In practice, CPU bound procs drop like a rock in priority and I/O bound procs stay at high priority

Fairness

- SJF is optimal, but unfair
- Improving fairness means giving long jobs a fraction of the CPU when shorter jobs are available

– Will degrade average waiting time.

• Possible solutions:

THE UNIVERSITY

of NORTH CAROLINA at CHAPEL HILL

- Give each level queue a fraction of the CPU time.
 This solution is only fair if there is an even distribution of jobs among queues.
- Adjust the priority of jobs as they do not get serviced (Unix originally did this.)
 - Avoids starvation
 - Average waiting time suffers when the system is overloaded because all the jobs end up with a high priority.

Policy 5: Lottery Scheduling

- Give every job some number of lottery tickets.
- On each time slice, randomly pick a winning ticket.
- On average, CPU time is proportional to the number of tickets given to each job.
- Assign tickets by giving the most to short running jobs, and fewer to long running jobs (approximating SJF). To avoid starvation, every job gets at least one ticket.
- Degrades gracefully as load changes. Adding or deleting a job affects all jobs proportionately, independent of the number of tickets a job has.

# short jobs /	% of CPU each	% of CPU each
# long jobs	short job gets	long job gets
1/1	90%	10%
0/2		
2/0		
10/1		
1/10		

# short jobs /	% of CPU each	% of CPU each
# long jobs	short job gets	long job gets
1/1	90%	10%
0/2	0%	50%
2/0		
10/1		
1/10		

# short jobs /	% of CPU each	% of CPU each
# long jobs	short job gets	long job gets
1/1	90%	10%
0/2	0%	50%
2/0	50%	0%
10/1		
1/10		

# short jobs /	% of CPU each	% of CPU each
# long jobs	short job gets	long job gets
1/1	90%	10%
0/2	0%	50%
2/0	50%	0%
10/1	9/91=~9.8%	1/91=~1%
1/10		

# short jobs /	% of CPU each	% of CPU each
# long jobs	short job gets	long job gets
1/1	90%	10%
0/2	0%	50%
2/0	50%	0%
10/1	9/91=~9.8%	1/91=~1%
1/10	9/19=~47%	1/19=~5.3%

Summary of Scheduling Algorithms

- FCFS: Not fair, and average waiting time is poor.
- **Round Robin**: Fair, but average waiting time is poor.
- **SJF**: Not fair, but average waiting time is minimized assuming we can accurately predict the length of the next CPU burst. Starvation is possible.
- **Multilevel Queuing**: An implementation (approximation) of SJF.
- Lottery Scheduling: Fairer with a low average waiting time, but less predictable.
- \Rightarrow Our modeling assumed that context switches took no time, which is unrealistic.