
COMP	530:	Operating	Systems

Scheduling	Processes

Don	Porter

Portions	courtesy	Emmett	Witchel

1

COMP	530:	Operating	Systems

• Each process has state, that includes its text and data, procedure
call stack, etc. This state resides in memory.

• The OS also stores process metadata for each process. This
state is called the Process Control Block (PCB), and it includes
the PC, SP, register states, execution state, etc.

• All of the processes that the OS is currently managing reside in
one and only one of these states.

Processes	(refresher)

COMP	530:	Operating	Systems

Scheduling	Processes
• The	OS	has	to	decide:

– When	to	take	a	Running	process	back	to	Ready
– Which	process	to	select	from	the	Ready	queue	to	run	next

• Ready	Queue:	Policy	can	be	something	other	than	
First-in,	First-out!

3

COMP	530:	Operating	Systems

Scheduler
• The kernel runs the scheduler at least when

– a process switches from running to waiting (blocks)
– a process is created or terminated.
– an interrupt occurs (e.g., timer chip)

• Non-preemptive system
– Scheduler runs when process blocks or is created,

not on hardware interrupts
• Preemptive system

– OS makes scheduling decisions during interrupts,
mostly timer, but also system calls and other
hardware device interrupts

COMP	530:	Operating	Systems

Evaluation	Criteria	and	Policy	Goals?
• CPU Utilization: The percentage of time that

the CPU is busy.
• Throughput: The number of processes

completing in a unit of time.
• Turnaround time: The length of time it takes to

run a process from initialization to termination,
including all the waiting time.

• Waiting time: The total amount of time that a
process is in the ready queue.

• Response time: The time between when a
process is ready to run and its next I/O request.

• Fairness: ??

COMP	530:	Operating	Systems

Scheduling	Policies
• Ideal CPU scheduler

– Maximizes CPU utilization and throughput
– Minimizes turnaround time, waiting time, and response time

• Real CPU schedulers implement particular policy
– Minimize response time - provide output to the user as quickly as

possible and process their input as soon as it is received.
– Minimize variance of average response time - in an interactive system,

predictability may be more important than a low average with a high
variance.

– Maximize throughput - two components
• 1. minimize overhead (OS overhead, context switching)
• 2. efficient use of system resources (CPU, I/O devices)

– Minimize waiting time - be fair by ensuring each process waits the same
amount of time. This goal often increases average response time.

• Will a fair scheduling algorithm maximize throughput? A) Yes
B) No

COMP	530:	Operating	Systems

Different	Process	Activity	Patterns
• CPU bound

– mp3 encoding
– Scientific applications (matrix multiplication)
– Compile a program or document

• I/O bound
– Index a file system
– Browse small web pages

• Balanced
– Playing video
– Moving windows around/fast window updates

• Scheduling algorithms reward I/O bound and
penalize CPU bound
– Why?

COMP	530:	Operating	Systems

Scheduling	Policies
• Simplifying Assumptions

– One process per user
– One thread per process (more on this topic next week)
– Processes are independent

• Researchers developed these algorithms in the 70’s when these
assumptions were more realistic, and it is still an open problem how
to relax these assumptions.

• Scheduling Algorithms to Evaluate Today:
– FCFS: First Come, First Served
– Round Robin: Use a time slice and preemption to alternate jobs.
– SJF: Shortest Job First
– Multilevel Feedback Queues: Round robin on priority queue.
– Lottery Scheduling: Jobs get tickets and scheduler randomly picks

winning ticket.

COMP	530:	Operating	Systems

Policy	1:	FCFS	(First	Come,	First	Served)
• The scheduler executes jobs to completion in

arrival order.
• In early FCFS schedulers, the job did not

relinquish the CPU even when it was doing I/O.
• We will assume a FCFS scheduler that runs

when processes are blocked on I/O, but that is
non-preemptive, i.e., the job keeps the CPU until
it blocks (say on an I/O device).

COMP	530:	Operating	Systems

FCFS	Example	and	Analysis
• In a non-preemptive

system, the scheduler
must wait for one of these
events, but in a
preemptive system the
scheduler can interrupt a
running process.

• If the processes arrive
one time unit apart, what
is the average wait time
in these three cases?

• Advantages:

• Disadvantages

COMP	530:	Operating	Systems

Policy	2:	Round	Robin
• Run each process for its time slice (scheduling quantum)
• After each time slice, move the running thread to the back of the

queue.
• Selecting a time slice:

– Too large - waiting time suffers, degenerates to FCFS if processes are
never preempted.

– Too small - throughput suffers because too much time is spent context
switching.

– Balance the two by selecting a time slice where context switching is
roughly 1% of the time slice.

• A typical time slice today is between 10-100 milliseconds, with a
context switch time of 0.1 to 1 millisecond.

– Max Linux time slice is 3,200ms, Why?

• Is round robin more fair than FCFS? A)Yes B)No

COMP	530:	Operating	Systems

Round	Robin	Example	(1)
• 5 jobs, 100 seconds each, time slice 1 second, context switch time

of 0, jobs arrive at time 0,1,2,3,4

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 100

2 100

3 100

4 100

5 100

Average

COMP	530:	Operating	Systems

• 5 jobs, 100 seconds each, time slice 1 second, context switch time
of 0, jobs arrive at time 0,1,2,3,4

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 100 100 0

2 100 200 99

3 100 300 198

4 100 400 297

5 100 500 396

Average 300 198

Round	Robin	Example	(1)

COMP	530:	Operating	Systems

• 5 jobs, 100 seconds each, time slice 1 second, context switch time
of 0, jobs arrive at time 0,1,2,3,4

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 100 100 496 0 400

2 100 200 497 99 400

3 100 300 498 198 400

4 100 400 499 297 400

5 100 500 500 396 400

Average 300 498 198 400

Why is this
better?

Round	Robin	Example	(1)

COMP	530:	Operating	Systems

Round	Robin	Example	(2)
• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1

second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50

2 40

3 30

4 20

5 10

Average

COMP	530:	Operating	Systems

• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 90

4 20 140 120

5 10 150 140

Average 110 80

Round	Robin	Example	(2)

COMP	530:	Operating	Systems

• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 90

4 20 140 120

5 10 150 50 140 40

Average 110 80

Round	Robin	Example	(2)

COMP	530:	Operating	Systems

• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 80

Round	Robin	Example	(2)

COMP	530:	Operating	Systems

• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 50

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 80

Round	Robin	Example	(2)

COMP	530:	Operating	Systems

• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 0

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 80

Round	Robin	Example	(2)

COMP	530:	Operating	Systems

• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS Round Robin FCFS Round Robin

1 50 50 150 0 100

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 110 80 80

Seriously,
aren’t these
the same?

Round	Robin	Example	(2)

COMP	530:	Operating	Systems

Fairness
• Was	the	average	wait	time	or	completion	time	really	
the	right	metric?
– No!

• What	should	we	consider	for	the	example	with	equal	
job	lengths?
– Variance!

• What	should	we	consider	for	the	example	with	
varying	job	lengths?
– Is	completion	time	proportional	to	required	CPU	cycles?

COMP	530:	Operating	Systems

Policy	3:	Shortest	Job	First	(SJF)
• Schedule	the	job	that	has	the	least	(expected)	
amount	of	work	(CPU	time)	to	do	until	its	next	I/O	
request	or	termination.	
– I/O	bound	jobs	get	priority	over	CPU	bound	jobs.	

23

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10

Average

Shortest	Job	First	(SJF)	Example

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10 10 0

Average

Shortest	Job	First	(SJF)	Example

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20 30 10

5 10 10 0

Average

Shortest	Job	First	(SJF)	Example

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30 60 30

4 20 30 10

5 10 10 0

Average

Shortest	Job	First	(SJF)	Example

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50

2 40 100 60

3 30 60 30

4 20 30 10

5 10 10 0

Average

Shortest	Job	First	(SJF)	Example

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50 150 100

2 40 100 60

3 30 60 30

4 20 30 10

5 10 10 0

Average

Shortest	Job	First	(SJF)	Example

COMP	530:	Operating	Systems

• Example: 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1
second, context switch time of 0 seconds

Completion Time Wait Time

Job Length FCFS RR SJF FCFS RR SJF

1 50 50 150 150 0 100 100

2 40 90 140 100 50 100 60

3 30 120 120 60 90 90 30

4 20 140 90 30 120 70 10

5 10 150 50 10 140 40 0

Average 110 110 70 80 80 40

Shortest	Job	First	(SJF)	Example

Now that’s
what I’m
talking about!

COMP	530:	Operating	Systems

• Works for preemptive and non-preemptive
schedulers.

• Preemptive SJF is called SRTF - shortest
remaining time first.

• Advantages?
– Free up system resources more quickly

• Disadvantages?
– How do you know how long something will run?

Shortest	Job	First

“Academic”	scheduler:	Useful	to	decide	if	a	good	idea

COMP	530:	Operating	Systems

• Intuition: Assign a dynamic priority to each task
– Higher priority processes more likely to be scheduled

• (if ready)
• Assign dynamic priority based on behavior during

last few quanta
– Raise dynamic priority frequently process blocks on I/O

• Probably latency-sensitive (e.g., word processer, web server)
• When runnable, will probably do a little work and block again on

more I/O
– Lower dynamic priority of processes that use all of their

quantum
• Probably CPU-bound

• Adaptive: priorities change when process changes
behavior (e.g., switching from I/O to CPU-intensive)

Idea:	Use	the	Past	to	Predict	the	Future

COMP	530:	Operating	Systems

• Approximate SJF: multiple queues with different priorities.
• OS uses Round Robin scheduling at each priority level, running the

jobs in the highest priority queue first.
• Once those finish, OS runs jobs out of the next highest priority

queue, etc. (Can lead to starvation.)
• Round robin time slice increases exponentially at lower priorities.

– Good for CPU-bound jobs to be lower priority (if they don’t starve)

Policy	4:	Multi-Level	Feedback	Queues

COMP	530:	Operating	Systems

Adjust priorities as follows (details can vary):
1. Proc starts in the highest priority queue
2. If proc’s time slice expires, drop its priority one level.
3. If proc’s blocked with remaining time slice, increase its priority one

level, up to the top priority level.
==> In practice, CPU bound procs drop like a rock in priority and I/O

bound procs stay at high priority

Policy	4:	Multi-Level	Feedback	Queues

COMP	530:	Operating	Systems

Fairness
• SJF is optimal, but unfair
• Improving fairness means giving long jobs a

fraction of the CPU when shorter jobs are
available
– Will degrade average waiting time.

• Possible solutions:
– Give each level queue a fraction of the CPU time.

This solution is only fair if there is an even distribution
of jobs among queues.

– Adjust the priority of jobs as they do not get serviced
(Unix originally did this.)

• Avoids starvation
• Average waiting time suffers when the system is overloaded

because all the jobs end up with a high priority.

COMP	530:	Operating	Systems

• Give every job some number of lottery tickets.
• On each time slice, randomly pick a winning

ticket.
• On average, CPU time is proportional to the

number of tickets given to each job.
• Assign tickets by giving the most to short

running jobs, and fewer to long running jobs
(approximating SJF). To avoid starvation, every
job gets at least one ticket.

• Degrades gracefully as load changes. Adding or
deleting a job affects all jobs proportionately,
independent of the number of tickets a job has.

Policy	5:	Lottery	Scheduling

COMP	530:	Operating	Systems

Lottery	Scheduling	Example
Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2

2/0

10/1

1/10

COMP	530:	Operating	Systems

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0

10/1

1/10

Lottery	Scheduling	Example

COMP	530:	Operating	Systems

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0 50% 0%

10/1

1/10

Lottery	Scheduling	Example

COMP	530:	Operating	Systems

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0 50% 0%

10/1 9/91=~9.8% 1/91=~1%

1/10

Lottery	Scheduling	Example

COMP	530:	Operating	Systems

Example: Short jobs get 9 tickets, long jobs get 1 tickets each.

short jobs /
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 90% 10%

0/2 0% 50%

2/0 50% 0%

10/1 9/91=~9.8% 1/91=~1%

1/10 9/19=~47% 1/19=~5.3%

Lottery	Scheduling	Example

COMP	530:	Operating	Systems

• FCFS: Not fair, and average waiting time is poor.
• Round Robin: Fair, but average waiting time is poor.
• SJF: Not fair, but average waiting time is minimized assuming we

can accurately predict the length of the next CPU burst. Starvation is
possible.

• Multilevel Queuing: An implementation (approximation) of SJF.
• Lottery Scheduling: Fairer with a low average waiting time, but less

predictable.

⇒ Our modeling assumed that context switches took no time, which is
unrealistic.

Summary	of	Scheduling	Algorithms

