COMP 530: Operating Systems

Page Replacement
Algorithms

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

COMP 530: Operating Systems

Page Replacement Algorithms

* Typically 2; VAS; >> Physical Memory

« With demand paging, physical memory fills quickly

* When a process faults & memory is full, some page must be
swapped out
— Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

11/9/16

[N COMP 530: Operating Systems

7 Virtual Memory Management: Recap

« Key concept: Demand paging
— Load pages into memory only when a
page fault occurs

User Program n

* lIssues: User Program 2
— Placement strategies
« Place pages anywhere — no placement User Program 1

policy required

— Replacement strategies

* What to do when there exist more jobs
than can fit in memory

Operating System

— Load control strategies
+ Determining how many jobs can be
in memory at one time

Memory

I COMP 530: Operating Systems

VPage Replacement: Eval. Methodology

* Record a trace of the pages accessed by a process
— Example: (Virtual page, offset) address trace...
(30), (19), @1, (21), (53), (20) (19), (24), (3.1), 4.8)
— generates page trace
3,1,4,2,5,2,1,2,3,4 (represented as ¢, a, d, b, e, b, a, b, ¢, d)
» Hardware can tell OS when a new page is loaded into the TLB
— Set a used bit in the page table entry
— Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and
record the humber of page faults generated
fewer faults better performance

L] COMP 530: Operating Systems

I COMP 530: Operating Systems

Orptimal Strategy: Clairvoyant Replacement

* Replace the page that won’t be needed for the longest time in the
future

I Initial allocation I

Time\ \ o1 2

Requests\\ Cc a
\

0]a

()]
~

Q |w
o |
o
S| oo
o
Q.

Page
Frames

Q O o

1
2
3

Faults

Time page
needed next —

Orptimal Strategy: Clairvoyant Replacement

+ Replace the page that won’t be needed for the longest time in the

E—

future
Time 0oJ1 2 3 4 5 6 7 8 9 10
Requests a d b b b d
Olala a a a a a a a a @
%g 1lb|b b b b b b b b b b
a2 2|clc ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
3|ld|d d d d Ce) e e e e e
Faults . M
a=7 a=15
Time page b=6 b=11
needed next c=9 c=13 —
d=10 d=14

COMP 530: Operating Systems
Local Replacement: FIFO
Simple to implement
— Asingle pointer suffices — 0
1
2
Performance with 4 page frames:
Frame List
Time oj1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b ¢ d
o8 0O]a
:‘?% 1 b
s 2]c
3 1d
Faults |

COMP 530: Operating Systems

Least Recently Used (LRU) Replacement

Use the recent past as a predictor of the near future
Replace the page that hasn’t been referenced for the longest time

me ol1 2 3 4 6 8 10}
Requests c a d b e b a b c d
0

Page
Frames

Q O T Q

1
2
3

Faults

Time page
last used

11/9/16

COMP 530: Operating Systems
Local Replacment: FIFO
Simple to implement
— Asingle pointer suffices -3
0
2
Performance with 4 page frames:
Frame List
Time oj1 2 3 4 S5 6 7 8 9 10
Requests c a d b e b a b ¢ d
wO0lala a a a @ e e e e @
S 1|b]b b b b b b (9 g a a
af 2 1lclc ¢ ¢ ¢ ¢ ¢ c@ b b
3ldld 0 d d 0 d d 9@ ¢
Faults . o o o oI |

COMP 530: Operating Systems

Le

ast Recently Used (LRU) Replacement
Use the recent past as a predictor of the near future
Replace the page that hasn’t been referenced for the longest time

Time 0

Requests

Page

Frames
w N - O
Q n o oo

:n)ru T alo o
. “@wn Q’?&

Qo o alol|
Qo T alaln
Q O T Qo |w
Qo o alo|s

.Q@wmmm
Qo ool
Q M T Qo N

Q O T Q

Faults

Time page
last used

.o oo
oo
BERNIN
SRS
o
fo U1 0 <4
b o oo
fo 11 0 4

COMP 530: Operating Systems

COMP 530: Operating Systems

How to Implement LRU?

Maintain a “stack” of recently used pages

Time o]1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d
w 0 ala a a a a a a a a a
gJDg 1|6l b b b b b b b b b
&E 2 c c c c c @ e e e e @
“3]d|ld d d d d d d (o ¢
Faults . Y ol
LRU
page stack

ragetoreniace [T]] O D oOodadaad

How to Implement LRU?

Maintain a “stack” of recently used pages

Time o]1 2

Requests c

Q
Q|w
o| &
oluw
o|o
Q

| o

Page
Frames
w N R O
Q o T Q

.n)mwmnm
N
o"©°° ol o

Faults

LRU
page stack

LT
[EETT=]

Page to replace

COMP 530: Operating Systems

+ What is the goal of a page replacement
algorithm?
— A. Make life easier for OS implementer
— B. Reduce the number of page faults

— C. Reduce the penalty for page faults when they
occur

— D. Minimize CPU time of algorithm

COMP 530: Operating Systems

Clock Example

Time 0|12 3 4 5 6 7 8 9 10
Requests d b b a b c d
" OJa|a a a a
e 1|b |6 b b b
a2 20lc|c ¢ ¢ ¢
3|d|dd d d
Faults
1la [T [TIT T 1T
Page table entries 1
for resident pages:
1]|c
> 11d

\7‘ COMP 530: Operating Systems

Optimization: Second Chance Algorithm

« There is a significant cost to replacing “dirty” pages
— Why?
« Must write back contents to disk before freeing!

* Modify the Clock alﬂorilhm to allow dirty pages to always survive one
sweep of the clock hand

— Use both the dirty bit and the used bit to drive replacement

11/9/16

|] COMP 530: Operating Systems

Approximate LRU: The Clock Algorithm

» Maintain a circular list of pages resident in memory
— Use a clock (or used/referenced) bit to track how often a page is accesse:
— The bit is set whenever a page is referenced

+ Clock hand sweeps over pages looking for one with used bit = 0

— Replace pages that haven’ t been referenced for one complete revolution
of the clock

func Clock_Replacement
begin
while (victim page not found) do
if (used bit for current page =0) the
replace current page
else

reset used bit
end if
advance clock pointer
end while
end Clock Replacement

resident bit
used bit
frame pumber

COMP 530: Operating Systems
Clock Example
Time 012 3 4 5 6 7 8 9 10
Requests c a d b e b a b d
" OJa|a a a a @ e e @
ge1fo bbb b b b b b
Q-E 21c|c ¢ ¢ ¢ c a a a
3ld|ldad d a a d (© ¢
Faults . . .
e beent [1]4] [1]¢]] [1]e] [1]]
age table entries
for resident pages: 11b 0lb bl11]b mm
1] c 0)c al|1]a]]oldl
1]d 0]d dl|1lc]]o]c]

Second Chance Algorithm
Before clock After clock
Page 1 sweep sweep
age 1
used dirty used dirty
0 0 replace pagel
0 1 0 0
page 3:| 1]1\] 9 | Page 0:|1|pf1] 4 | 1 0 0 0
e 11 0 1
resident bit

used bit

frame number

COMP 530: Operating Systems
Second Chance Example
Time 012 3 4 5 6 7 8 9 10
Requests c avd b e b a” b c d
" Olala a a a
%g 1lbl|b b b b
a2 2)lclc ¢ ¢ ¢
3|1d]|dd d d
Faults
[10]] (T[T [T101]
oo ol
for resident 10| ¢
pages:
IE Loldl Lt | LIl

11/9/16

COMP 530: Operating Systems | V‘ COMP 530: Operating Systems
Second Chance Example Local Replacement and Memory Sensitivity
mme 01234 5 6 7 8 9 10 T‘me°1z33527391b"“;1
R
Requests c avd b e b a” b d L - - - - - -
Olala a a a a a a a a a w0 |a
n (R
e21|b|lob b b b b b b b @ @E 1 | b
© 5 al
er2)lclc ¢ ¢ ¢ @ e e e e e i K
3|ldldd dd a a a da @© ¢ Faults
Faults . . .
0 a
—p— —p— epe— fp—— %]
0o[a] [oo]] [11] 11] [ool =R
oo[p*] [10] 5] |10 & 10| s 0] g gg 2 |c
10]] [10] e] [10] & 10| ¢ [00] ¢ 3 |-
(oola] [oela] [oofa] ol] [eolc] = i
) COMP 530: Operating Systems ! COMP 530: Operating Systems
Local Replacement and Memory Sensitivity Page Replacement Performance
Time 0 1 2 3 4 5 6 7 8 9 10 11 1 « Local page replacement
Requests a b c d a b c d a b ¢ d — LRU —Ages pages based on when they were last used
— FIFO — Ages pages based on when they’ re brought into memory
« Towards global page replacement ... with variable number of
] @ 0 ala a a @ d d @ ¢ ¢ @ b b page frames allocated to processes
¥ 1 |bfp b b B @ a a @ d d@ c
a o n n n
E2fcle ¢ T @ b () (Y " The principle of Iocallﬂ
Faults
> 90% of the execution of a program is sequential
> Most iterative constructs consist of a relatively small number of
" 0 ala a a a a a a a a a a a instructions
gJD“E’ 1 |b|b b b b b b b b b b b b » When processing large data structures, the dominant cost is sequential
s 2lcle ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ c ¢ ¢ processing on individual structure elements
w ;|- @ d d d d d d d d > Temporal vs. physical locality
Faults . B
COMP 530: Operating Systems [l, COMP 530: Operating Systems
Optimal Replacement with a Variable Optimal Replacement with a Variable
Number of Frames Number of Frames
* VMIN — Replace a page that is not referenced in the next ¢ * VMIN — Replace a page that is not referenced in the next ¢
accesses accesses
+ Example: 7=4 « Example: 7=4
Time 0 3 4 5 6 7 8 9 1 Time 0 3 4 5 6 7 8 9 1
Requests c ¢ d b c e c e a d Requests c ¢ d b c e c e a d
> Pagea 3 > Pagea |- - - - - - - - -
nQ Pageb o nQ Pageb] I - - @ - - - - @ -
e e
%Jtv Page ¢ - gﬁw Page ¢ - @ - -
az Paged | a2 Paged | ¢ | . . - - - - - - @
C t=-1 c t=-1
*= Pagee | - ‘= Pagee | - |- - - - - O . . - -
Faults Faults

COMP 530: Operating Systems

11/9/16

The Working Set Model

« Assume recently referenced pages are likely to be referenced again
soon...

» ...and only keep those pages recently referenced in memory (called
the working set)
— Thus pages may be removed even when no page fault occurs
— The number of frames allocated to a process will vary over time

« Aprocess is allowed to execute only if its working set fits into
memory
— The working set model performs implicit load control

COMP 530: Operating Systems

Working Set Page Replacement

+ Keep track of the last 7 references (excluding faulting reference)
— The pages referenced during the last memory accesses are
the working set
— tis called the window size

« Example: Working set computation, 7 = 4 references:

Time 0 3 4 5 6 8 9 1
Requests c ¢c d b ¢ e c¢c e a d
> Pagea | ¢ |

o -

aE Page b

%iqg Pagec | -

a= Paged | e

c t=-1

‘= Pagee r':,z

Faults

COMP 530: Operating Systems

Working Set Page Replacement

« Keep track of the last z references

— The pages referenced during the last r memory accesses are
the working set
— ris called the window size

+ Example: Working set computation, = = 4 references:

Time 0 3 4 5 6 8 9 1
Requests c d b c¢c e c e a d
nQ Pageb | - | - - - @ . ¢ - - -
Qe

9 reec | O - - T - - - o - L
a> Page d r‘:1 - - - @
£ Pagee | o | - - - - (> ° ° ° M
Faults

I COMP 530: Operating Systems

VPage-FauIt-Frequency Page Replacment

« An alternate approach to computing working set

« Explicitly attempt to minimize page faults
— When page fault frequency is high — increase working set
— When page fault frequency is low — decrease working set

Algorithm:
Keep track of the rate at which faults occur
When a fault occurs, compute the time since the last page fault
Record the time, tust, of the last page fault
;I;’rha time between page faults is “large” then reduce the working

If teurrent = tist > T, then remove from memory all pages not
referenced in [tst, tcurrent]

If the time between page faults is “small” then increase working set
If feurrent - tiast < T, then add faulting page to the working set

COMP 530: Operating Systems

Page Fault Frequency Replacement

« Example, window size = 2

o M teurrent — tiast > 2, remove pages not referenced in [tast, tourrent] from
the working set

o I teurrent — tiast < 2, just add faulting page to the working set

Time 01 2 3 4 5 6 7 8 9 10
Requests c ¢ d b ¢ e ¢ e a d
g Pagea |

$E Pageb | -

g Pagec | -

L=

o Paged |

c

‘= Pagee | *

Faults

teur = Cast

COMP 530: Operating Systems

Page Fault Frequency Replacement

« Example, window size = 2

o If teurrent — tiast > 2, remove pages not referenced in [tast, tourrent] from
the working set

o If teurrent — tast < 2, just add faulting page to the working set

Time °ol1 2 3 4 5 6 7 8 9 1o
Requests c ¢ d b ¢ e ¢ e a d
> Pagea | o | o L - - - - @ *
nQ Pageb | - |- - - @ - -
[ORS
g Pagec | - @ S T OO
Q.E Page d - @
E pagee || o o - O e e =
Faults . . o ® °
tcur - t/ast 1 3 2 3 1

11/9/16

COMP 530: Operating Systems

COMP 530: Operating Systems

7 Load Control: Fundamental Trade-off

« High multiprogramming level

number of page frames

» MPLmax =

minimum number of frames required for a process to execute

+ Low paging overhead
» MPLmin = 1 process

+ Issues
» What criterion should be used to determine when to increase or
decrease the MPL?
> Which task should be swapped out if the MPL must be reduced?

Load Control Done Wrong

i.e., based on CPU utilization

4 Assume memory is nearly full

@ A chain of page faults occur

— Aqueue of processes forms at
the paging device

¢ CPU utilization falls
« Operating system increases MPL

— New processes fault, taking memory away from existing processes
« CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

COMP 530: Operating Systems

COMP 530: Operating Systems

Load Control and Thrashing

« Thrashing can be ameliorated by /ocal page replacement

+ Befter criteria for load control: Adjust MPL so that:
> rnear;’)ﬁme between page faults (MTBF) = page fault service time
S

> X WS = size of memory

1.0 \l 1.0
CPU MTBF
Utilization PFST

Nmax Nijo-sarance

Multiprogramming Level

Load Control and Thrashing prysica

Memory

suspended
queue semaphore/condition queues

* When the multiprogramming level should be
decreased, which process should be swapped
out?
> Lowest priority process?

» Smallest process?
» Largest process?
» Oldest process?

> Faulting process?

Paging DISK

