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Page Replacement Algorithms

* Typically 2; VAS; >> Physical Memory

« With demand paging, physical memory fills quickly

* When a process faults & memory is full, some page must be
swapped out
— Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process
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7 Virtual Memory Management: Recap

« Key concept: Demand paging
— Load pages into memory only when a
page fault occurs

User Program n

* lIssues: User Program 2
— Placement strategies
« Place pages anywhere — no placement User Program 1

policy required

— Replacement strategies

* What to do when there exist more jobs
than can fit in memory

Operating System

— Load control strategies
+ Determining how many jobs can be
in memory at one time

Memory
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VPage Replacement: Eval. Methodology

* Record a trace of the pages accessed by a process
— Example: (Virtual page, offset) address trace...
(30), (19), @1, (21), (53), (20) (19), (24), (3.1), 4.8)
— generates page trace
3,1,4,2,5,2,1,2,3,4 (represented as ¢, a, d, b, e, b, a, b, ¢, d)
» Hardware can tell OS when a new page is loaded into the TLB
— Set a used bit in the page table entry
— Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and
record the humber of page faults generated
fewer faults better performance
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Orptimal Strategy: Clairvoyant Replacement

* Replace the page that won’t be needed for the longest time in the
future
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Orptimal Strategy: Clairvoyant Replacement

+ Replace the page that won’t be needed for the longest time in the
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Local Replacement: FIFO
Simple to implement
— Asingle pointer suffices — 0
1
2
Performance with 4 page frames:
Frame List
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Least Recently Used (LRU) Replacement

Use the recent past as a predictor of the near future
Replace the page that hasn’t been referenced for the longest time
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Local Replacment: FIFO
Simple to implement
— Asingle pointer suffices -3
0
2
Performance with 4 page frames:
Frame List
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Le

ast Recently Used (LRU) Replacement
Use the recent past as a predictor of the near future
Replace the page that hasn’t been referenced for the longest time

Time 0

Requests

Page

Frames
w N - O
Q n o oo

:n)ru T alo o
. “@wn Q’?&

Qo o alol|
Qo T alaln
Q O T Qo |w
Qo o alo|s

.Q@wmmm
Qo ool
Q M T Qo N

Q O T Q

Faults

Time page
last used

.o oo
oo
BERNIN
SRS
o
fo U1 0 <4
b o oo
fo 11 0 4

COMP 530: Operating Systems

COMP 530: Operating Systems

How to Implement LRU?

Maintain a “stack” of recently used pages
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How to Implement LRU?

Maintain a “stack” of recently used pages

Time o]1 2

Requests c

Q
Q|w
o| &
oluw
o|o
Q

| o

Page
Frames
w N R O
Q o T Q

.n)mwmnm
N
o"©°° ol o

Faults

LRU
page stack

LT
[EETT=]

Page to replace




COMP 530: Operating Systems

+ What is the goal of a page replacement
algorithm?
— A. Make life easier for OS implementer
— B. Reduce the number of page faults

— C. Reduce the penalty for page faults when they
occur

— D. Minimize CPU time of algorithm
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Clock Example
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Optimization: Second Chance Algorithm

« There is a significant cost to replacing “dirty” pages
— Why?
« Must write back contents to disk before freeing!

* Modify the Clock alﬂorilhm to allow dirty pages to always survive one
sweep of the clock hand

— Use both the dirty bit and the used bit to drive replacement
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Approximate LRU: The Clock Algorithm

» Maintain a circular list of pages resident in memory
— Use a clock (or used/referenced) bit to track how often a page is accesse:
— The bit is set whenever a page is referenced

+ Clock hand sweeps over pages looking for one with used bit = 0

— Replace pages that haven’ t been referenced for one complete revolution
of the clock

func Clock_Replacement
begin
while (victim page not found) do
if (used bit for current page =0) the
replace current page
else

reset used bit
end if
advance clock pointer
end while
end Clock Replacement

resident bit
used bit
frame pumber
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Clock Example
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Second Chance Example
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Second Chance Example Local Replacement and Memory Sensitivity
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Local Replacement and Memory Sensitivity Page Replacement Performance
Time 0 1 2 3 4 5 6 7 8 9 10 11 1 « Local page replacement
Requests a b c d a b c d a b ¢ d — LRU —Ages pages based on when they were last used
— FIFO — Ages pages based on when they’ re brought into memory
« Towards global page replacement ... with variable number of
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> 90% of the execution of a program is sequential
> Most iterative constructs consist of a relatively small number of
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gJD“E’ 1 |b|b b b b b b b b b b b b » When processing large data structures, the dominant cost is sequential
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Optimal Replacement with a Variable Optimal Replacement with a Variable
Number of Frames Number of Frames
* VMIN — Replace a page that is not referenced in the next ¢ * VMIN — Replace a page that is not referenced in the next ¢
accesses accesses
+ Example: 7=4 « Example: 7=4
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The Working Set Model

« Assume recently referenced pages are likely to be referenced again
soon...

» ...and only keep those pages recently referenced in memory (called
the working set)
— Thus pages may be removed even when no page fault occurs
— The number of frames allocated to a process will vary over time

« Aprocess is allowed to execute only if its working set fits into
memory
— The working set model performs implicit load control
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Working Set Page Replacement

+ Keep track of the last 7 references (excluding faulting reference)
— The pages referenced during the last  memory accesses are
the working set
— tis called the window size

« Example: Working set computation, 7 = 4 references:
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Working Set Page Replacement

« Keep track of the last z references

— The pages referenced during the last r memory accesses are
the working set
— ris called the window size

+ Example: Working set computation, = = 4 references:
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VPage-FauIt-Frequency Page Replacment

« An alternate approach to computing working set

« Explicitly attempt to minimize page faults
— When page fault frequency is high — increase working set
— When page fault frequency is low — decrease working set

Algorithm:
Keep track of the rate at which faults occur
When a fault occurs, compute the time since the last page fault
Record the time, tust, of the last page fault
;I;’rha time between page faults is “large” then reduce the working

If teurrent = tist > T, then remove from memory all pages not
referenced in [tst, tcurrent ]

If the time between page faults is “small” then increase working set
If feurrent - tiast < T, then add faulting page to the working set
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Page Fault Frequency Replacement

« Example, window size = 2

o M teurrent — tiast > 2, remove pages not referenced in [tast, tourrent ] from
the working set

o I teurrent — tiast < 2, just add faulting page to the working set
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Page Fault Frequency Replacement

« Example, window size = 2

o If teurrent — tiast > 2, remove pages not referenced in [tast, tourrent ] from
the working set

o If teurrent — tast < 2, just add faulting page to the working set
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7 Load Control: Fundamental Trade-off

« High multiprogramming level

number of page frames

» MPLmax =

minimum number of frames required for a process to execute

+ Low paging overhead
» MPLmin = 1 process

+ Issues
» What criterion should be used to determine when to increase or
decrease the MPL?
> Which task should be swapped out if the MPL must be reduced?

Load Control Done Wrong

i.e., based on CPU utilization

4 Assume memory is nearly full

@ A chain of page faults occur

— Aqueue of processes forms at
the paging device

¢ CPU utilization falls
« Operating system increases MPL

— New processes fault, taking memory away from existing processes
« CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging
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Load Control and Thrashing

« Thrashing can be ameliorated by /ocal page replacement

+ Befter criteria for load control: Adjust MPL so that:
> rnear;’)ﬁme between page faults (MTBF) = page fault service time
S

> X WS = size of memory

1.0 \l 1.0
CPU MTBF
Utilization PFST

Nmax  Nijo-sarance

Multiprogramming Level

Load Control and Thrashing prysica

Memory

suspended
queue semaphore/condition queues

*  When the multiprogramming level should be
decreased, which process should be swapped
out?
> Lowest priority process?

» Smallest process?
» Largest process?
» Oldest process?

> Faulting process?

Paging DISK




