
COMP	530:	Operating	Systems

Too	Much	Milk

Don	Porter

Portions	courtesy	Emmett	Witchel

1

COMP	530:	Operating	Systems

• The following example will demonstrate the difficulty
of providing mutual exclusion with memory reads
and writes
– Hardware support is needed

• The code must work all of the time
– Most concurrency bugs generate correct results for some

interleavings
• Designing mutual exclusion in software shows you

how to think about concurrent updates
– Always look for what you are checking and what you are

updating
– A meddlesome thread can execute between the check and

the update, the dreaded race condition

Critical	Sections	are	Hard,	Part	2

COMP	530:	Operating	Systems

Jack
• Look in the fridge; out of

milk
• Go to store
• Buy milk
• Arrive home; put milk away

Jill

• Look in fridge; out of milk
• Go to store
• Buy milk
• Arrive home; put milk away
• Oh, no!

Too much milk!

Thread	Coordination

Fridge	and	Milk	are	Shared	Data	Structures

COMP	530:	Operating	Systems

• Shared variables
– “Look in the fridge for milk” – check a variable
– “Put milk away” – update a variable

• Safety property
– At most one person buys milk

• Liveness
– Someone buys milk when needed

• How can we solve this problem?

Formalizing	“Too	Much	Milk”

COMP	530:	Operating	Systems

• Every thread has the same pattern
– Entry section: code to attempt entry to critical section
– Critical section: code that requires isolation (e.g., with mutual

exclusion)
– Exit section: cleanup code after execution of critical region
– Non-critical section: everything else

• There can be multiple critical regions in a program
– Only critical regions that access the same resource (e.g., data

structure) need to synchronize with each other

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

How	to	think	about	synchronization	code

COMP	530:	Operating	Systems

• Safety
– Only one thread in the critical region

• Liveness
– Some thread that enters the entry section eventually enters the critical region
– Even if some thread takes forever in non-critical region

• Bounded waiting
– A thread that enters the entry section enters the critical section within some

bounded number of operations.
• Failure atomicity

– It is OK for a thread to die in the critical region
– Many techniques do not provide failure atomicity

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

The	Correctness	Conditions

COMP	530:	Operating	Systems

• Is this solution
– 1. Correct
– 2. Not safe
– 3. Not live
– 4. No bounded wait
– 5. Not safe and not live

• It works sometime and doesn’t some other times
– Threads can be context switched between checking and leaving note
– Live, note left will be removed
– Bounded wait (‘buy milk’ takes a finite number of steps)

while(1) {
if (noMilk) { // check milk (Entry section)

if (noNote) { // check if roommate is getting milk
leave Note; //Critical section
buy milk;
remove Note; // Exit section

}
// Non-critical region

}

What if we switch the
order of checks?

Solution	#0

COMP	530:	Operating	Systems

while(1) {
while(turn ≠ Jack) ; //spin
while (Milk) ; //spin
buy milk; // Critical section
turn := Jill // Exit section
// Non-critical section

}

while(1) {
while(turn ≠ Jill) ; //spin
while (Milk) ; //spin
buy milk;
turn := Jack
// Non-critical section

}

Is	this	solution
Ø 1.	Correct
Ø 2.	Not	safe
Ø 3.	Not	live
Ø 4.	No	bounded	wait
Ø 5.	Not	safe	and	not	live

At	least	it	is	safe

turn := Jill // Initialization

Solution	#1

COMP	530:	Operating	Systems

Variables:
– ini: thread Ti is executing , or attempting to execute, in CS
– turn: id of thread allowed to enter CS if multiple want to

Claim: We can achieve mutual exclusion if the following invariant holds before
thread i enters the critical section:

Intuitively: j doesn’t want to execute
or it is i’s turn to execute

{(¬inj Ú (inj Ù turn = i)) Ù ini}

((¬in0 Ú (in0 Ù turn = 1)) Ù in1) Ù
((¬in1 Ú (in1 Ù turn = 0)) Ù in0)

Þ
((turn = 0) Ù (turn = 1)) = false

Solution	#2:	Peterson’s	Algorithm

COMP	530:	Operating	Systems

Jack
while	(1)	{

in0:=	true;	
turn	:=	Jill;
while (turn	==	Jill
&&	in1)	;//wait

Critical	section
in0 :=	false;
Non-critical	section

}

Jill
while	(1)	{

in1:=	true;	
turn	:=	Jack;
while (turn	==	Jack
&&	in0);//wait

Critical	section
in1 :=	false;
Non-critical	section

}

in0 =	in1 =	false;

turn=Jill,	in0 =	trueturn=Jack,	in0 =	true,	in1:=	true

Spin!

turn=Jack,	in0 =	false,	in1:=	true

Peterson’s	Algorithm

Save,	live,	and	bounded	waiting;	but	only	2	threads

COMP	530:	Operating	Systems

• Peterson’s works, but it is really unsatisfactory
– Limited to two threads
– Solution is complicated; proving correctness is tricky

even for the simple example
– While thread is waiting, it is consuming CPU time

• How can we do better?
– Use hardware to make synchronization faster
– Define higher-level programming abstractions to

simplify concurrent programming

Too	Much	Milk:	Lessons

