
COMP	530:	Operating	Systems

Memory	Management	Basics

Don	Porter

Portions	courtesy	Emmett	Witchel and	Kevin	Jeffay

1



COMP	530:	Operating	Systems

Program
P

• Physical address space — The address space 
supported by the hardware
– Starting at address 0, going to address MAXsys

• Logical/virtual address space — A process’s 
view of its own memory
– Starting at address 0, going to address MAXprog

0

MAXsys

0

MAXprog

MOV r0, @0xfffa620e

But where do addresses come from?

Review:	Address	Spaces



COMP	530:	Operating	Systems

• Which is bigger, physical or virtual address 
space?
– A. Physical address space
– B. Virtual address space
– C. It depends on the system.



COMP	530:	Operating	Systems

• The compilation pipeline

prog P
:
:

foo()
:
:

end P

P:
:

push ...
inc SP, x
jmp _foo
:

foo: ...

:
push ...
inc SP, 4
jmp 75

:
...

0

75

1100

1175

Library
Routines

1000

175

Library
Routines

0

100

Compilation Assembly Linking Loading

:
:
:

jmp 1175
:
...

:
:
:

jmp 175
:
...

Address	Space	Generation



COMP	530:	Operating	Systems

Program Relocation
• Program issues virtual addresses
• Machine has physical addresses.
• If virtual == physical, then how can we have 

multiple programs resident concurrently?
• Instead, relocate virtual addresses to physical at 

run time.
– While we are relocating, also bounds check 

addresses for safety.
• I can relocate that program (safely) in two 

registers…



COMP	530:	Operating	Systems

0

MAXsys

Program

Program
P’s

logical
address
space

0

MAXprog

1000

1500

CPU +

1000

Base
Register

Logical
Addresses

≤

500

Limit
Register

MEMORY
EXCEPTION

Physical
Addresses

yes

no

Instructions

P’s
physical
address
space

2	register	translation



COMP	530:	Operating	Systems

• With base and bounds registers, the OS needs a 
hole in physical memory at least as big as the 
process.
– A. True
– B. False



COMP	530:	Operating	Systems

• External fragmentation
– Unused memory between units of 

allocation
– E.g, two fixed tables for 2, but a party of 4

• Internal fragmentation
– Unused memory within 

a unit of allocation
– E.g., a party of 3 at

a table for 4

0

MAX

Program
R’s PAS

Program
Q’s
PAS

Execution Stack

Program	Code
(“text”)

Data

Execution Stack

The	Fragmentation	Problem



COMP	530:	Operating	Systems

• Simple approach:
– Allocate a partition when a process is admitted 

into the system
– Allocate a contiguous memory partition to the 

process

0

MAX

Program
P2

Program
P3

Program
P1

P5

Program
P4

OS keeps track of...
Full-blocks
Empty-blocks (“holes”)

Allocation strategies
First-fit
Best-fit
Worst-fit

Dynamic	Allocation	of	Partitions



COMP	530:	Operating	Systems

To allocate n bytes, use the 
first available free block such 
that the block size is larger 
than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 1st free block
available

2K bytes

500 bytes

First	Fit	Allocation



COMP	530:	Operating	Systems

• Simplicity!

• Requires:
– Free block list sorted by address
– Allocation requires a search for a suitable partition
– De-allocation requires a check to see if the freed partition could be 

merged with adjacent free partitions (if any)

Advantages
◆ Simple
◆ Tends to produce larger 

free blocks toward the end 
of the address space

Disadvantages
◆ Slow allocation
◆ External fragmentation

First	Fit:	Rationale	and	Implementation



COMP	530:	Operating	Systems

To allocate n bytes, use the 
smallest available free block 
such that the block size is 
larger than (or equal to) n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 3rd free block
available (smallest)

1K bytes

2K bytes

Best	Fit	Allocation



COMP	530:	Operating	Systems

• Avoid fragmenting big free blocks

• To minimize the size of external fragments produced

• Requires:
– Free block list sorted by size
– Allocation requires search for a suitable partition
– De-allocation requires search + merge with adjacent free partitions, 

if any

Advantages
◆ Works well when most 

allocations are of small size
◆ Relatively simple

Disadvantages
◆ External fragmentation
◆ Slow de-allocation
◆ Tends to produce many 

useless tiny fragments (not 
really great)

Best	Fit:	Rationale	and	Implementation



COMP	530:	Operating	Systems

To allocate n bytes, use the 
largest available free block 
such that the block size is 
larger than n. 

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 2nd free block
available (largest)

1K bytes

Worst	Fit	Allocation



COMP	530:	Operating	Systems

• Avoid having too many tiny fragments

• Requires:
– Free block list sorted by size
– Allocation is fast (get the largest partition)
– De-allocation requires merge with adjacent free partitions, if any, 

and then adjusting the free block list

Advantages
◆ Works best if allocations 

are of medium sizes

Disadvantages
◆ Slow de-allocation
◆ External fragmentation
◆ Tends to break large free 

blocks such that large 
partitions cannot be allocated

Worst	Fit:	Rationale	and	Implementation



COMP	530:	Operating	Systems

Allocation strategies
• First fit, best fit and worst fit all suffer from 

external fragmentation.
– A. True
– B. False



COMP	530:	Operating	Systems

• Compaction
– Relocate programs to coalesce holes

0

MAX

Program
P2

Program
P3

Program
P1

Program
P4

Suspended

suspended
queue

ready
queue

semaphore/condition	 queues

Waiting

RunningReady

?

Swapping
Ø Preempt processes & reclaim their memory

Eliminating	Fragmentation



COMP	530:	Operating	Systems

0

2n-1

Program
P’s
VAS

• Schemes so far have considered only a single 
address space per process
– A single name space per process
– No sharing 

Program	P’s	VAS

Program
Data

Program
Text

Heap

Run-Time	
Stack

How can one share code and data between 
programs without paging?

Sharing	Between	Processes



COMP	530:	Operating	Systems

0

2n-1

0

2n1-1
0

0

0

2n2-1

2n3-1

2n4-1

0

2n6-1
Libraries

2n5-1

0

Program
Data

Program
Text

Heap

Run-Time	
Stack

Program
Text

(shared)

Program
Data

(not	 shared)

Run-Time	
Stack

(not	 shared)

Heap
(not	 shared)

User	Code

Multiple	(sub)	Name	Spaces



COMP	530:	Operating	Systems

• New concept: A segment — a memory “object”
– A virtual address space

• A process now addresses objects —a pair (s, addr)
– s — segment number
– addr — an offset within an object

• Don’t know size of object, so 32 bits for offset?

Segment + Address register scheme

s addr

Single address scheme

n10 0n2 0

s

n

addr

Segmentation

Two	ways	to	encode	a	virtual	address



COMP	530:	Operating	Systems

0

Program

1000

1500

+

1000 Base
Register

Logical
Addresses

≤

500Limit
Register

MEMORY
EXCEPTION

Physical Memory

yes

no
P’s

Segment

Segment Table

s

CPU

0n 320

s o

Program
P

base limit

STBR

• Add a segment table containing base & 
limit register values

Implementing	Segmentation



COMP	530:	Operating	Systems

• Segmentation allows sharing
– And dead simple hardware

• Can easily cache all translation metadata on-chip
– Low latency to translate virtual addresses to physical addresses

• Two arithmetic operations (add and limit check)

• … but leads to poor memory utilization
– We might not use much of a large segment, but we must keep the 

whole thing in memory (bad memory utilization).
– Suffers from external fragmentation
– Allocation/deallocation of arbitrary size segments is complex

• How can we improve memory management?
– stay tuned…

Are	we	done?


