
1

File Systems:
Consistency Issues

2

File Systems: Consistency Issues

File systems maintain many data structures
Ø  Free list/bit vector
Ø  Directories
Ø  File headers and inode structures
Ø  Data blocks

All data structures are cached for better performance
Ø  Works great for read operations
Ø  … but what about writes?

❖  If modified data is in cache, and the system crashes à all modified data
can be lost

❖  If data is written in wrong order, data structure invariants might be
violated (this is very bad, as data or file system might not be consistent)

Ø  Solutions:
❖  Write-through caches: Write changes synchronously à consistency at

the expense of poor performance
❖  Write-back caches: Delayed writes à higher performance but the risk of

losing data
3

What about Multiple Updates?

Several file system operations update multiple data structures

Examples:
Ø  Move a file between directories

❖  Delete file from old directory
❖  Add file to new directory

Ø  Create a new file
❖  Allocate space on disk for file header and data
❖  Write new header to disk
❖  Add new file to a directory

What if the system crashes in the middle?
Ø  Even with write-through, we have a problem!!

The consistency problem: The state of memory+disk might
not be the same as just disk. Worse, just disk (without
memory) might be inconsistent.

4

Which is a metadata consistency problem?

A. Null double indirect pointer
B. File created before a crash is missing
C. Free block bitmap contains a file data
block that is pointed to by an inode
D. Directory contains corrupt file name

5

Consistency: Unix Approach

Meta-data consistency
Ø Synchronous write-through for meta-data
Ø Multiple updates are performed in a specific order
Ø When crash occurs:

❖  Run “fsck” to scan entire disk for consistency
❖  Check for “in progress” operations and fix up problems
❖  Example: file created but not in any directory à delete file; block

allocated but not reflected in the bit map à update bit map
Ø  Issues:

❖  Poor performance (due to synchronous writes)
❖  Slow recovery from crashes

6

Consistency: Unix Approach (Cont’d.)

Data consistency
Ø Asynchronous write-back for user data

❖  Write-back forced after fixed time intervals (e.g., 30 sec.)
❖  Can lose data written within time interval

Ø Maintain new version of data in temporary files; replace older
version only when user commits

What if we want multiple file operations to occur as a
unit?
Ø Example: Transfer money from one account to another à

need to update two account files as a unit
Ø Solution: Transactions

7

Transactions

Group actions together such that they are
Ø  Atomic: either happens or does not
Ø  Consistent: maintain system invariants
Ø  Isolated (or serializable): transactions appear to happen one after

another. Don’t see another tx in progress.
Ø  Durable: once completed, effects are persistent

Critical sections are atomic, consistent and isolated, but not
durable

Two more concepts:
Ø  Commit: when transaction is completed
Ø  Rollback: recover from an uncommitted transaction

8

Implementing Transactions

Key idea:
Ø  Turn multiple disk updates into a single disk write!

Example:
Begin Transaction

 x = x + 1
 y = y – 1
Commit

Sequence of steps:
Ø  Write an entry in the write-ahead log containing old and new values

of x and y, transaction ID, and commit
Ø  Write x to disk
Ø  Write y to disk
Ø  Reclaim space on the log

In the event of a crash, either “undo” or “redo” transaction

Create a write-ahead log for
the transaction

9

Transactions in File Systems

Write-ahead logging à journaling file system
Ø  Write all file system changes (e.g., update directory, allocate

blocks, etc.) in a transaction log
Ø  “Create file”, “Delete file”, “Move file” --- are transactions

Eliminates the need to “fsck” after a crash

In the event of a crash
Ø  Read log
Ø  If log is not committed, ignore the log
Ø  If log is committed, apply all changes to disk

Advantages:
Ø  Reliability
Ø  Group commit for write-back, also written as log

Disadvantage:
Ø  All data is written twice!! (often, only log meta-data)

10

Where on the disk would you put the journal for a journaling file
system?

1.  Anywhere
2.  Outer rim
3.  Inner rim
4.  Middle
5.  Wherever the inodes are

11

Transactions in File Systems: A more complete way

Log-structured file systems
Ø  Write data only once by having the log be the only copy of data and

meta-data on disk

Challenge:
Ø  How do we find data and meta-data in log?

❖  Data blocks à no problem due to index blocks
❖  Meta-data blocks à need to maintain an index of meta-data blocks

also! This should fit in memory.

Benefits:
Ø  All writes are sequential; improvement in write performance is

important (why?)

Disadvantage:
Ø  Requires garbage collection from logs (segment cleaning)

12

File System: Putting it All Together

Kernel data structures: file open table
Ø  Open(“path”) à put a pointer to the file in FD table; return index
Ø  Close(fd) à drop the entry from the FD table
Ø  Read(fd, buffer, length) and Write(fd, buffer, length) à refer to the

open files using the file descriptor

What do you need to support read/write?
Ø  Inode number (i.e., a pointer to the file header)
Ø  Per-open-file data (e.g., file position, …)

13

Putting It All Together (Cont’d.)

Read with caching:
ReadDiskCache(blocknum, buffer) {

 ptr = cache.get(blocknum) // see if the block is in cache
 if (ptr)
 Copy blksize bytes from the ptr to user buffer
 else {
 newOSBuf = malloc(blksize);
 ReadDisk(blocknum, newOSBuf);

 cache.insert(blockNum, newOSBuf);
 Copy blksize bytes from the newOSBuf to user buffer
 }

Simple but require block copy on every read

Eliminate copy overhead with mmap.
Ø  Map open file into a region of the virtual address space of a process
Ø  Access file content using load/store
Ø  If content not in memory, page fault

14

Putting It All Together (Cont’d.)

Eliminate copy overhead with mmap.
Ø  mmap(ptr, size, protection, flags, file descriptor, offset)
Ø  munmap(ptr, length)

Virtual address space

Refers to contents of mapped file

void* ptr = mmap(0, 4096, PROT_READ|PROT_WRITE,
MAP_SHARED, 3, 0);
int foo = *(int*)ptr;

foo contains first 4 bytes of the file referred to by file descriptor 3.

