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File Systems: Consistency Issues 

File systems maintain many data structures 
Ø  Free list/bit vector 
Ø  Directories 
Ø  File headers and inode structures 
Ø  Data blocks 

All data structures are cached for better performance 
Ø  Works great for read operations 
Ø  … but what about writes? 

❖  If modified data is in cache, and the system crashes à all modified data 
can be lost 

❖  If data is written in wrong order, data structure invariants might be 
violated (this is very bad, as data or file system might not be consistent) 

Ø  Solutions:  
❖  Write-through caches: Write changes synchronously à consistency at 

the expense of poor performance 
❖  Write-back caches: Delayed writes à higher performance but the risk of 

losing data 
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What about Multiple Updates? 

Several file system operations update multiple data structures 

Examples:   
Ø  Move a file between directories 

❖  Delete file from old directory 
❖  Add file to new directory 

Ø  Create a new file 
❖  Allocate space on disk for file header and data 
❖  Write new header to disk 
❖  Add new file to a directory 

What if the system crashes in the middle? 
Ø  Even with write-through, we have a problem!! 

The consistency problem: The state of memory+disk might 
not be the same as just disk.  Worse, just disk (without 
memory) might be inconsistent. 
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Which is a metadata consistency problem? 

A. Null double indirect pointer 
B. File created before a crash is missing 
C. Free block bitmap contains a file data 
block that is pointed to by an inode 
D. Directory contains corrupt file name 
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Consistency: Unix Approach 

Meta-data consistency 
Ø Synchronous write-through for meta-data 
Ø Multiple updates are performed in a specific order 
Ø When crash occurs: 

❖  Run “fsck” to scan entire disk for consistency 
❖  Check for “in progress” operations and fix up problems 
❖  Example: file created but not in any directory à delete file; block 

allocated but not reflected in the bit map à update bit map 
Ø  Issues:  

❖  Poor performance (due to synchronous writes) 
❖  Slow recovery from crashes 
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Consistency: Unix Approach (Cont’d.) 

Data consistency 
Ø Asynchronous write-back for user data 

❖  Write-back forced after fixed time intervals (e.g., 30 sec.) 
❖  Can lose data written within time interval 

Ø Maintain new version of data in temporary files; replace older 
version only when user commits 

What if we want multiple file operations to occur as a 
unit? 
Ø Example: Transfer money from one account to another à 

need to update two account files as a unit 
Ø Solution: Transactions 
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Transactions 

Group actions together such that they are 
Ø  Atomic: either happens or does not 
Ø  Consistent: maintain system invariants 
Ø  Isolated (or serializable): transactions appear to happen one after 

another.  Don’t see another tx in progress. 
Ø  Durable: once completed, effects are persistent 

Critical sections are atomic, consistent and isolated, but not 
durable 

Two more concepts: 
Ø  Commit: when transaction is completed 
Ø  Rollback: recover from an uncommitted transaction 
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Implementing Transactions 

Key idea: 
Ø  Turn multiple disk updates into a single disk write! 

Example: 
Begin Transaction 

 x = x + 1 
  y = y – 1 
Commit 
 

Sequence of steps: 
Ø  Write an entry in the write-ahead log containing old and new values 

of x and y, transaction ID, and commit 
Ø  Write x to disk 
Ø  Write y to disk 
Ø  Reclaim space on the log 

In the event of a crash, either “undo” or “redo” transaction 

Create a write-ahead log for  
the transaction 
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Transactions in File Systems 

Write-ahead logging à journaling file system 
Ø  Write all file system changes (e.g., update directory, allocate 

blocks, etc.) in a transaction log 
Ø  “Create file”, “Delete file”, “Move file” --- are transactions 

Eliminates the need to “fsck” after a crash 

In the event of a crash 
Ø  Read log 
Ø  If log is not committed, ignore the log 
Ø  If log is committed, apply all changes to disk 

Advantages: 
Ø  Reliability 
Ø  Group commit for write-back, also written as log 

Disadvantage: 
Ø  All data is written twice!! (often, only log meta-data) 
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Where on the disk would you put the journal for a journaling file 
system? 
 

1.  Anywhere 
2.  Outer rim 
3.  Inner rim 
4.  Middle 
5.  Wherever the inodes are 
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Transactions in File Systems: A more complete way 

Log-structured file systems 
Ø  Write data only once by having the log be the only copy of data and 

meta-data on disk 

Challenge:  
Ø  How do we find data and meta-data in log? 

❖  Data blocks à no problem due to index blocks 
❖  Meta-data blocks à need to maintain an index of meta-data blocks 

also!  This should fit in memory. 

Benefits: 
Ø  All writes are sequential; improvement in write performance is 

important (why?) 

Disadvantage: 
Ø  Requires garbage collection from logs (segment cleaning) 
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File System: Putting it All Together 

Kernel data structures: file open table 
Ø  Open(“path”) à put a pointer to the file in FD table; return index 
Ø  Close(fd) à drop the entry from the FD table 
Ø  Read(fd, buffer, length) and Write(fd, buffer, length) à refer to the 

open files using the file descriptor 

What do you need to support read/write? 
Ø  Inode number (i.e., a pointer to the file header) 
Ø  Per-open-file data (e.g., file position, …) 
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Putting It All Together (Cont’d.) 

Read with caching: 
ReadDiskCache(blocknum, buffer) { 

 ptr = cache.get(blocknum)   // see if the block is in cache 
 if (ptr)  
     Copy blksize bytes from the ptr to user buffer 
 else { 
    newOSBuf = malloc(blksize); 
    ReadDisk(blocknum, newOSBuf); 

     cache.insert(blockNum, newOSBuf); 
      Copy blksize bytes from the newOSBuf to user buffer 
 } 
  

Simple but require block copy on every read 

Eliminate copy overhead with mmap. 
Ø  Map open file into a region of the virtual address space of a process 
Ø  Access file content using load/store 
Ø  If content not in memory, page fault 
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Putting It All Together (Cont’d.) 

Eliminate copy overhead with mmap. 
Ø  mmap(ptr, size, protection, flags, file descriptor, offset) 
Ø  munmap(ptr, length) 

Virtual address space

Refers to contents of mapped file

void* ptr = mmap(0, 4096, PROT_READ|PROT_WRITE, 
MAP_SHARED, 3, 0); 
int foo = *(int*)ptr; 

foo contains first 4 bytes of the file referred to by file descriptor 3.  


