of NORTH CAROLINA COMP 530: Operating Systems

Process Address Spaces and
Binary Formats

Don Porter

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Background

 We've talked some about processes

* This lecture: discuss overall virtual memory
organization

— Key abstraction: Address space

 We will learn about the mechanics of virtual memory
later

= THE UNIVERSITY
|T,ﬂ ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL

Basics

* Process includes a virtual address space

* An address space is composed of:

— Memory-mapped files
* Includes program binary

— Anonymous pages: no file backing
 When the process exits, their contents go away

THE UNIVERSITY

II Il of NORTH CAROLINA
$ at CHAPEL HILL

COMP 530: Operating Systems

Address Space Generation

« The compilation pipeline

prog P P:
3 push ...
foo () inc SP, x
: jmp _foo
end P foo: ..

75

push ...
inc SP, 4
jmp 75

100

175

Library
Routines

jmp 175

N

Compilation Assembly

Linking

1000
Library
Routines

1100

jmp 1175

1175

Loading

of NORTH CAROLINA COMP 530: Operating Systems

Need addresses at compile time

* You write code (even in assembly) using symbolic
names

* Machine code ultimately needs to use addresses

— Recall from 311/411 the arguments for jump, load, store...

 Compiler needs to know where in memory at run
time these functions and variables will be to finish
generating machine code

of NORTH CAROLINA COMP 530: Operating Systems

Address Space Layout

 Determined (mostly) by the application + compiler

— Link directives can influence this
* OS reserves part of the address space to map itself
— Upper GB on x86 Linux

* Application can dynamically request new mappings
from the OS, or delete mappings

=2\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Simple Example

Virtual Address Space

0 OXFFFFf

 “Hello world” binary specified load address

heap | | stk

* Also specifies where it wants libc

* Dynamically asks kernel for “anonymous” pages for
its heap and stack

=N THE UNIVERSITY
mﬂ of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

In practice

* You can see (part of) the requested memory layout
of a program using ldd:

$ 1dd /usr/bin/git
linux-vdso.so.l => (0x00007£££197be000)
libz.so.1l => /1lib/libz.so.l (0x00007£31b9d4e000)

libpthread.so.0 => /lib/libpthread.so.0
(0x00007£31b9b31000)

libc.so.6 => /1lib/libc.so.6 (0x00007£31b97ac000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£31b9£86000)

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Many address spaces

 What if every program wants to map libc at the same
address?

* No problem!

— Every process has the abstraction of its own address space
— Only one active at a given time (on a given core)
— But many can exist in DRAM

e How does this work?

=N THE UNIVERSITY
mﬂ of NORTH CAROLINA COMP 530: Operating Systems

—_— at CHAPEL HILL

Memory Mapping

Process 1 Process 2

Virtual B

0x100(Only one physical
address 0x1000!!
b || reds §x1400
~ AWA

0x1000 Physical Memory

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

M

Two System Goals

1) Provide an abstraction of contiguous, isolated virtual
memory to a program
— We will study the details of virtual memory later

2) Prevent illegal operations

— Prevent access to other application
* No way to address another application’s memory

— Detect failures early (e.g., segfault on address 0)

THE UNIVE RSITY

of NORTH CAROLINA COMP 530: Operating Systems

What about the kernel?

I

 Most OSes reserve part of the address space in every
process by convention
— Other ways to do this, nothing mandated by hardware

=2\ | THE UNIVERSITY
LT‘lI of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Example Redux

Virtual Address Space

0 OXFFFFf

* Kernel always at the “top” of the address space
* “Hello world” binary specifies most of the memory map

* Dynamically asks kernel for “anonymous” pages for its
heap and stack

=

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Why a fixed mapping?
Makes the kernel-internal bookkeeping simpler

Example: Remember how interrupt handlers are
organized in a big table?

— How does the table refer to these handlers?
e By (virtual) address

* Awfully nice when one table works in every process

=3 | THE UNIVERSITY .
@ JINORTH CAROLINA COMP 530: Operating Systems

Kernel protection?

* So, | protect programs from each other by running in
different virtual address spaces

e But the kernel is in every virtual address space?

THE UNIVERSITY

—
of NORTH CAROLINA COMP 530: Operating Systems

Decoupling CPU mode and Addr. Space

* CPU operates in 2 modes — user and supervisor

— Applications execute in user mode

— Kernel executes in supervisor mode

* |dea: restrict some addresses to supervisor mode

— Although mapped, will fault if touched in user mode

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Putting protection together

* Permissions on the memory map protect against
programs:
— Randomly reading secret data (like cached file contents)

— Writing into kernel data structures

 The only way to access protected data is to trap into
the kernel. How?
— Interrupt (or syscall instruction)

* Interrupt table entries protect against jumping into
unexpected code

= THE UNIVERSITY
|T,ﬂ ORI CAROLIN COMP 530: Operating Systems

Outline

e Basics of process address spaces

— Kernel mapping

— Protection

* How to dynamically change your address space?

* Overview of loading a program

THE UNIVE RSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Reminder: Two types of mappings

* Memory-mapped files

— Includes program binary

I

 Anonymous pages: no file backing

— When the process exits, their contents go away

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Packing flags into a single integer

e Common Linux/C idiom

 Example: Access modes:
PROT_READ == 29
PROT_WRITE == 21
PROT_EXEC ==2?

* How to request read and write permission?
— int flags = PROT_READ|PROT_WRITE; //==1+2==3
— Sets bits 0 and 1, but leaves other blank

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

Linux APlIs

* mmap(void *addr, size_t length, int prot, int flags,
int fd, off t offset);

* munmap(void *addr, size_t length);

 How to create an anonymous mapping?

 What if you don’t care where a memory region goes
(as long as it doesn’t clobber something else)?

LLLLLLLLLLLL

=3\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

Example:

e Let’s map a 1 page (4k) anonymous region for data,
read-write at address 0x40000

* mmap(0x40000, 4096, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS, -1, 0);

— Why wouldn’t we want exec permission?

=

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

ldiosyncrasy 1: Stacks Grow Down
In Linux/Unix, as you add frames to a stack, they
actually decrease in virtual address order

Example: Stack “bottom” — 0x13000

0x12600

0x12300

0x11900

Exceeds stack
page

OS allocates a
new page

=2\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

Problem 1: Expansion

e Recall: OS is free to allocate any free page in the
virtual address space if user doesn’t specify an
address

 What if the OS allocates the page below the “top” of
the stack?

— You can’t grow the stack any further
— Out of memory fault with plenty of memory spare

* OS must reserve “enough” virtual address space after

“top” of stack

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Feed 2 Birds with 1 Scone

* Unix has been around longer than paging

M

S

— Data segment abstraction (we’ll see more about segments
later)

— Unix solution:

Data Segment

e Stack and heap meet in the middle
— Out of memory when they meet

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

brk() system call

* Brk points to the end of the heap
e sys brk() changes this pointer

Grows E Grows -

Data Segment

brk

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

M

Relationship to malloc()

 malloc, or any other memory allocator (e.g., new)

— Library (usually libc) inside application

— Gets large chunks of anonymous memory from the OS
* Some use brk,
* Many use mmap instead (better for parallel allocation)

— Sub-divides into smaller pieces
— Many malloc calls for each mmap call

= THE UNIVERSITY
|T,ﬂ ORI CAROLIN COMP 530: Operating Systems

Outline

e Basics of process address spaces

— Kernel mapping

— Protection

* How to dynamically change your address space?

* Overview of loading a program

= THE UNIVERSITY
|T,ﬂ ORI CAROLIN COMP 530: Operating Systems

Linux: ELF

e Executable and Linkable Format

* Standard on most Unix systems

e 2 headers:
— Program header: 0+ segments (memory layout)

— Section header: 0+ sections (linking information)

=3\ | THE UNIVERSITY
|T,ﬂ COMP 530: Operating Systems

Helpful tools

* readelf - Linux tool that prints part of the elf headers

* objdump — Linux tool that dumps portions of a
binary

— Includes a disassembler; reads debugging symbols if

present

=3\ | THE UNIVE RSITY
@ JINORTH CAROLINA COMP 530: Operating Systems
Key ELF Sections

e .text — Where read/execute code goes

— Can be mapped without write permission

o .data — Programmer initialized read/write data
— Ex: a global int that starts at 3 goes here

e .bss — Uninitialized data (initially zero by convention)
 Many other sections

of NORTH CAROLINA COMP 530: Operating Systems

THE UNIVERSITY
at CHAPEL HILL

=

How ELF Loading Works

* execve(“foo”, ...)

* Kernel parses the file enough to identify whether it is
a supported format

— Kernel loads the text, data, and bss sections

 ELF header also gives first instruction to execute

— Kernel transfers control to this application instruction

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Static vs. Dynamic Linking
e Static Linking:

M

— Application binary is self-contained
* Dynamic Linking:

— Application needs code and/or variables from an external
library

* How does dynamic linking work?
— Each binary includes a “jump table” for external references
— Jump table is filled in at run time by the linker

=3 | THE UNIVE RSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

Jump table example

e Suppose | want to call foo() in another library
 Compiler allocates an entry in the jump table for foo
— Sayitisindex 3, and an entry is 8 bytes

 Compiler generates local code like this:

— mov rax, 24 (rbx) // rbx points to the
// jump table

— call *rax

* Linker initializes the jump tables at runtime

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Dynamic Linking (Overview)

e Rather than loading the application, load the linker
(Id.so), give the linker the actual program as an
argument

* Kernel transfers control to linker (in user space)

e Linker:

— 1) Walks the program’s ELF headers to identify needed
libraries

— 2) Issue mmap() calls to map in said libraries
— 3) Fix the jump tables in each binary
— 4) Call main()

= THE UNIVERSITY
m] ORI CAROLIN COMP 530: Operating Systems

—_— at CHAPEL HILL

Key point

* Most program loading work is done by the loader in
user space

— If you ‘st race’ any substantial program, there will be
beaucoup mmap calls early on

— Nice design point: the kernel only does very basic loading,
|d.so does the rest

* Minimizes risk of a bug in complicated ELF parsing corrupting the
kernel

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

Other formats?

* The first two bytes of a file are a “magic number”

=

— Kernel reads these and decides what loader to invoke
— ‘#!" says “I'm a script”, followed by the “loader” for that
script
* The loader itself may be an ELF binary
* Linux allows you to register new binary types (as long
as you have a supported binary format that can load
them

TTTTTTTTTTTTT

=
@ of NORTH CAROLINA COMP 530: Operating Systems

Recap

 Understand the idea of an address space

 Understand how a process sets up its address space,
how it is dynamically changed

* Understand the basics of program loading

