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Background

 We've talked some about processes

* This lecture: discuss overall virtual memory
organization

— Key abstraction: Address space

 We will learn about the mechanics of virtual memory
later
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Basics

* Process includes a virtual address space

* An address space is composed of:

— Memory-mapped files
* Includes program binary

— Anonymous pages: no file backing
 When the process exits, their contents go away
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Address Space Generation

« The compilation pipeline

prog P P:
3 push ...
foo () inc SP, x
: jmp _foo
end P foo: ..

75

push ...
inc SP, 4
jmp 75

100

175

Library
Routines

jmp 175

N

Compilation Assembly

Linking

1000
Library
Routines

1100

jmp 1175

1175

Loading
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Need addresses at compile time

* You write code (even in assembly) using symbolic
names

* Machine code ultimately needs to use addresses

— Recall from 311/411 the arguments for jump, load, store...

 Compiler needs to know where in memory at run
time these functions and variables will be to finish
generating machine code
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Address Space Layout

 Determined (mostly) by the application + compiler

— Link directives can influence this
* OS reserves part of the address space to map itself
— Upper GB on x86 Linux

* Application can dynamically request new mappings
from the OS, or delete mappings
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Simple Example

Virtual Address Space

0 OXFFFFf

 “Hello world” binary specified load address

heap | | stk

* Also specifies where it wants libc

* Dynamically asks kernel for “anonymous” pages for
its heap and stack
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In practice

* You can see (part of) the requested memory layout
of a program using ldd:

$ 1dd /usr/bin/git
linux-vdso.so.l => (0x00007£££197be000)
libz.so.1l => /1lib/libz.so.l (0x00007£31b9d4e000)

libpthread.so.0 => /lib/libpthread.so.0
(0x00007£31b9b31000)

libc.so.6 => /1lib/libc.so.6 (0x00007£31b97ac000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£31b9£86000)
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Many address spaces

 What if every program wants to map libc at the same
address?

* No problem!

— Every process has the abstraction of its own address space
— Only one active at a given time (on a given core)
— But many can exist in DRAM

e How does this work?
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Memory Mapping

Process 1 Process 2

Virtual B

0x100( Only one physical
address 0x1000!!
b || reds §x1400
~ AWA

0x1000 Physical Memory
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Two System Goals

1) Provide an abstraction of contiguous, isolated virtual
memory to a program
— We will study the details of virtual memory later

2) Prevent illegal operations

— Prevent access to other application
* No way to address another application’s memory

— Detect failures early (e.g., segfault on address 0)
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What about the kernel?

I

 Most OSes reserve part of the address space in every
process by convention
— Other ways to do this, nothing mandated by hardware
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Example Redux

Virtual Address Space

0 OXFFFFf

* Kernel always at the “top” of the address space
* “Hello world” binary specifies most of the memory map

* Dynamically asks kernel for “anonymous” pages for its
heap and stack



=

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Why a fixed mapping?
Makes the kernel-internal bookkeeping simpler

Example: Remember how interrupt handlers are
organized in a big table?

— How does the table refer to these handlers?
e By (virtual) address

* Awfully nice when one table works in every process
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Kernel protection?

* So, | protect programs from each other by running in
different virtual address spaces

e But the kernel is in every virtual address space?
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Decoupling CPU mode and Addr. Space

* CPU operates in 2 modes — user and supervisor

— Applications execute in user mode

— Kernel executes in supervisor mode

* |dea: restrict some addresses to supervisor mode

— Although mapped, will fault if touched in user mode
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Putting protection together

* Permissions on the memory map protect against
programs:
— Randomly reading secret data (like cached file contents)

— Writing into kernel data structures

 The only way to access protected data is to trap into
the kernel. How?
— Interrupt (or syscall instruction)

* Interrupt table entries protect against jumping into
unexpected code
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Outline

e Basics of process address spaces

— Kernel mapping

— Protection

* How to dynamically change your address space?

* Overview of loading a program
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Reminder: Two types of mappings

* Memory-mapped files

— Includes program binary

I

 Anonymous pages: no file backing

— When the process exits, their contents go away
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Packing flags into a single integer

e Common Linux/C idiom

 Example: Access modes:
PROT_READ == 29
PROT_WRITE == 21
PROT_EXEC ==2?

* How to request read and write permission?
— int flags = PROT_READ|PROT_WRITE; //==1+2==3
— Sets bits 0 and 1, but leaves other blank
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Linux APlIs

* mmap(void *addr, size_t length, int prot, int flags,
int fd, off t offset);

* munmap(void *addr, size_t length);

 How to create an anonymous mapping?

 What if you don’t care where a memory region goes
(as long as it doesn’t clobber something else)?
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Example:

e Let’s map a 1 page (4k) anonymous region for data,
read-write at address 0x40000

* mmap(0x40000, 4096, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS, -1, 0);

— Why wouldn’t we want exec permission?
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ldiosyncrasy 1: Stacks Grow Down
In Linux/Unix, as you add frames to a stack, they
actually decrease in virtual address order

Example: Stack “bottom” — 0x13000

0x12600

0x12300

0x11900

Exceeds stack
page

OS allocates a
new page



=2\ | THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

Problem 1: Expansion

e Recall: OS is free to allocate any free page in the
virtual address space if user doesn’t specify an
address

 What if the OS allocates the page below the “top” of
the stack?

— You can’t grow the stack any further
— Out of memory fault with plenty of memory spare

* OS must reserve “enough” virtual address space after

“top” of stack
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Feed 2 Birds with 1 Scone

* Unix has been around longer than paging

M

S

— Data segment abstraction (we’ll see more about segments
later)

— Unix solution:

Data Segment

e Stack and heap meet in the middle
— Out of memory when they meet
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brk() system call

* Brk points to the end of the heap
e sys brk() changes this pointer

Grows E Grows -

Data Segment

brk
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Relationship to malloc()

 malloc, or any other memory allocator (e.g., new)

— Library (usually libc) inside application

— Gets large chunks of anonymous memory from the OS
* Some use brk,
* Many use mmap instead (better for parallel allocation)

— Sub-divides into smaller pieces
— Many malloc calls for each mmap call
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Outline

e Basics of process address spaces

— Kernel mapping

— Protection

* How to dynamically change your address space?

* Overview of loading a program
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Linux: ELF

e Executable and Linkable Format

* Standard on most Unix systems

e 2 headers:
— Program header: 0+ segments (memory layout)

— Section header: 0+ sections (linking information)
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Helpful tools

* readelf - Linux tool that prints part of the elf headers

* objdump — Linux tool that dumps portions of a
binary

— Includes a disassembler; reads debugging symbols if

present
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e .text — Where read/execute code goes

— Can be mapped without write permission

o .data — Programmer initialized read/write data
— Ex: a global int that starts at 3 goes here

e .bss — Uninitialized data (initially zero by convention)
 Many other sections
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How ELF Loading Works

* execve(“foo”, ...)

* Kernel parses the file enough to identify whether it is
a supported format

— Kernel loads the text, data, and bss sections

 ELF header also gives first instruction to execute

— Kernel transfers control to this application instruction
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Static vs. Dynamic Linking
e Static Linking:

M

— Application binary is self-contained
* Dynamic Linking:

— Application needs code and/or variables from an external
library

* How does dynamic linking work?
— Each binary includes a “jump table” for external references
— Jump table is filled in at run time by the linker
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Jump table example

e Suppose | want to call foo() in another library
 Compiler allocates an entry in the jump table for foo
— Sayitisindex 3, and an entry is 8 bytes

 Compiler generates local code like this:

— mov rax, 24 (rbx) // rbx points to the
// jump table

— call *rax

* Linker initializes the jump tables at runtime
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Dynamic Linking (Overview)

e Rather than loading the application, load the linker
(Id.so), give the linker the actual program as an
argument

* Kernel transfers control to linker (in user space)

e Linker:

— 1) Walks the program’s ELF headers to identify needed
libraries

— 2) Issue mmap() calls to map in said libraries
— 3) Fix the jump tables in each binary
— 4) Call main()
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Key point

* Most program loading work is done by the loader in
user space

— If you ‘st race’ any substantial program, there will be
beaucoup mmap calls early on

— Nice design point: the kernel only does very basic loading,
|d.so does the rest

* Minimizes risk of a bug in complicated ELF parsing corrupting the
kernel
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Other formats?

* The first two bytes of a file are a “magic number”

=

— Kernel reads these and decides what loader to invoke
— ‘#!" says “I'm a script”, followed by the “loader” for that
script
* The loader itself may be an ELF binary
* Linux allows you to register new binary types (as long
as you have a supported binary format that can load
them
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Recap

 Understand the idea of an address space

 Understand how a process sets up its address space,
how it is dynamically changed

* Understand the basics of program loading




