
COMP 530: Operating Systems

Disks and I/O Scheduling

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

Quick Recap
• CPU Scheduling

– Balance competing concerns with heuristics
• What were some goals?

– No perfect solution

• Today: Block device scheduling
– How different from the CPU?
– Focus primarily on a traditional hard drive
– Extend to new storage media

COMP 530: Operating Systems

• Why have disks?
– Memory is small. Disks are large.

• Short term storage for memory contents (e.g., swap space).
• Reduce what must be kept in memory (e.g., code pages).

– Memory is volatile. Disks are forever (?!)
• File storage.

GB/dollar dollar/GB

RAM 0.013(0.015,0.01) $77($68,$95)
Disks 3.3(1.4,1.1) 30¢ (71¢,90¢)

Capacity : 2GB vs. 1TB
2GB vs. 400GB
1GB vs 320GB

Disks: Just like memory, but different

COMP 530: Operating Systems

OS’s view of a disk
• Simple array of blocks

– Blocks are usually 512 or 4k bytes

COMP 530: Operating Systems

A simple disk model
• Disks are slow. Why?

– Moving parts << circuits

• Programming interface: simple array of sectors
(blocks)

• Physical layout:
– Concentric circular “tracks” of blocks on a platter
– E.g., sectors 0-9 on innermost track, 10-19 on next track,

etc.
– Disk arm moves between tracks
– Platter rotates under disk head to align w/ requested

sector

COMP 530: Operating Systems

Disk Model

01
2
3

4 5
6
7

Each block on
a sector

Disk
Head

Disk Head
reads at

granularity of
entire sector

Disk spins at a
constant speed.
Sectors rotate

underneath head.

COMP 530: Operating Systems

Disk Model

Disk
Head01

2
3

4 5
6
7

89
10

11
12

13
14 15 16

17
18
19

20
21

Concentric
tracks

Disk head seeks to
different tracksGap between 7

and 8 accounts for
seek time

COMP 530: Operating Systems

Many Tracks

Disk
Head

COMP 530: Operating Systems

Several (~4) Platters

Platters spin
together at same

speed

Each platter has a head;
All heads seek together

COMP 530: Operating Systems

Implications of multiple platters
• Blocks actually striped across platters
• Also, both sides of a platter can store data

– Called a surface
– Need a head on top and bottom

• Example:
– Sector 0 on platter 0 (top)
– Sector 1 on platter 0 (bottom, same position)
– Sector 2 on platter 1 at same position, top,
– Sector 3 on platter 1, at same position, bottom
– Etc.
– 8 heads can read all 8 sectors simultaneously

COMP 530: Operating Systems

Real Example
• Seagate 73.4 GB Fibre Channel Ultra 160 SCSI disk

• Specs:
– 12 Platters
– 24 Heads
– Variable # of sectors/track
– 10,000 RPM

• Average latency: 2.99 ms
– Seek times

• Track-to-track: 0.6/0.9 ms
• Average: 5.6/6.2 ms

• Includes acceleration and settle time.

– 160-200 MB/s peak
transfer rate

• 1-8K cache

Ø 12 Arms
Ø 14,100 Tracks
Ø 512 bytes/sector

COMP 530: Operating Systems

3 Key Latencies
• I/O delay: time it takes to read/write a sector
• Rotational delay: time the disk head waits for the

platter to rotate desired sector under it
– Note: disk rotates continuously at constant speed

• Seek delay: time the disk arm takes to move to a
different track

COMP 530: Operating Systems

Observations
• Latency of a given operation is a function of current

disk arm and platter position
• Each request changes these values
• Idea: build a model of the disk

– Maybe use delay values from measurement or manuals
– Use simple math to evaluate latency of each pending

request
– Greedy algorithm: always select lowest latency

COMP 530: Operating Systems

Example formula
• s = seek latency, in time/track
• r = rotational latency, in time/sector
• i = I/O latency, in seconds

• Time = (Δtracks * s) + (Δsectors * r) + I
• Note: Δsectors must factor in position after seek is

finished. Why?
Example read time:

seek time + latency + transfer time
(5.6 ms + 2.99 ms + 0.014 ms)

COMP 530: Operating Systems

The Disk Scheduling Problem: Background
• Goals: Maximize disk throughput

– Bound latency

• Between file system and disk, you have a queue of
pending requests:
– Read or write a given logical block address (LBA) range

• You can reorder these as you like to improve
throughput

• What reordering heuristic to use? If any?
• Heuristic is called the IO Scheduler

– Or “Disk Scheduler” or “Disk Head Scheduler”

15Evaluation: how many tracks head moves across

COMP 530: Operating Systems

• Assume a queue of requests exists to read/write tracks:
– and the head is on track 65

0 150125100755025

15016147147283

65

I/O Scheduling Algorithm 1: FCFS

FCFS: Moves head 550 tracks

COMP 530: Operating Systems

• Greedy scheduling: shortest seek time first
– Rearrange queue from:

To:

0 150125100755025

15016147147283

72821471501614

SSTF scheduling results in the head moving 221 tracks
Can we do better?

I/O Scheduling Algorithm 2: SSTF

SSTF: 221 tracks (vs 550 for FCFS)

COMP 530: Operating Systems

Other problems with greedy?
• “Far” requests will starve

– Assuming you reorder every time a new request arrives

• Disk head may just hover around the “middle” tracks

COMP 530: Operating Systems

• Move the head in one direction until all requests have
been serviced, and then reverse.

• Also called Elevator Scheduling

161472 83147150

• Rearrange queue from:

To:

0 150125100755025

15016147147283

16147283147150

I/O Scheduling Algorithm 3: SCAN

SCAN: 187 tracks (vs. 221 for SSTF)

COMP 530: Operating Systems

0 150125100755025

I/O Scheduling Algorithm 4: C-SCAN
• Circular SCAN: Move the head in one direction

until an edge of the disk is reached, and then
reset to the opposite edge

C-SCAN: 265 tracks (vs. 221 for SSTF, 187 for SCAN)

• Marginally better fairness than SCAN

COMP 530: Operating Systems

Scheduling Checkpoint
• SCAN seems most efficient for these examples

– C-SCAN offers better fairness at marginal cost
– Your mileage may vary (i.e., workload dependent)

• File systems would be wise to place related data
”near” each other
– Files in the same directory
– Blocks of the same file

• You will explore the practical implications of this
model in Lab 4!

21

COMP 530: Operating Systems

• Multiple file systems can share a disk: Partition space
• Disks are typically partitioned to minimize the maximum seek time

– A partition is a collection of cylinders
– Each partition is a logically separate disk

Partition A Partition B

Disk Partitioning

COMP 530: Operating Systems

• Disks are getting smaller in size
– Smaller à spin faster; smaller distance for head to travel; and lighter

weight

• Disks are getting denser
– More bits/square inch à small disks with large capacities

• Disks are getting cheaper
– Well, in $/byte – a single disk has cost at least $50-100 for 20 years
– 2x/year since 1991

• Disks are getting faster
– Seek time, rotation latency: 5-10%/year (2-3x per decade)
– Bandwidth: 20-30%/year (~10x per decade)
– This trend is really flattening out on commodity devices; more apparent on

high-end

Disks: Technology Trends

Overall: Capacity improving much faster than perf.

COMP 530: Operating Systems

Parallel performance with disks
• Idea: Use more of them working together

– Just like with multiple cores

• Redundant Array of Inexpensive Disks (RAID)
– Intuition: Spread logical blocks across multiple devices
– Ex: Read 4 LBAs from 4 different disks in parallel

• Does this help throughput or latency?
– Definitely throughput, can construct scenarios where one

request waits on fewer other requests (latency)

• It can also protect data from a disk failure
– Transparently write one logical block to 1+ devices

24

COMP 530: Operating Systems

• Blocks broken into sub-blocks that are stored on separate
disks
– similar to memory interleaving

• Provides for higher disk bandwidth through a larger
effective block size

3

8 9 10 11
12 13 14 15
0 1 2 3

OS disk
block

8 9 10 11

Physical disk blocks

21

12 13 14 15 0 1 2 3

Disk Striping: RAID-0

COMP 530: Operating Systems

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

• To increase the reliability of the disk,
redundancy must be introduced
– Simple scheme: disk mirroring (RAID-1)
– Write to both disks, read from either.

xx

0 1 1 0 0
1 1 1 0 1
0 1 0 1 1

Primary
disk

Mirror
disk

RAID 1: Mirroring

Can lose one disk without losing data

COMP 530: Operating Systems

x

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity
Block

x

xxxx

RAID 5: Performance and Redundancy
• Idea: Sacrifice one disk to store the parity bits of other

disks (e.g., xor-ed together)
• Still get parallelism
• Can recover from failure of any one disk
• Cost: Extra writes to update parity

COMP 530: Operating Systems

Disk 1

x x

Disk 2 Disk 3

x

Disk 4 Disk 5

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

8
9

10

11
12
13

14
15
0

1
2
3

Block
x

Parity

Block
x+1

Parity

a
b
c

d
e
f

g
h
i

j
k
l

m
n
o

Block
x+2

Parity
p
q
r

s
t
u

v
w
x

y
z

aa

bb
cc
dd

Block
x+3

Parity
ee
ff
gg

hh
ii
jj

Block
x

Block
x+1

Block
x+2

Block
x+3

xx

RAID 5: Interleaved Parity

COMP 530: Operating Systems

Other RAID variations
• Variations on encoding schemes, different trades for

failures and performance
– See wikipedia
– But 0, 1, 5 are the most popular by far

• More general area of erasure coding:
– Store k logical blocks (message) in n physical blocks (k < n)
– In an optimal erasure code, recover from any k/n blocks
– Xor parity is a (k, k+1) erasure code
– Gaining popularity at data center granularity

29

COMP 530: Operating Systems

• Hardware (i.e., a chip that looks to OS like 1 disk)
– +Tend to be reliable (hardware implementers test)
– +Offload parity computation from CPU

• Hardware is a bit faster for rewrite intensive workloads
– -Dependent on card for recovery (replacements?)
– -Must buy card (for the PCI bus)
– -Serial reconstruction of lost disk

• Software (i.e., a “fake” disk driver)
– -Software has bugs
– -Ties up CPU to compute parity
– +Other OS instances might be able to recover
– +No additional cost
– +Parallel reconstruction of lost disk

Where is RAID implemented?

Most PCs have “fake” HW RAID: All work in driver

COMP 530: Operating Systems

Word to the wise
• RAID is a good idea for protecting data

– Can safely lose 1+ disks (depending on configuration)

• But there is another weak link: The power supply
– I have personally had a power supply go bad and fry 2/4

disks in a RAID5 array, effectively losing all of the data

31RAID is no substitute for backup to another machine

COMP 530: Operating Systems

Summary
• Understand disk performance model

– Will explore more in Lab 4

• Understand I/O scheduling algorithms
• Understand RAID

32

