
COMP 530: Operating Systems

Interrupts and System Calls

Don Porter

1

COMP 530: Operating Systems

App

First lecture…

2-2

Hardware

Libraries

Kernel

User

Super-
visor

App

Libraries

App

Libraries

System Call Table (350—1200)

Open file
“hw1.txt”

Ok, here’s
handle 4

COMP 530: Operating Systems

Today’s goal: Key OS building block
• Understand how system calls work
– As well as how exceptions (e.g., divide by zero) work

• Understand the hardware tools available for irregular
control flow.
– I.e., things other than a branch in a running program

• Building blocks for context switching, device
management, etc.

3

COMP 530: Operating Systems

Background: Control Flow

// x = 2, y =
true
if (y) {

2 /= x;
printf(x);

} //...

void printf(va_args)
{

//...

}

Regular control flow: branches and calls
(logically follows source code)

pc

4

COMP 530: Operating Systems

Background: Control Flow

// x = 0, y =
true
if (y) {

2 /= x;
printf(x);

} //...

void
handle_divzero(){

x = 2;

}

Irregular control flow: exceptions, system calls, etc.

pc
Divide by zero!

Program can’t make
progress!

5

COMP 530: Operating Systems

Two types of interrupts
• Synchronous: will happen every time an instruction

executes (with a given program state)
– Divide by zero
– System call
– Bad pointer dereference

• Asynchronous: caused by an external event
– Usually device I/O
– Timer ticks (well, clocks can be considered a device)

6

COMP 530: Operating Systems

Asynchronous Interrupt Example

User Kernel

Stack Stack

if (x) {
printf(“Boo”);
...

printf(va_args…){
...

Disk_handler (){
...

}

RSP

RIP

RSP

RIP

Disk
Interrupt!

7

COMP 530: Operating Systems

Intel nomenclature
• Interrupt – only refers to asynchronous interrupts
• Exception – synchronous control transfer

• Note: from the programmer’s perspective, these are
handled with the same abstractions

8

COMP 530: Operating Systems

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

9

COMP 530: Operating Systems

Interrupt overview
• Each interrupt or exception includes a number

indicating its type
• E.g., 14 is a page fault, 3 is a debug breakpoint
• This number is the index into an interrupt table

10

COMP 530: Operating Systems

x86 interrupt table

0 255

…

31

… …

47

Reserved for
the CPU

Software Configurable

Device IRQs 0x2e = Windows
System Call

128 = Linux
System Call

11

COMP 530: Operating Systems

x86 interrupt overview
• Each type of interrupt is assigned an index from 0—

255.
• 0—31 are for processor interrupts; generally fixed by

Intel
– E.g., 14 is always for page faults

• 32—255 are software configured
– 32—47 are for device interrupts (IRQs)

• Most device’s IRQ line can be configured
• Look up APICs for more info (Ch 4 of Bovet and Cesati)

– 0x80 issues system call in Linux (more on this later)

12

COMP 530: Operating Systems

What happens (high level):
• Control jumps to the kernel
– At a prescribed address (the interrupt handler)

• The register state of the program is dumped on the
kernel’s stack
– Sometimes, extra info is loaded into CPU registers
– E.g., page faults store the address that caused the fault in

the cr2 register

• Kernel code runs and handles the interrupt
• When handler completes, resume program (see
iret instr.)

13

COMP 530: Operating Systems

Important digression: Register state
• Really, really, really big idea:
– The state of a program’s execution is succinctly and

completely represented by CPU register state

• Pause a program: dump the registers in memory
• Resume a program: slurp the registers back into CPU

14Be sure to appreciate the power of this idea

COMP 530: Operating Systems

How is this configured?
• Kernel creates an array of Interrupt descriptors in

memory, called Interrupt Descriptor Table, or IDT
– Can be anywhere in memory
– Pointed to by special register (idtr)

• c.f., segment registers and gdtr and ldtr

• Entry 0 configures interrupt 0, and so on

15

COMP 530: Operating Systems

x86 interrupt table

0 255

…

31

… …

47

idtr

Linear Address of
Interrupt Table

16

COMP 530: Operating Systems

x86 interrupt table

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code
Segment Offset: &page_fault_handler //linear addr
Ring: 0 // kernel
Present: 1
Gate Type: Exception

14

17

COMP 530: Operating Systems

Software interrupts
• The int <num> instruction allows software to

raise an interrupt
– 0x80 is just a Linux convention.

• There are a lot of spare indices
– You could have multiple system call tables for different

purposes or types of processes!
• Windows does: one for the kernel and one for win32k

18

COMP 530: Operating Systems

Software interrupts, cont
• OS sets ring level required to raise an interrupt
– Generally, user programs can’t issue an int 14 (page

fault) manually
– An unauthorized int instruction causes a general

protection fault
• Interrupt 13

19

COMP 530: Operating Systems

Summary
• Most interrupt handling hardware state set during

boot
• Each interrupt has an IDT entry specifying:
– What code to execute, privilege level to raise the interrupt

20

COMP 530: Operating Systems

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

21

COMP 530: Operating Systems

High-level goal
• Respond to some event, return control to the

appropriate process
• What to do on:
– Network packet arrives
– Disk read completion
– Divide by zero
– System call

22

COMP 530: Operating Systems

Interrupt Handlers
• Just plain old kernel code
– Sort of like exception handlers in Java
– But separated from the control flow of the program

• The IDT stores a pointer to the right handler routine

23

COMP 530: Operating Systems

Lecture outline
• Overview
• How interrupts work in hardware
• How interrupt handlers work in software
• How system calls work
• New system call hardware on x86

24

COMP 530: Operating Systems

What is a system call?
• A function provided to applications by the OS kernel
– Generally to use a hardware abstraction (file, socket)
– Or OS-provided software abstraction (IPC, scheduling)

• Why not put these directly in the application?
– Protection of the OS/hardware from buggy/malicious

programs
– Applications are not allowed to directly interact with

hardware, or access kernel data structures

COMP 530: Operating Systems

System call “interrupt”
• Originally, system calls issued using int instruction
• Dispatch routine was just an interrupt handler
• Like interrupts, system calls are arranged in a table
– See arch/x86/kernel/syscall_table*.S in Linux source

• Program selects the system call it wants by placing
index in eax register
– Arguments go in the other registers by calling convention
– Return value goes in eax

26

COMP 530: Operating Systems

Two levels of function pointer tables

27

0 255

…

31

… …

47

idtr

128
(system call)

Interrupt Table (CPU automatically walks)

syscall_handler: // Walks syscall table in software

0 ~350

…&sys_read

Syscall Table

&sys_write &sys_open &sys_close

COMP 530: Operating Systems

How many system calls?
• Linux exports about 350 system calls
• Windows exports about 400 system calls for core

APIs, and another 800 for GUI methods

COMP 530: Operating Systems

But why use interrupts?
• Also protection
• Forces applications to call well-defined “public”

functions
– Rather than calling arbitrary internal kernel functions

• Example (where foo is a system call):
public foo() {

if (!permission_ok()) return –EPERM;
return _foo(); // no permission check

}

Calling _foo()
directly would

circumvent
permission check

COMP 530: Operating Systems

Summary
• System calls are the “public” OS APIs
• Kernel leverages interrupts to restrict applications to

specific functions

