
COMP 530: Operating Systems

Concurrent Programming
with Threads:

Why you should care deeply
Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25% /year

52% /year

20% /year

Graph by Dave Patterson

Uniprocessor Performance Not Scaling

COMP 530: Operating Systems

• Intel P4 (2000-2007)
– 1.3GHz to 3.8GHz, 31 stage pipeline
– “Prescott” in 02/04 was too hot. Needed 5.2GHz

to beat 2.6GHz Athalon
• Intel Pentium Core, (2006-)

– 1.06GHz to 3GHz, 14 stage pipeline
– Based on mobile (Pentium M) micro-architecture

• Power efficient

• 2% of electricity in the U.S. feeds computers
– Doubled in last 5 years

Power and Heat Lay Waste to CPU Makers

COMP 530: Operating Systems

What	about	Moore’s	law?

• Number of transistors double every 24 months
– Not performance!

COMP 530: Operating Systems

Transistor Budget
• We have an increasing glut of transistors

– (at least for a few more years)

• But we can’t use them to make things faster
– Techniques that worked in the 90s blew up heat faster

than we can dissipate it

• What to do?
– Use the increasing transistor budget to make more cores!

5

COMP 530: Operating Systems

Multi-Core is Here: Plain and Simple
• Raise your hand if your laptop is single core?
• Your phone?

• That’s what I thought

6

COMP 530: Operating Systems

• Hardware manufacturers betting big on
multicore

• Software developers are needed
• Writing concurrent programs is not easy
• You will learn how to do it in this class

Multi-Core Programming == Essential Skill

Still treated like a bonus: Don’t graduate without it!

COMP 530: Operating Systems

Threads: OS Abstraction for Concurrency
• Process abstraction combines two concepts

– Concurrency
• Each process is a sequential execution stream of instructions

– Protection
• Each process defines an address space
• Address space identifies all addresses that can be touched by the program

• Threads
– Key idea: separate the concepts of concurrency from protection
– A thread is a sequential execution stream of instructions
– A process defines the address space that may be shared by multiple

threads
– Threads can execute on different cores on a multicore CPU (parallelism

for performance) and can communicate with other threads by updating
memory

8

COMP 530: Operating Systems

Practical Difference
• With processes, you coordinate through nice

abstractions (relatively speaking – e.g., lab 1)
– Pipes, signals, etc.

• With threads, you communicate through data
structures in your process virtual address space
– Just read/write variables and pointers

9

COMP 530: Operating Systems

void fn1(int arg0, int arg1, …) {…}

main() {
…
tid = CreateThread(fn1, arg0, arg1, …);
…

}

At the point CreateThread is called, execution continues in parent
thread in main function, and execution starts at fn1 in the child
thread, both in parallel (concurrently)

Programmer’s View

COMP 530: Operating Systems

Implementing Threads: Example Redux

Virtual Address Space

0 0xffffffff

hello libc.soheap

• 2 threads requires 2 stacks in the process
• No problem!
• Kernel can schedule each thread separately

– Possibly on 2 CPUs
– Requires some extra bookkeeping

stk1 stk2 Linux

COMP 530: Operating Systems

• How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

a[k] = b[k] * c[k] + d[k] * e[k];

• Rewrite this code fragment as:
do_mult(l, m) {

for(k = l; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {

CreateThread(do_mult, 0, n/2);
CreateThread(do_mult, n/2, n);

• What did we gain?

How can it help?

COMP 530: Operating Systems

• Consider a Web server
Create a number of threads, and for each thread do

vget network message from client
vget URL data from disk
vsend data over network

• What did we gain?

How Can Threads Help?

COMP 530: Operating Systems

vget network message
(URL) from client

vget URL data from disk

vsend data over network

v get network message
(URL) from client

v get URL data from disk

v send data over network

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total time is less than request 1 + request 2

Overlapping I/O and Computation

COMP 530: Operating Systems

Why threads? (summary)
• Computation that can be divided into concurrent

chunks
– Execute on multiple cores: reduce wall-clock exec. time
– Harder to identify parallelism in more complex cases

• Overlapping blocking I/O with computation
– If my web server blocks on I/O for one client, why not work

on another client’s request in a separate thread?
– Other abstractions we won’t cover (e.g., events)

COMP 530: Operating Systems

Threads

• A thread has no data segment
or heap

• A thread cannot live on its own,
it must live within a process

• There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack

• If a thread dies, its stack is
reclaimed

• Inter-thread communication via
memory.

• Each thread can run on a
different physical processor

• Inexpensive creation and
context switch

Processes

A process has code/data/heap & other
segments
There must be at least one thread in a
process
Threads within a process share
code/data/heap, share I/O, but each
has its own stack & registers
If a process dies, its resources are
reclaimed & all threads die
Inter-process communication via OS
and data copying.
Each process can run on a different
physical processor
Expensive creation and context switch

Threads vs. Processes

COMP 530: Operating Systems

Implementing	Threads
• Processes define an address

space; threads share the
address space

• Process Control Block (PCB)
contains process-specific
information

– Owner, PID, heap pointer,
priority, active thread, and
pointers to thread information

• Thread Control Block (TCB)
contains thread-specific
information

– Stack pointer, PC, thread state
(running, …), register values, a
pointer to PCB, … Code

Initialized data

Heap

DLL’s

mapped segments

Process’s
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for
Thread2

COMP 530: Operating Systems

• Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

RunningReady

Waiting

Start Done

Thread Life Cycle

COMP 530: Operating Systems

1. CPU
2. Address space
3. PCB
4. Stack
5. Register State

Threads	have	their	own…?

COMP 530: Operating Systems

Threads	have	the	same	
scheduling	states	as	processes

1. True
2. False

In fact, OSes generally schedule threads to CPUs, not processes

Yes, yes, another white lie in this course

COMP 530: Operating Systems

Lecture Outline
• What are threads?
• Small digression: Performance Analysis

– There will be a few more of these in upcoming lectures

• Why are threads hard?

21

COMP 530: Operating Systems

• Latency: time to complete an operation
• Throughput: work completed per unit time
• Multiplying vector example: reduced latency
• Web server example: increased throughput
• Consider plumbing

– Low latency: turn on faucet and water comes out
– High bandwidth: lots of water (e.g., to fill a pool)

• What is “High speed Internet?”
– Low latency: needed to interactive gaming
– High bandwidth: needed for downloading large files
– Marketing departments like to conflate latency and

bandwidth…

Performance: Latency vs. Throughput

COMP 530: Operating Systems

• Latency and bandwidth only loosely coupled
– Henry Ford: assembly lines increase bandwidth without

reducing latency
• My factory takes 1 day to make a Model-T ford.

– But I can start building a new car every 10 minutes
– At 24 hrs/day, I can make 24 * 6 = 144 cars per day
– A special order for 1 green car, still takes 1 day
– Throughput is increased, but latency is not.

• Latency reduction is difficult
• Often, one can buy bandwidth

– E.g., more memory chips, more disks, more computers
– Big server farms (e.g., google) are high bandwidth

Latency and Throughput

COMP 530: Operating Systems

• Can threads improve throughput?
– Yes, as long as there are parallel tasks and CPUs available

• Can threads improve latency?
– Yes, especially when one task might block on another task’s

IO
• Can threads harm throughput?

– Yes, each thread gets a time slice.
– If # threads >> # CPUs, the %of CPU time each thread gets

approaches 0
• Can threads harm latency?

– Yes, especially when requests are short and there is little I/O

Latency, Throughput, and Threads

Threads can help or hurt: Understand when they help!

COMP 530: Operating Systems

• Order of thread execution is non-deterministic
– Multiprocessing

• A system may contain multiple processors è cooperating
threads/processes can execute simultaneously

– Multi-programming
• Thread/process execution can be interleaved because of time-

slicing

• Operations often consist of multiple, visible steps
– Example: x = x + 1 is not a single operation

• read x from memory into a register
• increment register
• store register back to memory

• Goal:
– Ensure that your concurrent program works under ALL

possible interleavings

Thread 2
read
increment
store

So Why are Threads Hard?

COMP 530: Operating Systems

• Do the following either completely succeed or
completely fail?

• Writing an 8-bit byte to memory
– A. Yes B. No

• Creating a file
– A. Yes B. No

• Writing a 512-byte disk sector
– A. Yes B. No

Questions

COMP 530: Operating Systems

int a = 0, b = 2;
main() {

CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++;
}
fn2(int arg1) {

a = arg1;
}

What are the values of a & b
at the end of execution?

Sharing Amongst Threads Increases
Performance

But can lead to problems…

COMP 530: Operating Systems

• What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

Some More Examples

COMP 530: Operating Systems

• Running multiple processes/threads in parallel
increases performance

• Some computer resources cannot be accessed
by multiple threads at the same time
– E.g., a printer can’t print two documents at once

• Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a
time
– Active thread excludes its peers

• For shared memory architectures, data structures
are often mutually exclusive
– Two threads adding to a linked list can corrupt the list

The Need for Mutual Exclusion

COMP 530: Operating Systems

• Imagine multiple chefs in the same kitchen
– Each chef follows a different recipe

• Chef 1
– Grab butter, grab salt, do other stuff

• Chef 2
– Grab salt, grab butter, do other stuff

• What if Chef 1 grabs the butter and Chef 2 grabs
the salt?
– Yell at each other (not a computer science solution)
– Chef 1 grabs salt from Chef 2 (preempt resource)
– Chefs all grab ingredients in the same order

• Current best solution, but difficult as recipes get complex
• Ingredient like cheese might be sans refrigeration for a while

Real Life Example

COMP 530: Operating Systems

Critical Sections
• Key abstraction: A group of instructions that cannot

be interleaved
• Generally, critical sections execute under mutual

exclusion
– E.g., a critical section is the part of the recipe involving

butter and salt – you know, the important part

• One critical section may wait for another
– Key to good multi-core performance is minimizing the time

in critical sections
• While still rendering correct code!

31

COMP 530: Operating Systems

• Very often, synchronization consists of one
thread waiting for another to make a condition
true
– Master tells worker a request has arrived
– Cleaning thread waits until all lanes are colored

• Until condition is true, thread can sleep
– Ties synchronization to scheduling

• Mutual exclusion for data structure
– Code can wait (wait)
– Another thread signals (notify)

The Need to Wait

COMP 530: Operating Systems

Example 2: Traverse a singly-linked list
• Suppose we want to find an element in a singly

linked list, and move it to the head
• Visual intuition:

lhead

lptrlprev

COMP 530: Operating Systems

Example 2: Traverse a singly-linked list
• Suppose we want to find an element in a singly

linked list, and move it to the head
• Visual intuition:

lhead

lptrlprev

COMP 530: Operating Systems

Even	more	real	life,	linked	lists

• Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr;

}

COMP 530: Operating Systems

Even	more	real	life,	linked	lists

• A critical section often needs to be larger than
it first appears
– The 3 key lines are not enough of a critical section

// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead
lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1 Thread 2

lhead
elt
lptrlprev

lhead
elt
lptrlprev

COMP 530: Operating Systems

Even	more	real	life,	linked	lists

• Putting entire search in a critical section
reduces concurrency, but it is safe.

if(lptr->val == target){
elt = lptr;
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
// lptr no longer in list

for(lptr = lhead; lptr;
lptr = lptr->next) {
if(lptr->val == target){

Thread 1 Thread 2

COMP 530: Operating Systems

Safety	and	Liveness
• Safety property : “nothing bad happens”

– holds in every finite execution prefix
• Windows™ never crashes
• a program never terminates with a wrong answer

• Liveness property: “something good eventually happens”
– no partial execution is irremediable

• Windows™ always reboots
• a program eventually terminates

• Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

COMP 530: Operating Systems

Safety	and	liveness	for	critical	sections
• At most k threads are concurrently in the critical section

– A. Safety
– B. Liveness
– C. Both

• A thread that wants to enter the critical section will eventually
succeed
– A. Safety
– B. Liveness
– C. Both

• Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.
– A. Safety B. Liveness C. Both

COMP 530: Operating Systems

Lecture Summary
• Understand the distinction between process &

thread
• Understand motivation for threads
• Concepts of Throughput vs. Latency
• Intuition of why coordinating threads is hard
• Idea of mutual exclusion and critical sections

– Much more on last two points to come

40

