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Concurrent Programming 
with Threads:

Why you should care deeply
Don Porter

Portions courtesy Emmett Witchel
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• Intel P4 (2000-2007)
– 1.3GHz to 3.8GHz, 31 stage pipeline
– “Prescott” in 02/04 was too hot.  Needed 5.2GHz 

to beat 2.6GHz Athalon
• Intel Pentium Core, (2006-)

– 1.06GHz to 3GHz, 14 stage pipeline
– Based on mobile (Pentium M) micro-architecture

• Power efficient

• 2% of electricity in the U.S. feeds computers
– Doubled in last 5 years

Power and Heat Lay Waste to CPU Makers
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What	about	Moore’s	law?

• Number of transistors double every 24 months
– Not performance!
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Transistor Budget
• We have an increasing glut of transistors

– (at least for a few more years)

• But we can’t use them to make things faster
– Techniques that worked in the 90s blew up heat faster 

than we can dissipate it

• What to do?  
– Use the increasing transistor budget to make more cores!
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Multi-Core is Here: Plain and Simple
• Raise your hand if your laptop is single core?
• Your phone?

• That’s what I thought

6
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• Hardware manufacturers betting big on 
multicore

• Software developers are needed
• Writing concurrent programs is not easy
• You will learn how to do it in this class

Multi-Core Programming == Essential Skill

Still treated like a bonus: Don’t graduate without it!



COMP 530: Operating Systems

Threads: OS Abstraction for Concurrency
• Process abstraction combines two concepts

– Concurrency
• Each process is a sequential execution stream of instructions

– Protection
• Each process defines an address space
• Address space identifies all addresses that can be touched by the program

• Threads
– Key idea: separate the concepts of concurrency from protection
– A thread is a sequential execution stream of instructions
– A process defines the address space that may be shared by multiple 

threads
– Threads can execute on different cores on a multicore CPU (parallelism 

for performance) and can communicate with other threads by updating 
memory
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Practical Difference
• With processes, you coordinate through nice 

abstractions (relatively speaking – e.g., lab 1)
– Pipes, signals, etc.

• With threads, you communicate through data 
structures in your process virtual address space
– Just read/write variables and pointers
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void fn1(int arg0, int arg1, …) {…}

main() {
…
tid = CreateThread(fn1, arg0, arg1, …);
…

}

At the point CreateThread is called, execution continues in parent 
thread in main function, and execution starts at fn1 in the child 
thread, both in parallel  (concurrently)

Programmer’s View
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Implementing Threads: Example Redux

Virtual Address Space

0 0xffffffff

hello libc.soheap

• 2 threads requires 2 stacks in the process
• No problem!
• Kernel can schedule each thread separately

– Possibly on 2 CPUs
– Requires some extra bookkeeping

stk1 stk2 Linux
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• How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

a[k] = b[k] * c[k] + d[k] * e[k];

• Rewrite this code fragment as:
do_mult(l, m) {

for(k = l; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {

CreateThread(do_mult, 0, n/2);
CreateThread(do_mult, n/2, n);

• What did we gain?

How can it help?
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• Consider a Web server
Create a number of threads, and for each thread do

vget network message from client
vget URL data from disk
vsend data over network

• What did we gain?

How Can Threads Help?
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vget network message 
(URL) from client

vget URL data from disk

vsend data over network

v get network message 
(URL) from client

v get URL data from disk

v send data over network

Request 1
Thread 1

Request 2
Thread 2

Time

(disk access latency)

(disk access latency)

Total time is less than request 1 + request 2

Overlapping I/O and Computation
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Why threads? (summary)
• Computation that can be divided into concurrent 

chunks
– Execute on multiple cores: reduce wall-clock exec. time
– Harder to identify parallelism in more complex cases

• Overlapping blocking I/O with computation
– If my web server blocks on I/O for one client, why not work 

on another client’s request in a separate thread?
– Other abstractions we won’t cover (e.g., events)
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Threads

• A thread has no data segment 
or heap

• A thread cannot live on its own, 
it must live within a process

• There can be more than one 
thread in a process, the first 
thread calls main & has the 
process’s stack

• If a thread dies, its stack is 
reclaimed

• Inter-thread communication via 
memory.

• Each thread can run on a 
different physical processor

• Inexpensive creation and 
context switch

Processes

A process has code/data/heap & other 
segments
There must be at least one thread in a 
process
Threads within a process share 
code/data/heap, share I/O, but each 
has its own stack & registers
If a process dies, its resources are 
reclaimed & all threads die
Inter-process communication via OS 
and data copying.
Each process can run on a different 
physical processor
Expensive creation and context switch

Threads vs. Processes
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Implementing	Threads
• Processes define an address 

space; threads share the 
address space

• Process Control Block (PCB) 
contains process-specific 
information 

– Owner, PID, heap pointer, 
priority, active thread, and 
pointers to thread information

• Thread Control Block (TCB) 
contains thread-specific 
information

– Stack pointer, PC, thread state 
(running, …), register values, a 
pointer to PCB, … Code

Initialized data

Heap

DLL’s

mapped segments

Process’s 
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for 
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for 
Thread2
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• Threads (just like processes) go through a sequence of start, 
ready, running, waiting, and done states 

RunningReady

Waiting

Start Done

Thread Life Cycle
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1. CPU
2. Address space
3. PCB
4. Stack
5. Register State

Threads	have	their	own…?
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Threads	have	the	same	
scheduling	states	as	processes

1. True
2. False

In fact, OSes generally schedule threads to CPUs, not processes

Yes, yes, another white lie in this course
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Lecture Outline
• What are threads?
• Small digression: Performance Analysis

– There will be a few more of these in upcoming lectures

• Why are threads hard?

21
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• Latency: time to complete an operation
• Throughput: work completed per unit time
• Multiplying vector example: reduced latency
• Web server example: increased throughput
• Consider plumbing

– Low latency: turn on faucet and water comes out
– High bandwidth: lots of water (e.g., to fill a pool)

• What is “High speed Internet?”
– Low latency: needed to interactive gaming
– High bandwidth: needed for downloading large files
– Marketing departments like to conflate latency and 

bandwidth…

Performance: Latency vs. Throughput
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• Latency and bandwidth only loosely coupled
– Henry Ford: assembly lines increase bandwidth without 

reducing latency
• My factory takes 1 day to make a Model-T ford.

– But I can start building a new car every 10 minutes
– At 24 hrs/day, I can make 24 * 6 = 144 cars per day
– A special order for 1 green car, still takes 1 day
– Throughput is increased, but latency is not.

• Latency reduction is difficult
• Often, one can buy bandwidth

– E.g., more memory chips, more disks, more computers
– Big server farms (e.g., google) are high bandwidth

Latency and Throughput



COMP 530: Operating Systems

• Can threads improve throughput?
– Yes, as long as there are parallel tasks and CPUs available

• Can threads improve latency?
– Yes, especially when one task might block on another task’s 

IO
• Can threads harm throughput?

– Yes, each thread gets a time slice.  
– If # threads >> # CPUs, the %of CPU time each thread gets 

approaches 0
• Can threads harm latency? 

– Yes, especially when requests are short and there is little I/O

Latency, Throughput, and Threads

Threads can help or hurt: Understand when they help!
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• Order of thread execution is non-deterministic
– Multiprocessing

• A system may contain multiple processors è cooperating 
threads/processes can execute simultaneously

– Multi-programming
• Thread/process execution can be interleaved because of time-

slicing

• Operations often consist of multiple, visible steps
– Example: x = x + 1 is not a single operation

• read x from memory into a register
• increment register
• store register back to memory

• Goal:
– Ensure that your concurrent program works under ALL 

possible interleavings

Thread 2
read
increment
store

So Why are Threads Hard?
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• Do the following either completely succeed or 
completely fail?

• Writing an 8-bit byte to memory
– A. Yes B. No

• Creating a file
– A. Yes B. No

• Writing a 512-byte disk sector
– A. Yes B. No 

Questions
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int a = 0, b = 2;
main() {

CreateThread(fn1, 4);
CreateThread(fn2, 5);

}
fn1(int arg1) {

if(a) b++; 
}
fn2(int arg1) {

a = arg1;
}

What are the values of a & b
at the end of execution?

Sharing Amongst Threads Increases 
Performance

But can lead to problems…
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• What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;

Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;

Thread1: x = x + 1; Thread2: x = x + 2;

Some More Examples
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• Running multiple processes/threads in parallel 
increases performance

• Some computer resources cannot be accessed 
by multiple threads at the same time
– E.g., a printer can’t print two documents at once

• Mutual exclusion is the term to indicate that some 
resource can only be used by one thread at a 
time
– Active thread excludes its peers

• For shared memory architectures, data structures 
are often mutually exclusive
– Two threads adding to a linked list can corrupt the list

The Need for Mutual Exclusion
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• Imagine multiple chefs in the same kitchen
– Each chef follows a different recipe

• Chef 1
– Grab butter, grab salt, do other stuff

• Chef 2
– Grab salt, grab butter, do other stuff

• What if Chef 1 grabs the butter and Chef 2 grabs 
the salt?
– Yell at each other (not a computer science solution)
– Chef 1 grabs salt from Chef 2 (preempt resource)
– Chefs all grab ingredients in the same order

• Current best solution, but difficult as recipes get complex
• Ingredient like cheese might be sans refrigeration for a while

Real Life Example
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Critical Sections
• Key abstraction: A group of instructions that cannot 

be interleaved
• Generally, critical sections execute under mutual 

exclusion
– E.g., a critical section is the part of the recipe involving 

butter and salt – you know, the important part

• One critical section may wait for another
– Key to good multi-core performance is minimizing the time 

in critical sections
• While still rendering correct code!

31
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• Very often, synchronization consists of one 
thread waiting for another to make a condition 
true
– Master tells worker a request has arrived
– Cleaning thread waits until all lanes are colored

• Until condition is true, thread can sleep
– Ties synchronization to scheduling

• Mutual exclusion for data structure
– Code can wait (wait)
– Another thread signals (notify)

The Need to Wait
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Example 2: Traverse a singly-linked list
• Suppose we want to find an element in a singly 

linked list, and move it to the head
• Visual intuition:

lhead

lptrlprev
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Example 2: Traverse a singly-linked list
• Suppose we want to find an element in a singly 

linked list, and move it to the head
• Visual intuition:

lhead

lptrlprev
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Even	more	real	life,	linked	lists

• Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {

if(lptr->val == target){
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;
break;

}
lprev = lptr;

}
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Even	more	real	life,	linked	lists

• A critical section often needs to be larger than 
it first appears
– The 3 key lines are not enough of a critical section

// Move cell to head
lprev->next = lptr->next;
lptr->next = lhead
lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1 Thread 2

lhead
elt
lptrlprev

lhead
elt
lptrlprev
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Even	more	real	life,	linked	lists

• Putting entire search in a critical section 
reduces concurrency, but it is safe.

if(lptr->val == target){
elt = lptr;
// Already head?, break
if(lprev == NULL) break;
// Move cell to head
lprev->next = lptr->next;
// lptr no longer in list

for(lptr = lhead; lptr; 
lptr = lptr->next) {
if(lptr->val == target){

Thread 1 Thread 2
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Safety	and	Liveness
• Safety property : “nothing bad happens”

– holds in every finite execution prefix
• Windows™ never crashes
• a program never terminates with a wrong answer 

• Liveness property: “something good eventually happens”
– no partial execution is irremediable

• Windows™ always reboots
• a program eventually terminates

• Every property is a combination of a safety property and a 
liveness property - (Alpern and Schneider)
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Safety	and	liveness	for	critical	sections
• At most k threads are concurrently in the critical section

– A. Safety
– B. Liveness
– C. Both

• A thread that wants to enter the critical section will eventually 
succeed
– A. Safety
– B. Liveness
– C. Both

• Bounded waiting: If a thread i is in entry section, then there is a 
bound on the number of times that other threads are allowed to 
enter the critical section (only 1 thread is alowed in at a time) 
before thread i’s request is granted.
– A. Safety    B. Liveness    C. Both
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Lecture Summary
• Understand the distinction between process & 

thread
• Understand motivation for threads
• Concepts of Throughput vs. Latency
• Intuition of why coordinating threads is hard
• Idea of mutual exclusion and critical sections

– Much more on last two points to come
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