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• Past lectures:
– Problem: Safely coordinate access to shared resource
– Solutions:

• Use locks, condition variables
• Coordinate access within shared objects

• What about coordinated access across multiple objects?
– If you are not careful, it can lead to deadlock

• Today’s lecture:
– What is deadlock?
– How can we address deadlock?

Concurrency Issues
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• Two producer processes share a buffer but use a different 
protocol for accessing the buffers

• A postscript interpreter and a visualization program compete for 
memory frames

Producer1() {
Lock(emptyBuffer)
Lock(producerMutexLock)
:

}

Producer2(){
Lock(producerMutexLock)
Lock(emptyBuffer)
:

}

PS_Interpreter() {
request(memory_frames, 10)
<process file>
request(frame_buffer, 1)
<draw file on screen>

}

Visualize() {
request(frame_buffer, 1)
<display data>
request(memory_frames, 20)
<update display>

}

Deadlock: Motivating Examples
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• A set of threads is deadlocked when every thread in the set is waiting 
for an event that can only be generated by some thread in the set

• Starvation vs. deadlock
– Starvation: threads wait indefinitely (e.g., because some other thread is 

using a resource)
– Deadlock: circular waiting for resources
– Deadlock è starvation, but not the other way
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Deadlock: Definition
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• Basic components of any resource allocation problem
– Processes and resources

• Model the state of a computer system as a directed graph 
– G = (V, E)
– V = the set of vertices = {P1, ..., Pn} È {R1, ..., Rm}

Pi Pk

request
edge

allocation
edge

Rj

Pi Rj

Ø E = the set of edges =
{edges from a resource to a process} È

{edges from a process to a resource}

Resource Allocation Graph
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• A PostScript interpreter that is waiting for the frame buffer lock 
and a visualization process that is waiting for memory

V = {PS interpret, visualization} È {memory frames, frame buffer lock}
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Resource Allocation Graph: Example
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• Theorem: If a resource allocation graph does not contain a cycle then 
no processes are deadlocked
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A cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

Game

Resource Allocation Graph & Deadlock
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• Theorem: If there is only a single unit of all resources then a set of 
processes are deadlocked iff there is a cycle in the resource 
allocation graph
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Resource Allocation Graph & Deadlock
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• A set of processes are deadlocked iff the following conditions hold 
simultaneously

1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

Visualization
Process Memory Frames
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An Operational Definition of Deadlock
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• Adopt some resource allocation protocol that 
ensures deadlock can never occur

– Deadlock prevention/avoidance
• Guarantee that deadlock will never occur
• Generally breaks one of the following conditions:

– Mutex
– Hold-and-wait
– No preemption
– Circular wait *This is usually the weak link*

– Deadlock detection and recovery
• Admit the possibility of deadlock occurring and periodically check for it
• On detecting deadlock, abort

– Breaks the no-preemption condition
– And non-trivial to restore all invariants

Deadlock Prevention and/or Recovery

What does the RAG for a lock look like?
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• Recall this situation.  How can we avoid it?

Producer1() {
Lock(emptyBuffer)
Lock(producerMutexLock)
:

}

Producer2(){
Lock(producerMutexLock)
Lock(emptyBuffer)
:

}

Eliminate circular waiting by ordering all locks (or 
semaphores, or resoruces).  All code grabs locks in a 
predefined order.  Problems?
Ø Maintaining global order is difficult, especially in a large project.
Ø Global order can force a client to grab a lock earlier than it 

would like, tying up a resource for too long.
Ø Deadlock is a global property, but lock manipulation is local.

Deadlock Avoidance: Resource Ordering
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Lock Ordering
• A program code convention
• Developers get together, have lunch, plan the order 

of locks
• In general, nothing at compile time or run-time 

prevents you from violating this convention
– Research topics on making this better:

• Finding locking bugs
• Automatically locking things properly
• Transactional memory

12



COMP 530: Operating Systems

How to order?
• What if I lock each entry in a linked list.  What is a 

sensible ordering?
– Lock each item in list order
– What if the list changes order?
– Uh-oh!  This is a hard problem

• Lock-ordering usually reflects static assumptions 
about the structure of the data
– When you can’t make these assumptions, ordering gets 

hard
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Linux solution
• In general, locks for dynamic data structures are 

ordered by kernel virtual address
– I.e., grab locks in increasing virtual address order

• A few places where traversal path is used instead

14
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Lock ordering in practice
From Linux: fs/dcache.c

void d_prune_aliases(struct inode *inode) {
struct dentry *dentry;
struct hlist_node *p;

restart:
spin_lock(&inode->i_lock);
hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {

spin_lock(&dentry->d_lock);
if (!dentry->d_count) {

__dget_dlock(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
dput(dentry);
goto restart;

}
spin_unlock(&dentry->d_lock);

}
spin_unlock(&inode->i_lock);

}

Care taken to lock inode
before each alias

Inode lock protects list;
Must restart loop after 

modification
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mm/filemap.c lock ordering/* 
* Lock ordering:
*  ->i_mmap_lock (vmtruncate)
*    ->private_lock (__free_pte->__set_page_dirty_buffers)
*      ->swap_lock (exclusive_swap_page, others)
*        ->mapping->tree_lock
*  ->i_mutex
*    ->i_mmap_lock (truncate->unmap_mapping_range)
*  ->mmap_sem
*    ->i_mmap_lock
*      ->page_table_lock or pte_lock (various, mainly in memory.c)
*        ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*  ->mmap_sem
*    ->lock_page (access_process_vm)
*  ->mmap_sem
*    ->i_mutex (msync)
*  ->i_mutex
*    ->i_alloc_sem (various)
*  ->inode_lock
*    ->sb_lock (fs/fs-writeback.c)
*    ->mapping->tree_lock (__sync_single_inode)
*  ->i_mmap_lock
*    ->anon_vma.lock (vma_adjust)
*  ->anon_vma.lock
*    ->page_table_lock or pte_lock (anon_vma_prepare and various)
*  ->page_table_lock or pte_lock
*    ->swap_lock (try_to_unmap_one)
*    ->private_lock (try_to_unmap_one)
*    ->tree_lock (try_to_unmap_one)
*    ->zone.lru_lock (follow_page->mark_page_accessed)
*    ->zone.lru_lock (check_pte_range->isolate_lru_page)
*    ->private_lock (page_remove_rmap->set_page_dirty)
*    ->tree_lock (page_remove_rmap->set_page_dirty)
*    ->inode_lock (page_remove_rmap->set_page_dirty)
*    ->inode_lock (zap_pte_range->set_page_dirty)
*    ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*  ->task->proc_lock
*    ->dcache_lock (proc_pid_lookup)
*/
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• Abort all deadlocked processes & reclaim their resources
• Abort one process at a time until all cycles in the RAG

are eliminated
• Where to start?

– Select low priority process
– Processes with most allocation of resources

• Caveat: ensure that system is in consistent state (e.g., transactions)
• Optimization:

– Checkpoint processes periodically; rollback processes to checkpointed state

P4P1 P2 P3 P5

R1 R2 R3 R4

Deadlock Recovery

Common in Databases; Hard in General-Purpose Apps
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Ø resource allocation state matrix

<n1, n2, n3, ..., nr>

• Examine each resource request and determine whether or not 
granting the request can lead to deadlock

R1 R2 R3 ... Rr

P1
P2
P3

Pp

n1,1 n1,2 n1,3 ... n1,r
n2,1
n3,1

np,1
np,r

n2,2

...

...

...

...

...

Define a set of vectors and matrices that characterize the   
current state of all resources and processes

Ø maximum claim matrix
Maxij = the maximum number of units 

of resource j that the process i will 
ever require simultaneously

Ø available vector

Allocij = the number of units of 
resource j held by process i

Availj = the number of units of
resource j that are unallocated

Deadlock Avoidance: Banker’s Algorithm



COMP 530: Operating Systems

• What are some problems with the banker’s algorithm?
– Very slow O(n2m)
– Too slow to run on every allocation.  What else can we do?

• Deadlock prevention and avoidance:
– Develop and use resource allocation mechanisms and protocols that 

prohibit deadlock

Deadlock detection and recovery:
Ø Let the system deadlock and then deal with it

Detect that a set of processes are deadlocked
Recover from the deadlock

Dealing with Deadlock
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Summary and Editorial
• Deadlock is one difficult issue with concurrency
• Lock ordering is most common solution

– But can be hard:
• Different traversal paths in a data structure
• Complicated relationship between structures

– Requires thinking through the relationships in advance

• Other solutions possible
– Detect deadlocks, abort some programs, put things back 

together (common in databases)
• Transactional Memory 

– Banker’s algorithm
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Current Reality
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Fine-Grained Locking

Coarse-Grained 
Locking

ò Unsavory trade-off between complexity and performance 
scalability
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