
COMP 530: Operating Systems

Deadlock

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

• Past lectures:
– Problem: Safely coordinate access to shared resource
– Solutions:

• Use locks, condition variables
• Coordinate access within shared objects

• What about coordinated access across multiple objects?
– If you are not careful, it can lead to deadlock

• Today’s lecture:
– What is deadlock?
– How can we address deadlock?

Concurrency Issues

COMP 530: Operating Systems

• Two producer processes share a buffer but use a different
protocol for accessing the buffers

• A postscript interpreter and a visualization program compete for
memory frames

Producer1() {
Lock(emptyBuffer)
Lock(producerMutexLock)
:

}

Producer2(){
Lock(producerMutexLock)
Lock(emptyBuffer)
:

}

PS_Interpreter() {
request(memory_frames, 10)
<process file>
request(frame_buffer, 1)
<draw file on screen>

}

Visualize() {
request(frame_buffer, 1)
<display data>
request(memory_frames, 20)
<update display>

}

Deadlock: Motivating Examples

COMP 530: Operating Systems

• A set of threads is deadlocked when every thread in the set is waiting
for an event that can only be generated by some thread in the set

• Starvation vs. deadlock
– Starvation: threads wait indefinitely (e.g., because some other thread is

using a resource)
– Deadlock: circular waiting for resources
– Deadlock è starvation, but not the other way

RunningReady

Waiting

Head

Tail
ready queue

Head
Tail

semaphore/
condition queues

Deadlock: Definition

COMP 530: Operating Systems

• Basic components of any resource allocation problem
– Processes and resources

• Model the state of a computer system as a directed graph
– G = (V, E)
– V = the set of vertices = {P1, ..., Pn} È {R1, ..., Rm}

Pi Pk

request
edge

allocation
edge

Rj

Pi Rj

Ø E = the set of edges =
{edges from a resource to a process} È

{edges from a process to a resource}

Resource Allocation Graph

COMP 530: Operating Systems

• A PostScript interpreter that is waiting for the frame buffer lock
and a visualization process that is waiting for memory

V = {PS interpret, visualization} È {memory frames, frame buffer lock}

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

Resource Allocation Graph: Example

COMP 530: Operating Systems

• Theorem: If a resource allocation graph does not contain a cycle then
no processes are deadlocked

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

A cycle in a RAG is a necessary condition for deadlock

Is the existence of a cycle a sufficient condition?

Game

Resource Allocation Graph & Deadlock

COMP 530: Operating Systems

• Theorem: If there is only a single unit of all resources then a set of
processes are deadlocked iff there is a cycle in the resource
allocation graph

Visualization
Process

Memory Frames

Frame Buffer

PostScript
Interpreter

Resource Allocation Graph & Deadlock

COMP 530: Operating Systems

• A set of processes are deadlocked iff the following conditions hold
simultaneously

1. Mutual exclusion is required for resource usage (serially useable)
2. A process is in a “hold-and-wait” state
3. Preemption of resource usage is not allowed
4. Circular waiting exists (a cycle exists in the RAG)

Visualization
Process Memory Frames

Frame Buffer

PostScript
Interpreter

An Operational Definition of Deadlock

COMP 530: Operating Systems

• Adopt some resource allocation protocol that
ensures deadlock can never occur

– Deadlock prevention/avoidance
• Guarantee that deadlock will never occur
• Generally breaks one of the following conditions:

– Mutex
– Hold-and-wait
– No preemption
– Circular wait *This is usually the weak link*

– Deadlock detection and recovery
• Admit the possibility of deadlock occurring and periodically check for it
• On detecting deadlock, abort

– Breaks the no-preemption condition
– And non-trivial to restore all invariants

Deadlock Prevention and/or Recovery

What does the RAG for a lock look like?

COMP 530: Operating Systems

• Recall this situation. How can we avoid it?

Producer1() {
Lock(emptyBuffer)
Lock(producerMutexLock)
:

}

Producer2(){
Lock(producerMutexLock)
Lock(emptyBuffer)
:

}

Eliminate circular waiting by ordering all locks (or
semaphores, or resoruces). All code grabs locks in a
predefined order. Problems?
Ø Maintaining global order is difficult, especially in a large project.
Ø Global order can force a client to grab a lock earlier than it

would like, tying up a resource for too long.
Ø Deadlock is a global property, but lock manipulation is local.

Deadlock Avoidance: Resource Ordering

COMP 530: Operating Systems

Lock Ordering
• A program code convention
• Developers get together, have lunch, plan the order

of locks
• In general, nothing at compile time or run-time

prevents you from violating this convention
– Research topics on making this better:

• Finding locking bugs
• Automatically locking things properly
• Transactional memory

12

COMP 530: Operating Systems

How to order?
• What if I lock each entry in a linked list. What is a

sensible ordering?
– Lock each item in list order
– What if the list changes order?
– Uh-oh! This is a hard problem

• Lock-ordering usually reflects static assumptions
about the structure of the data
– When you can’t make these assumptions, ordering gets

hard

13

COMP 530: Operating Systems

Linux solution
• In general, locks for dynamic data structures are

ordered by kernel virtual address
– I.e., grab locks in increasing virtual address order

• A few places where traversal path is used instead

14

COMP 530: Operating Systems

Lock ordering in practice
From Linux: fs/dcache.c

void d_prune_aliases(struct inode *inode) {
struct dentry *dentry;
struct hlist_node *p;

restart:
spin_lock(&inode->i_lock);
hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {

spin_lock(&dentry->d_lock);
if (!dentry->d_count) {

__dget_dlock(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
dput(dentry);
goto restart;

}
spin_unlock(&dentry->d_lock);

}
spin_unlock(&inode->i_lock);

}

Care taken to lock inode
before each alias

Inode lock protects list;
Must restart loop after

modification

15

COMP 530: Operating Systems

mm/filemap.c lock ordering/*
* Lock ordering:
* ->i_mmap_lock (vmtruncate)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
* ->i_mutex
* ->i_mmap_lock (truncate->unmap_mapping_range)
* ->mmap_sem
* ->i_mmap_lock
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
* ->mmap_sem
* ->lock_page (access_process_vm)
* ->mmap_sem
* ->i_mutex (msync)
* ->i_mutex
* ->i_alloc_sem (various)
* ->inode_lock
* ->sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
* ->i_mmap_lock
* ->anon_vma.lock (vma_adjust)
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->tree_lock (try_to_unmap_one)
* ->zone.lru_lock (follow_page->mark_page_accessed)
* ->zone.lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->tree_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
* ->task->proc_lock
* ->dcache_lock (proc_pid_lookup)
*/

16

COMP 530: Operating Systems

• Abort all deadlocked processes & reclaim their resources
• Abort one process at a time until all cycles in the RAG

are eliminated
• Where to start?

– Select low priority process
– Processes with most allocation of resources

• Caveat: ensure that system is in consistent state (e.g., transactions)
• Optimization:

– Checkpoint processes periodically; rollback processes to checkpointed state

P4P1 P2 P3 P5

R1 R2 R3 R4

Deadlock Recovery

Common in Databases; Hard in General-Purpose Apps

COMP 530: Operating Systems

Ø resource allocation state matrix

<n1, n2, n3, ..., nr>

• Examine each resource request and determine whether or not
granting the request can lead to deadlock

R1 R2 R3 ... Rr

P1
P2
P3

Pp

n1,1 n1,2 n1,3 ... n1,r
n2,1
n3,1

np,1
np,r

n2,2

...

...

...

...

...

Define a set of vectors and matrices that characterize the
current state of all resources and processes

Ø maximum claim matrix
Maxij = the maximum number of units

of resource j that the process i will
ever require simultaneously

Ø available vector

Allocij = the number of units of
resource j held by process i

Availj = the number of units of
resource j that are unallocated

Deadlock Avoidance: Banker’s Algorithm

COMP 530: Operating Systems

• What are some problems with the banker’s algorithm?
– Very slow O(n2m)
– Too slow to run on every allocation. What else can we do?

• Deadlock prevention and avoidance:
– Develop and use resource allocation mechanisms and protocols that

prohibit deadlock

Deadlock detection and recovery:
Ø Let the system deadlock and then deal with it

Detect that a set of processes are deadlocked
Recover from the deadlock

Dealing with Deadlock

COMP 530: Operating Systems

Summary and Editorial
• Deadlock is one difficult issue with concurrency
• Lock ordering is most common solution

– But can be hard:
• Different traversal paths in a data structure
• Complicated relationship between structures

– Requires thinking through the relationships in advance

• Other solutions possible
– Detect deadlocks, abort some programs, put things back

together (common in databases)
• Transactional Memory

– Banker’s algorithm

20

COMP 530: Operating Systems

Current Reality
Pe

rf
or
m
an

ce

Complexity

Fine-Grained Locking

Coarse-Grained
Locking

ò Unsavory trade-off between complexity and performance
scalability

21

