
COMP 530: Operating Systems

Process Address Spaces and
Binary Formats

Don Porter

1

COMP 530: Operating Systems

Background
• We’ve talked some about processes
• This lecture: overall virtual memory abstractions
– Key abstraction: Address space

• We will learn about the mechanics of virtual memory
later

COMP 530: Operating Systems

Basics
• Process includes a virtual address space
• An address space is composed of:
– Memory-mapped files

• Includes program binary

– Anonymous pages: no file backing
• When the process exits, their contents go away

3

COMP 530: Operating Systems

• The compilation pipeline

prog P
 :
 :
 foo()
 :
 :
end P

P:
 :
push ...
inc SP, x
jmp _foo
 :
foo: ...

:
push ...
inc SP, 4
jmp 75
 :
 ...

0

75

1100

1175

Library
Routines

1000

175

Library
Routines

0

100

Compilation Assembly Linking Loading

:
 :
 :
jmp 1175
 :
 ...

:
 :
 :
jmp 175
 :
 ...

Address Space Generation

COMP 530: Operating Systems

Need addresses at compile time
• You write code (even in assembly) using symbolic

names
• Machine code ultimately needs to use addresses
– Recall from 311/411 the arguments for jump, load, store…

• At compile time:
– Compiler needs to generate machine code using run time

addresses
– So, compiler must specify where data and code go

• And/or generate code that can be “fixed up” at runtime

5

COMP 530: Operating Systems

Address Space Layout
• Determined (mostly) by the application + compiler
– Link directives can influence this

• OS reserves part of the address space to map itself
– Upper GB on x86 Linux

• Application can dynamically request new mappings
from the OS, or delete mappings

6

COMP 530: Operating Systems

Simple Example

Virtual Address Space

0 0xffffffff

hello libc.soheap

• “Hello world” binary specified load address
• Also specifies where it wants libc
• Dynamically asks kernel for “anonymous” pages for

its heap and stack

stk

7

COMP 530: Operating Systems

In practice
• You can see (part of) the requested memory layout

of a program using ldd:

$ ldd /usr/bin/git
linux-vdso.so.1 => (0x00007fff197be000)
libz.so.1 => /lib/libz.so.1 (0x00007f31b9d4e000)
libpthread.so.0 => /lib/libpthread.so.0

(0x00007f31b9b31000)
libc.so.6 => /lib/libc.so.6 (0x00007f31b97ac000)
/lib64/ld-linux-x86-64.so.2 (0x00007f31b9f86000)

8

COMP 530: Operating Systems

Many address spaces
• What if every program wants to map libc at the same

address?
• No problem!
– Every process has the abstraction of its own address space
– Only one active at a given time (on a given core)
– But many can exist in DRAM

• How does this work?

COMP 530: Operating Systems

Memory Mapping

Physical Memory

Process 1

Virtual Memory
// Program expects (*x)
// to always be at
// address 0x1000
int *x = 0x1000;

0x1000

Only one physical
address 0x1000!!

Process 2

Virtual Memory
0x1000 0x1000

COMP 530: Operating Systems

Two System Goals
1) Provide an abstraction of contiguous, isolated virtual

memory to a program
– We will study the details of virtual memory later

2) Prevent illegal operations
– Prevent access to other application

• No way to address another application’s memory

– Detect failures early (e.g., segfault on address 0)

COMP 530: Operating Systems

What about the kernel?
• Most OSes reserve part of the address space in every

process by convention
– Other ways to do this, nothing mandated by hardware

COMP 530: Operating Systems

Example Redux

Virtual Address Space

0 0xffffffff

hello libc.soheap

• Kernel always at the “top” of the address space
• “Hello world” binary specifies most of the memory map
• Dynamically asks kernel for “anonymous” pages for its

heap and stack

stk Linux

COMP 530: Operating Systems

Why a fixed mapping?
• Makes the kernel-internal bookkeeping simpler
• Example: Remember how interrupt handlers are

organized in a big table?
– How does the table refer to these handlers?

• By (virtual) address
• Awfully nice when one table works in every process

COMP 530: Operating Systems

Kernel protection?
• So, I protect programs from each other by running in

different virtual address spaces
• But the kernel is in every virtual address space?

COMP 530: Operating Systems

Decoupling CPU mode and Addr. Space
• CPU operates in 2 modes – user and supervisor
– Applications execute in user mode
– Kernel executes in supervisor mode

• Idea: restrict some addresses to supervisor mode
– Although mapped, will fault if touched in user mode

16

COMP 530: Operating Systems

Putting protection together
• Permissions on the memory map protect against

programs:
– Randomly reading secret data (like cached file contents)
– Writing into kernel data structures

• The only way to access protected data is to trap into
the kernel. How?
– Interrupt (or syscall instruction)

• Interrupt table entries protect against jumping into
unexpected code

COMP 530: Operating Systems

Outline
• Basics of process address spaces
– Kernel mapping
– Protection

• How to dynamically change your address space?
• Overview of loading a program

COMP 530: Operating Systems

Reminder: Two types of mappings
• Memory-mapped files
– Includes program binary

• Anonymous pages: no file backing
– When the process exits, their contents go away

19

COMP 530: Operating Systems

Packing flags into a single integer
• Common Linux/C idiom
• Example: Access modes:

PROT_READ == 20

PROT_WRITE == 21

PROT_EXEC == 22

• How to request read and write permission?
– int flags = PROT_READ|PROT_WRITE; // == 1 + 2 == 3
– Sets bits 0 and 1, but leaves other blank

20Make sure you understand why flags are OR-ed

COMP 530: Operating Systems

Linux APIs
• mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);
• munmap(void *addr, size_t length);

• How to create an anonymous mapping?
• What if you don’t care where a memory region goes

(as long as it doesn’t clobber something else)?

COMP 530: Operating Systems

Example:
• Let’s map a 1 page (4k) anonymous region for data,

read-write at address 0x40000
• mmap(0x40000, 4096, PROT_READ|PROT_WRITE,

MAP_ANONYMOUS, -1, 0);
– Why wouldn’t we want exec permission?

22

COMP 530: Operating Systems

Idiosyncrasy 1: Stacks Grow Down
• In Linux/Unix, as you add frames to a stack, they

actually decrease in virtual address order
• Example:

main()

foo()

bar()

Stack “bottom” – 0x13000

0x12600

0x12300

0x11900

Exceeds stack
pageOS allocates a

new page

2 issues: How to expand, and why down (not up?)

COMP 530: Operating Systems

Problem 1: Expansion
• Recall: OS is free to allocate any free page in the

virtual address space if user doesn’t specify an
address

• What if the OS allocates the page below the “top” of
the stack?
– You can’t grow the stack any further
– Out of memory fault with plenty of memory spare

• OS must reserve “enough” virtual address space after
“top” of stack

But how much is “enough”?

COMP 530: Operating Systems

• Unix has been around longer than paging
– Data segment abstraction (we’ll see more about segments

later)
– Unix solution:

• Stack and heap meet in the middle
– Out of memory when they meet

Heap Stack

Feed 2 Birds with 1 Scone

Data Segment

Grows Grows

Just have to decide how much total data space

COMP 530: Operating Systems

• Brk points to the end of the heap
• sys_brk() changes this pointer

Heap Stack

brk() system call

Data Segment

Grows Grows

brk

COMP 530: Operating Systems

Relationship to malloc()
• malloc, or any other memory allocator (e.g., new)
– Library (usually libc) inside application
– Gets large chunks of anonymous memory from the OS

• Some use brk,
• Many use mmap instead (better for parallel allocation)

– Sub-divides into smaller pieces
– Many malloc calls for each mmap call

Preview: Lab 3

COMP 530: Operating Systems

Outline
• Basics of process address spaces
– Kernel mapping
– Protection

• How to dynamically change your address space?
• Overview of loading a program

COMP 530: Operating Systems

Linux: ELF
• Executable and Linkable Format
• Standard on most Unix systems
• 2 headers:
– Program header: 0+ segments (memory layout)
– Section header: 0+ sections (linking information)

COMP 530: Operating Systems

Helpful tools
• readelf - Linux tool that prints part of the elf headers
• objdump – Linux tool that dumps portions of a

binary
– Includes a disassembler; reads debugging symbols if

present

COMP 530: Operating Systems

Key ELF Sections
• .text – Where read/execute code goes
– Can be mapped without write permission

• .data – Programmer initialized read/write data
– Ex: a global int that starts at 3 goes here

• .bss – Uninitialized data (initially zero by convention)
• Many other sections

31

COMP 530: Operating Systems

How ELF Loading Works
• execve(“foo”, …)
• Kernel parses the file enough to identify whether it is

a supported format
– Kernel loads the text, data, and bss sections

• ELF header also gives first instruction to execute
– Kernel transfers control to this application instruction

COMP 530: Operating Systems

Static vs. Dynamic Linking
• Static Linking:
– Application binary is self-contained

• Dynamic Linking:
– Application needs code and/or variables from an external

library

• How does dynamic linking work?
– Each binary includes a “jump table” for external references
– Jump table is filled in at run time by the linker

COMP 530: Operating Systems

Jump table example
• Suppose I want to call foo() in another library
• Compiler allocates an entry in the jump table for foo
– Say it is index 3, and an entry is 8 bytes

• Compiler generates local code like this:
– mov rax, 24(rbx) // rbx points to the

// jump table
– call *rax

• Linker initializes the jump tables at runtime

COMP 530: Operating Systems

Dynamic Linking (Overview)
• Rather than loading the application, load the linker

(ld.so), give the linker the actual program as an
argument

• Kernel transfers control to linker (in user space)
• Linker:
– 1) Walks the program’s ELF headers to identify needed

libraries
– 2) Issue mmap() calls to map in said libraries
– 3) Fix the jump tables in each binary
– 4) Call main()

COMP 530: Operating Systems

Key point
• Most program loading work is done by the loader in

user space
– If you ‘strace’ any substantial program, there will be

beaucoup mmap calls early on
– Nice design point: the kernel only does very basic loading,

ld.so does the rest
• Minimizes risk of a bug in complicated ELF parsing corrupting the

kernel

COMP 530: Operating Systems

Other formats?
• The first two bytes of a file are a “magic number”
– Kernel reads these and decides what loader to invoke
– ‘#!’ says “I’m a script”, followed by the “loader” for that

script
• The loader itself may be an ELF binary

• Linux allows you to register new binary types (as long
as you have a supported binary format that can load
them

COMP 530: Operating Systems

Recap
• Understand the idea of an address space
• Understand how a process sets up its address space,

how it is dynamically changed
• Understand the basics of program loading

