
COMP 530: Operating Systems

Basic OS Programming
Abstractions

(and Lab 1 Overview)

Don Porter

Portions courtesy Kevin Jeffay

1

COMP 530: Operating Systems

Recap
• We’ve introduced the idea of a process as a

container for a running program

• This lecture: Introduce key OS APIs for a process

– Some may be familiar from lab 0

– Some will help with lab 2

COMP 530: Operating Systems

Lab 1: A (Not So) Simple Shell
• Lab 1: Parsing for a shell

– You will extend in lab 2

• I’m giving you some boilerplate code that does basics

• My goal: Get some experience using process APIs

– Most of what you will need discussed in this lecture

• You will incrementally improve the shell

3

COMP 530: Operating Systems

Tasks
• Turn input into commands; execute those commands

– Support PATH variables

• Be able to change directories

• Print the working directory at the command line

• Add debugging support

• Add scripting support

• Pipe indirection: <, >, and |

• goheels – draw an ASCII art Tar Heel

4Significant work – start early!

COMP 530: Operating Systems

main {

 int childPID;

 S1;

 childPID = fork();

 if(childPID == 0)

 <code for child process>
 else {

 <code for parent process>
 wait();

 }

 S2;

 }

Process Creation: fork/join in Linux
• The execution context for the child process is a copy of

the parent’s context at the time of the call

Code

Data

Stack

Code

Data

Stack

Parent Child

fork()

childPID
= 0

childPID
= xxx

COMP 530: Operating Systems

Process Creation: exec in Linux
• exec allows a process to replace itself with another program

– (The contents of another binary file)

Code

Data

Stack

Memory
Context

exec()

main {

 S0
 exec(foo)

 S1
 S2
 }

a.out:

foo: main {

 S’

 }

COMP 530: Operating Systems

main {

 int childPID;

 S1;

 childPID = fork();

 if(childPID == 0)

 exec(filename)

 else {

 <code for parent process>
 wait();

 }

 S2;

 }

Process Creation: Abstract fork in Linux
• Common case: fork() followed by an exec()

Code

Data

Stack

Code

Data

Stack

Parent Child

fork()

exec()

. /foo

main {

 S’

 }

COMP 530: Operating Systems

Outline
• Files and File Handles

• Inheritance

• Pipes & Sockets

• Signals

• Synthesis Example: The Shell

COMP 530: Operating Systems

2 Ways to Refer to a File
• Path, or hierarchical name, of the file

– Absolute: “/home/porter/foo.txt”

• Starts at system root

– Relative: “foo.txt”, “../porter/foo.txt”

• Assumes file is in the program’s current working directory (CWD)

• A handle to an open file

– A handle keeps track of process access to the file:
• an offset for read/write operations

• file status, and flags

• file reference count

• access permission

COMP 530: Operating Systems

Path-based calls
• Functions that operate on the directory tree

– rename, unlink (delete), chmod (change permissions),
etc.

• Open – creates a handle to a file
– int open (char *path, int flags, mode_t mode);

• Flags include O_RDONLY, O_RDWR, O_WRONLY

• Permissions are generally checked only at open

– opendir() – variant for a directory

COMP 530: Operating Systems

Handle-based calls
• ssize_t read(int fd, void *buf, size_t count)

– Fd is the handle

– Buf is a user-provided buffer to receive count bytes of the
file

– Returns how many bytes read
• ssize_t write(int fd, void *buf, size_t count)

– Same idea, other direction
• int close(int fd)

– Close an open file
• int lseek(int fd, size_t offset, int flags)

– Change the cursor position

COMP 530: Operating Systems

Example
char buf[9];

int fd = open (“foo.txt”, O_RDWR);

ssize_t bytes = read(fd, buf, 8);

if (bytes != 8) // handle the error

lseek(fd,0,SEEK_SET); // set cursor

memcpy(buf, “Awesome”, 7);

buf[7] = ‘\0’;

bytes = write(fd, buf, 8);

if (bytes != 8) // error

close(fd);

User-level stack

Kernel

buf

fd: 3

bytes: 8

Contents

foo.txt

Awesome

PC

Handle 3

Contents\0

Awesome\0Awesome\0

COMP 530: Operating Systems

Why handles?
• Handles in Unix/Linux serve three purposes:

1. Track the offset of last read/write

– Alternative: Application explicitly passes offset

2. Cache the access check from open()

3. Hold a reference to a file

– Unix idiom: Once a file is open, you can access the
contents as long as there is an open handle --- even if the
file is deleted from the directory

13

COMP 530: Operating Systems

But what is a handle?
• A reference to an open file or other OS object

– For files, this includes a cursor into the file

• In the application, a handle is just an integer

– This is an offset into an OS-managed table

COMP 530: Operating Systems

Logical View

Disk

Hello!
Foo.txt
inode

Process A PCB

Process B PCB

Process C PCB

Handle
Table

Handle indices
are process-

specific

Handle Table50

20

Handles
can be
shared

COMP 530: Operating Systems

Handle Recap
• Every process has a table of pointers to kernel handle

objects

– E.g., a file handle includes the offset into the file and a
pointer to the kernel-internal file representation (inode)

• Applications can’t directly read these pointers

– Kernel memory is protected

– Instead, make system calls with the indices into this table

– Index is commonly called a handle

COMP 530: Operating Systems

Rearranging the table
• The OS picks which index to use for a new handle

• An application explicitly copy an entry to a specific
index with dup2(old, new)

– Be careful if new is already in use…

COMP 530: Operating Systems

Other useful handle APIs
• mmap() – can map part or all of a file into memory

• seek() – adjust the cursor position of a file

– Like rewinding a cassette tape

https://www.pexels.com/photo/yellow-pencil-on-white-cassette-tape-8040775/

COMP 530: Operating Systems

Outline
• Files and File Handles

• Inheritance

• Pipes & Sockets

• Signals

• Synthesis Example: The Shell

COMP 530: Operating Systems

Inheritance
• By default, a child process gets a reference to every

handle the parent has open

– Very convenient

– Also a security issue: may accidentally pass something the
program shouldn’t

• Between fork() and exec(), the parent has a
chance to clean up handles it doesn’t want to pass

– See also FD_CLOEXEC flag, used as follows with fcntl():
fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);

COMP 530: Operating Systems

Standard in, out, error
• Handles 0, 1, and 2 are special by convention

– 0: standard input (STDIN_FILENO in <stdio.h>)

– 1: standard output (STDOUT_FILENO)

– 2: standard error output (STDERR_FILENO)

• Command-line programs use this convention

– Parent program (shell) is responsible to use
open/close/dup2 to set these handles appropriately
between fork() and exec()

COMP 530: Operating Systems

Example
int pid = fork();

if (pid == 0) {

 // Opens "in.txt" for reading.

 int fd = open (“in.txt”, O_RDONLY);

 // Redirects standard input to come from

"in.txt" by duplicating the file descriptor.

 dup2(fd, 0);

 // Executes the grep command, which will

search for the string "quack" in the file

"in.txt".

 exec(“grep”, “quack”);

}

COMP 530: Operating Systems

Outline
• Files and File Handles

• Inheritance

• Pipes & Sockets

• Signals

• Synthesis Example: The Shell

COMP 530: Operating Systems

Pipes
• FIFO stream of bytes between two processes

• Read and write like a file handle

– But not anywhere in the hierarchical file system

– And not persistent

– And no cursor or seek()-ing

– Actually, 2 handles: a read handle and a write handle

• Primarily used for parent/child communication

– Parent creates a pipe, child inherits it

COMP 530: Operating Systems

Example
int pipe_fd[2];

int rv = pipe(pipe_fd);

int pid = fork();

if (pid == 0) {

 close(pipe_fd[1]);

 dup2(pipe_fd[0], 0);

 close(pipe_fd[0]);

 exec(“grep”, “quack”);

} else {

 close (pipe_fd[0]);

 ...

Parent

Child

PCB

Handle Table

W

R

PC

PC

Goal: Create a pipe; parent writes, child reads

execlp("grep", "grep", "quack", NULL);

COMP 530: Operating Systems

Sockets
• Similar to pipes, except for network connections

• Setup and connection management is a bit trickier

– A topic for another day (or class)

COMP 530: Operating Systems

Select
• What if I want to block until one of several handles

has data ready to read?

• Read will block on one handle, but perhaps miss data
on a second…

• Select will block a process until a handle has data
available

– Useful for applications that use pipes, sockets, etc.

COMP 530: Operating Systems

Outline
• Files and File Handles

• Inheritance

• Pipes & Sockets

• Signals

• Synthesis Example: The Shell

COMP 530: Operating Systems

Signals
• Similar concept to an application-level interrupt

– Unix-specific (more on Windows later)

• Each signal has a number assigned by convention

– Just like interrupts

• Application specifies a handler for each signal

– OS provides default

COMP 530: Operating Systems

Signals, cont.
• Can occur for:

– Exceptions: divide by zero, null pointer, etc.

– IPC: Application-defined signals (USR1, USR2)

– Control process execution (KILL, TERM, STOP, CONT)

• Send a signal using kill(pid, signo)

– Killing an errant program is common, but you can also
send a non-lethal signal using kill()

• Use signal() or sigaction() to set the
handler for a signal

COMP 530: Operating Systems

How signals work
• If process survives, control is returned to the

application

• Although signals appear to be delivered
immediately…

– They are actually delivered lazily…

– Whenever the OS happens to be returning to the process
from an interrupt, system call, etc.

• If I signal another process, the other process may not
receive it until it is scheduled again

• Does this matter?

COMP 530: Operating Systems

More details
• When a process receives a signal, it is added to a

pending mask of pending signals

– Stored in PCB

• Just before scheduling a process, the kernel checks if
there are any pending signals

– If so, return to the appropriate handler

– Save the original register state for later

– When handler is done, call sigreturn() system call

• Then resume execution

COMP 530: Operating Systems

Meta-lesson
• Laziness rules!

– Not on homework

– But in system design

• Procrastinating on work in the system often reduces
overall effort

– Signals: Why context switch immediately when it will
happen soon enough?

COMP 530: Operating Systems

Language Exceptions
• Signals are the underlying mechanism for Exceptions

and catch blocks

• JVM or other runtime system sets signal handlers

– Signal handler causes execution to jump to the catch block

COMP 530: Operating Systems

Windows comparison
• Exceptions have specific upcalls from the kernel to

ntdll

• IPC is done using Events

– Shared between processes

– Handle in table

– No data, only 2 states: set and clear

– Several variants: e.g., auto-clear after checking the state

COMP 530: Operating Systems

Outline
• Files and File Handles

• Inheritance

• Pipes & Sockets

• Signals

• Synthesis Example: The Shell

COMP 530: Operating Systems

Shell Recap
• Almost all ‘commands’ are really binaries

– /bin/ls

• Key abstraction: Redirection over pipes

– ‘>’, ‘<‘, and ‘|’implemented by the shell itself

COMP 530: Operating Systems

Shell Example
• Ex: ls | grep foo

• Shell pseudocode:

while(EOF != read_input) {

parse_input();

// Sets up chain of pipes

// Forks and exec’s ‘ls’ and ‘grep’ separately

// Wait on output from ‘grep’, print to console

 // print console prompt

}

thsh

fork()

exec(ls)

cshthsh ls

COMP 530: Operating Systems

Lab 1 Overview
• C programming on Linux refresher

• Parser for your shell (Lab 1)

39

COMP 530: Operating Systems

Shells
• Shell: aka the command prompt

• At a high level:

while (more input) {

 read a line of input

 parse the line into a command

 if valid command: execute it

}

40

We will give you this

Lab 1

Lab 2

COMP 530: Operating Systems

Detour: Environment Variables
• Nearly all shell commands are actually binary files

– Very few commands actually implemented in the shell

– A few built-ins that change the shell itself (exit, cd)

• Example: ls is actually in /bin/ls

– For fun, play with which, as in which ls

• So where to look for a given command?

– Note that we want some flexibility system-to-system

– Idea: dynamically set a variable that controls which
directories to search

41

COMP 530: Operating Systems

Environment Variables
• A set of key-value pairs

– Passed to main() as a third argument

– Often ignored by programmers

• Serves many different purposes

• For Lab 1, we need to look at PATH

– By convention, a single, colon-delimited set of prefixes

• Example:

/usr/local/sbin:/usr/local/bin:/usr/s

bin:/usr/bin:/sbin:/bin

42

COMP 530: Operating Systems

PATH in a shell
• If my PATH is
/usr/local/sbin:/usr/local/bin:/usr/sbin
:/usr/bin:/sbin:/bin

• Then, for a given command (ls), the shell will check, in
order, until found:

 /usr/local/sbin/ls

 /usr/local/bin/ls

 /usr/sbin/ls

 /usr/bin/ls

 /sbin/ls

 /bin/ls

43

COMP 530: Operating Systems

Lab 1, Exercise 1
• Your first job will be to write parsing code that takes

in a colon-delimited set of prefixes, and to create a
table of prefixes to try in future commands
– See path_table in jobs.c

– We wrote a test harness test_env.c

$ PATH=/foo:/bar ./test_env

===== Begin Path Table =====

Prefix 0: [/foo]

Prefix 1: [/bar]

===== End Path Table =====

44

COMP 530: Operating Systems

Exercise 2: Parsing commands
• A typical shell command includes a main binary (e.g.,

‘ls’)

– and 0+ whitespace-separated arguments (e.g., ‘-l’)

– and possibly extra whitespace

• You will get this as a single character array

• Your job is to break this up into individual ‘tokens’

45

l s - l \0 l s

- l \0Input

commands

\0

\0

\0

COMP 530: Operating Systems

Pipelines
• A shell can compose multiple commands using

pipelines

– Key idea: standard output of one command becomes
standard input of next

• Example: ls | wc -l

– List a directory (ls) – send listing output to a wordcount
utility (wc) to count how many entries in directory

• The vertical bar (|) is a special character

– May not appear in any other valid commands

– Does not need whitespace: ls|wc –l is valid

46

COMP 530: Operating Systems

parse.c:parse_line()
• The workhorse for lab 1 (and 2)

• Takes in a line of input, outputs a 2-D array

• First dimension : one entry per pipeline stage

– Simple commands just have one entry

• Second dimension : one entry per command token

47

COMP 530: Operating Systems

How to parse a pipeline?

48

l s | \0

l s

Input

commands
(parsed)

\0

\0

\0

w c - l

w c

- l \0

\0

\0

COMP 530: Operating Systems

Other special cases
• Comments – anything past a ‘#’ character

• File redirection - sets standard input/output to a file
– Example: ls > mydir.txt

• Saves the output of ls into a file

– Example: wc –l < mydir.txt

• Sends the contents of mydir.txt into wc as standard input

• Built-in commands (see builtin.c)

– For now, you just need to recognize them and call the
appropriate handler function

49

COMP 530: Operating Systems

• Use the same learncli211 container as lab 0

Working on Homework Assignments

COMP 530: Operating Systems

Checking out the starter code
• Once you have a github account registered

– Make sure you accept the invite:
• Click https://github.com/comp530-f23

• Click the link in the homework to create a private
repo

• Then, on your machine or classroom (substituting
your team for ‘team-don’ – see the green clone
button):

git clone git@github.com:comp530-f23/thsh-team-don.git

51

COMP 530: Operating Systems

• We will be using gradescope to submit and
autograde the homework
– Challenge problems and late hours done manually

– Submit challenges separately

• Ideally, use github connection to directly submit

• Feel free to try early to catch issues with grading

Submitting homework

COMP 530: Operating Systems

A note on Lab 2

• You’re going to be creating lots of processes in this
assignment

• If you fork a process and it never terminates…

• You’ve just created a Z O M B I E P R O C E S S!!
– Zombies will fill up the process table in the Linux kernel
– Nobody can create a new process
– This means no one can launch a shell to kill the zombies!

thsh

fork()

exec(ls)

wait()

cshthsh ls

COMP 530: Operating Systems

A note on Lab 1

• Be safe! Limit the number of processes you can create

– add the command “limit maxproc 10” to the file ~/.cshrc

– (remember to delete this line at the end of the course!)

• Periodically check for and KILL! zombie processes

– ps -ef | egrep -e PID -e YOUR-LOGIN-NAME

– kill pid-number

• Read the HW handout carefully for zombie-hunting details!

thsh

fork()

exec(ls)

wait()

cshthsh ls

COMP 530: Operating Systems

What about Ctrl-Z?
• Shell really uses select() to listen for new keystrokes

– (while also listening for output from subprocess)

• Special keystrokes are intercepted, generate signals

– Shell needs to keep its own “scheduler” for background
processes

– Assigned simple numbers like 1, 2, 3

• ‘fg 3’ causes shell to send a SIGCONT to suspended
child

• Ctrl+C implemented using SIGKILL

COMP 530: Operating Systems

Other hints
• Splice(), tee(), and similar calls are useful for

connecting pipes together

– Avoids copying data into and out-of application

COMP 530: Operating Systems

Collaboration Policy Reminder
• You can work alone or as part of a team

– Must be the same as lab 1; may change starting in lab 2

– Every line of code handed in must be written by one of the
pair (or the boilerplate)

• No sharing code with other groups

• No code from Internet

– Any other collaboration must be acknowledged in writing

– High-level discussion is ok (no code)

• See written assignment and syllabus for more details

57Not following these rules is an Honor Code violation

COMP 530: Operating Systems

Summary
• Understand how handle tables work

– Survey basic APIs

• Understand signaling abstraction

– Intuition of how signals are delivered

• Be prepared to start writing your shell in lab 2!

COMP 530: Operating Systems

EXTRA SLIDES

59

COMP 530: Operating Systems

enrico@localhost [13:44:30] [~]

-> % whereis ls

/usr/bin/ls

60

	Default Section
	Slide 1: Basic OS Programming Abstractions (and Lab 1 Overview)
	Slide 2: Recap
	Slide 3: Lab 1: A (Not So) Simple Shell
	Slide 4: Tasks
	Slide 5: Process Creation: fork/join in Linux
	Slide 6: Process Creation: exec in Linux
	Slide 7: Process Creation: Abstract fork in Linux

	Files and File Handles
	Slide 8: Outline
	Slide 9: 2 Ways to Refer to a File
	Slide 10: Path-based calls
	Slide 11: Handle-based calls
	Slide 12: Example
	Slide 13: Why handles?
	Slide 14: But what is a handle?
	Slide 15: Logical View
	Slide 16: Handle Recap
	Slide 17: Rearranging the table
	Slide 18: Other useful handle APIs

	Inheritance
	Slide 19: Outline
	Slide 20: Inheritance
	Slide 21: Standard in, out, error
	Slide 22: Example

	Pipes & Sockets
	Slide 23: Outline
	Slide 24: Pipes
	Slide 25: Example
	Slide 26: Sockets
	Slide 27: Select

	Signals
	Slide 28: Outline
	Slide 29: Signals
	Slide 30: Signals, cont.
	Slide 31: How signals work
	Slide 32: More details
	Slide 33: Meta-lesson
	Slide 34: Language Exceptions
	Slide 35: Windows comparison

	The Shell
	Slide 36: Outline
	Slide 37: Shell Recap
	Slide 38: Shell Example
	Slide 39: Lab 1 Overview
	Slide 40: Shells
	Slide 41: Detour: Environment Variables
	Slide 42: Environment Variables
	Slide 43: PATH in a shell
	Slide 44: Lab 1, Exercise 1
	Slide 45: Exercise 2: Parsing commands
	Slide 46: Pipelines
	Slide 47: parse.c:parse_line()
	Slide 48: How to parse a pipeline?
	Slide 49: Other special cases
	Slide 50: Working on Homework Assignments
	Slide 51: Checking out the starter code
	Slide 52: Submitting homework
	Slide 53: A note on Lab 2
	Slide 54: A note on Lab 1
	Slide 55: What about Ctrl-Z?
	Slide 56: Other hints
	Slide 57: Collaboration Policy Reminder
	Slide 58: Summary
	Slide 59: Extra slides
	Slide 60

