
COMP 530: Operating Systems

C for Java Programmers
& Lab 0

Don Porter

Portions courtesy Kevin Jeffay

1

COMP 530: Operating Systems

Same Basic Syntax
• Data Types: int, char, [float]

– void - (untyped pointer)

– Can create other data types using typedef

• No Strings - only char arrays

– Last character needs to be a 0

• Not ‘0’, but ‘\0’

COMP 530: Operating Systems

struct – C’s object
• typedef struct foo {

 int a;

 void *b;

 void (*op)(int c); // function pointer

 } foo_t; // <------type declaration

• Actual contiguous memory

• Includes data and function pointers

COMP 530: Operating Systems

Pointers
• Memory placement explicit

(heap vs. stack)

• Two syntaxes (dot, arrow)
int main {

 struct foo f;

 struct foo *fp = &f;

 f.a = 32; // dot: access object directly

 fp->a = 33; // arrow: follow a pointer

 fp = malloc(sizeof(struct foo));

 fp->a = 34;

…

}

4

Stack Heap

main:

f:
 a = 0;
 b = NULL;
 op = NULL;

struct foo:
 a = 0;
 b = NULL;
 op = NULL;

fp:
PC

f:
 a = 32;
 b = NULL;
 op = NULL;

f:
 a = 33;
 b = NULL;
 op = NULL;

struct foo:
 a = 34;
 b = NULL;
 op = NULL;

struct foo {
 int a;
 void *b;
 void (*op)(int c);
}

Ampersand:
Address of f

COMP 530: Operating Systems

Function pointer example
fp->op = operator;

fp->op(32); // Same as calling

 // operator(32);

5

struct foo {
 int a;
 void *b;
 void (*op)(int c);
}

Code in memory:
Main
 …
Operator:

...

Stack Heap

main:

f:
 a = 0;
 b = NULL;
 op = NULL;

fp:

f:
 a = 32;
 b = NULL;
 op = NULL;

f:
 a = 33;
 b = NULL;
 op = NULL;

struct foo:
 a = 34;
 b = NULL;
 op = NULL;

struct foo:
 a = 34;
 b = NULL;
 op =

COMP 530: Operating Systems

More on Function Pointers
• C allows function pointers to be used as members of

a struct or passed as arguments to a function

• Continuing the previous example:

void myOp(int c){ /*…*/ }
/*…*/
foo_t *myFoo = malloc(sizeof(foo_t));
myFoo->op = myOp; // set pointer
/*…*/
myFoo->op(5); // Actually calls myop

COMP 530: Operating Systems

No Constructors or Destructors
• Must manually allocate and free memory - No

Garbage Collection!

– void *x = malloc(sizeof(foo_t));

• sizeof gives you the number of bytes in a foo_t - DO NOT COUNT

THEM YOURSELF!

– free(x);

• Memory allocator remembers the size of malloc’ed memory

• Must also manually initialize data

– Custom function

– memset(x, 0, sizeof(*x)) will zero it

COMP 530: Operating Systems

Memory References
• ‘.’ - access a member of a struct

– myFoo.a = 5;

• ‘&’ - get a pointer to a variable
– foo_t * fPointer = &myFoo;

• ‘->’ - access a member of a struct, via a pointer to the
struct
– fPointer->a = 6;

• ‘*’ - dereference a pointer
– if(5 == *intPointer){…}

• Without the *, you would be comparing 5 to the address of the int,

not its value.

COMP 530: Operating Systems

Int example
int x = 5; // x is on the stack

int *xp = &x;

*xp = 6;

printf(“%d\n”, x); // prints 6

xp = (int *) 0;

*xp = 7; // segmentation fault

9

Stack

main:

x: 5

PC

xp: xp: NULL

x: 6

COMP 530: Operating Systems

Memory References, cont.
• ‘[]’ - refer to a member of an array

 char *str = malloc(5 * sizeof(char));

 str[0] = ‘a’;

– Note: *str = ‘a’ is equivalent

– str++; increments the pointer such that *str == str[1]

str

str[0] str[1] str[2] str[3] str[4]

str+1 str+2 str+3 str+4

COMP 530: Operating Systems

The Chicken or The Egg?
• Many C functions (printf, malloc, etc) are

implemented in libraries

• These libraries use system calls

• System calls provided by kernel

• Thus, kernel has to “reimplement” basic C libraries

– In some cases, such as malloc, can’t use these language
features until memory management is implemented

COMP 530: Operating Systems

For more help
• man pages are your friend!

– (not a dating service)!

– Ex: ‘man malloc’, or ‘man 3 printf’
• Section 3 is usually where libraries live - there is a command-line

utility printf as well

• Use ‘apropos term’ to search for man entries about
term

• The C Programming Language by Brian Kernighan
and Dennis Ritchie is a great reference.

COMP 530: Operating Systems

Lab 0 Overview
• C programming warm-up

• “Hello world” program

– Plus get your current process ID and working directory

13

COMP 530: Operating Systems

• This semester we will use Docker

– If you did learncli in comp211, similar infrastructure

• Same image for 530

• You are welcome to use your own laptop, but code
must work in the COMP 530 docker environment
– Will be the same in autograder

Working on Homework Assignments

COMP 530: Operating Systems

Checking out the starter code
• Once you have a github account registered

– Make sure you accept the invite:
• Click https://github.com/comp530-f24

• Click the link in the homework to create a private
repo

• Then, on your machine or classroom (substituting
your team for ‘team-don’ – see the green clone
button):

git clone git@github.com:comp530-f24/lab0-team-don.git

15

COMP 530: Operating Systems

• We will be using gradescope to submit and
autograde the homework
– Challenge problems and late hours done manually

– Submit challenges separately

• Ideally, use github connection to directly submit
– Upload ok

• Feel free to try early to catch issues with grading

Submitting homework

COMP 530: Operating Systems

(“Hard But that is fine.

Some of the grading scales for programming

assignments were weird and not straightforward.

Tended to place little emphasis on implementing

what the assignment actually intended and emphasized

how hard did you try to break your own program”)

• Programs that “mostly work” don’t cut it in a senior-
level course!

Dr. Jeffay’s Experience

COMP 530: Operating Systems

• Working in teams on programming assignments is OK
– But you can only collaborate with other students in the course

– Every line of code handed in must be written exclusively by team
members themselves, and

– All collaborators must be acknowledged in writing (and part of the
team)

• Use of the Internet
– Using code from the Internet in any form is not allowed

– Websites may be consulted for reference (e.g., to learn how a system
call works)

– But all such websites used or relied on must be listed as a reference
in a header comment in your program

– Warning: Sample code found on the Internet rarely helps the student

Honor Code: Acceptable and Unacceptable
Collaboration

	Slide 1: C for Java Programmers & Lab 0
	Slide 2: Same Basic Syntax
	Slide 3: struct – C’s object
	Slide 4: Pointers
	Slide 5: Function pointer example
	Slide 6: More on Function Pointers
	Slide 7: No Constructors or Destructors
	Slide 8: Memory References
	Slide 9: Int example
	Slide 10: Memory References, cont.
	Slide 11: The Chicken or The Egg?
	Slide 12: For more help
	Slide 13: Lab 0 Overview
	Slide 14: Working on Homework Assignments
	Slide 15: Checking out the starter code
	Slide 16: Submitting homework
	Slide 17: Dr. Jeffay’s Experience
	Slide 18: Honor Code: Acceptable and Unacceptable Collaboration

