
COMP 530: Operating Systems

File Systems:
Crash Consistency

Don Porter

Portions courtesy Emmett Witchel

1

COMP 530: Operating Systems

Context (1)
• File systems store metadata on disk

– Simple example:
• Bitmap for free space,
• Binary Search Tree to map <file:offset> to LBA

• File system has invariants:
– BST: Sorting invariant
– Every LBA in the BST should be marked ‘0’ in bitmap

2

Disk

Free block bitmap BST: Map file:offset to LBA

101010111
001011011

COMP 530: Operating Systems

Context (2)
• Recall: Disk writes are atomic (at sector granularity)

• Recall: FS invariants can span multiple sectors

– E.g., An LBA in the BST must be marked zero in bitmap

• Problem: System can crash between any 2 disk writes

– After reboot, FS invariants can be violated…

3

Disk

101010111
001011011

Free block bitmap BST: Map file:offset to LBA

COMP 530: Operating Systems

Example: Add block to a file
1. Add entry to BST, mapping Foo:4 to block 2

2. Mark block 2 in use (zero) in bitmap

4

Disk

101010111
001011011

Free block bitmap BST: Map file:offset to LBA

(Foo:3, 1),
(Foo:4, 2)

100010111
001011011

COMP 530: Operating Systems

Example: Add block to a file
1. Add entry to BST, mapping Foo:4 to block 2

2. Mark block 2 in use (zero) in bitmap

5

Disk

101010111
001011011

Free block bitmap BST: Map file:offset to LBA

(Foo:3, 1),
(Foo:4, 2)

CRASH!!!

After reboot: LBA 2
still free

After reboot: LBA 2
in file foo, offset 4

COMP 530: Operating Systems

Crash Inconsistency
• After a crash, a file system invariant is violated

– Prev. example: Used block in file marked free

• Worse than just losing the last operation:

– Can corrupt entire file system

– Prev. example: LBA 2 can be allocated to a second file
• Writes to one file clobber data in another

– Long after the crash and reboot!

• Key issue: Metadata updates that span 2+ LBAs

– Can only write to one LBA atomically

6

COMP 530: Operating Systems

Crash Consistency Strategies
• If updates that span 2+ LBAs cause crash

inconsistencies, the solution is…

• …to boil them down (logically) to a single-LBA write

• Three main strategies:

– Brute-force checks after reboot

– Copy-on-write

– Logging/journaling

7

COMP 530: Operating Systems

A note on data loss
• If a system can crash, it can lose in-progress writes

– Like death and taxes, cannot be avoided

• File systems also hold “dirty” data in RAM as an
optimization

– This increases the risk of lost writes

• Strategy: Most kernels bound how long something can
stay dirty in RAM – typically 5—30 seconds

• In crash consistency, the goal is not to lose other data

– E.g., not corrupting unrelated data written weeks ago

– Focus on metadata and data structures, rather than file contents

8

COMP 530: Operating Systems

Strategy 1: Brute-force checks
• Idea: After a reboot, just check every invariant

• Example:

– Rebuild a free block bitmap from walking BST

– Compare to what is on disk
• In use, but unreachable LBAs may have lost data

9

Disk

101010111
001011011

Free block bitmap

COMP 530: Operating Systems

fsck
• Unix tool for brute-force checking a file system

• Downsides:

– Really, really slow (hours on a modern hard disk)

– May still be unable to recover lost/corrupted data

• E.g., What if a block is marked in use in bitmap, but not in tree?
What file to put “orphaned” block back into?

– Requires developers to specify all invariants…

10

COMP 530: Operating Systems

Strategy 2: Copy-on-write (CoW)
• Idea: “Publish” a complex update with a single

pointer write

– Typically the root of a tree

• Example: CoW BST, Modify G to G’

– Rewrite root-to-leaf path, publish by updating root

11

Disk

D

B F

A C E G

/ == D

Superblock

D’

F’

G’

Crash up to this point: only
lose recent updates (D’);

BST (D) still consistent

/ == D’

Publish D’ with single,
atomic LBA write to

superblock

COMP 530: Operating Systems

CoW Caveats
• Still need fsck to clean up unpublished copies after a

crash

• Also need to garbage collect old versions of data
structures

– E.g., Once D is no longer the root, reclaim D, F, G

12

Disk

D

B F

A C E G

/ == D

Superblock

D’

F’

G’

/ == D’

COMP 530: Operating Systems

CoW Caveats, continued
• Can still lose data between updates to root node

– Sometimes a new, consistent root is called a checkpoint

• How to bound data loss vulnerability (e.g., to 5 s)?

– Ensure a checkpoint every 5s, ensure all data dirtied more
than 5s ago is in the checkpoint

13

Disk

D

B F

A C E G

/ == D

Superblock

D’

F’

G’

/ == D’

COMP 530: Operating Systems

Checkpoints can be expensive
• Unfortunately, it is possible for a checkpoint to get

too large to write every 5s

– Degenerate case: random writes over large file system
• May dirty and rewrite entire tree

• Motivates our third strategy: logging/journaling

14

COMP 530: Operating Systems

Strategy 3: Logging/journaling
• Idea: reserve a region of disk to act as a circular, ordered

log
– Between checkpoints, record all modifications in the log

– Next checkpoint logically contains same exact operations in the
log; after checkpoint finishes, reset log

• After a crash: replay log against stable checkpoint

• How does a log ensure atomicity/crash consistency?
– Log for change that spans 2+ LBAs in one, atomic LBA write

– Log entries written in order
• After a crash, always a consistent “prefix” of operations in log

• Window for data loss now == the interval between log
writes

15

COMP 530: Operating Systems

Logging without CoW
• When used with CoW data structures, log is used to

replay recent operations (redo log)

• A file system can, instead, update data structures in
place
– Logging still helps!

– But may need to be more detailed: How to either finish the
operation, or how to undo it
• E.g., Add a new block to a file

– A crash after writing the allocation bitmap not sufficient to know
which block was allocated, in order to finish updating the file
mapping

• Lots of edge cases with update-in-place!
– E.g., unlink (foo); create(foo);

16

COMP 530: Operating Systems

Faster fsck with a journal
• The oldest Unix file systems were update-in-place

– E.g, ext2

• Ext3 introduced a journal to accelerate reboot/fsck
time

– Just walk the journal instead of a brute-force fsck --- much
faster!

– Does assume data structures are consistent
• Alas, studies indicate this can be untrue in practice

• Modern Linux systems still do a brute-force fsck at least once a
year on ext3/ext4, just to be safe

17

COMP 530: Operating Systems

Limiting the size of the journal
• Journals and logs have finite space

– Usually a region of disk, treated as a circular buffer

– For update-in-place, also record when “in flight”
operations complete

• Periodically checkpoint the log to skip past
completed operations

– Update log’s “tail pointer” in superblock
• Indicates where to start reading the log after a reboot

• Allows FS to treat log space as a circular buffer

– If head of log catches up to the tail, checkpoint and
advance tail pointer

18

COMP 530: Operating Systems

Recap: 3 crash consistency strategies
1. fsck: expensive, brute force invariant checks after

reboot

2. Copy-on-write: Publish new version of the data
structure with one LBA write

– Data structure always consistent on disk

– At cost of rewriting unchanged nodes and garbage
collection, and possibly longer window to lose recent
writes

3. Logging/Journaling: Atomically write log of
operations (how to finish or undo them), to recover
consistency after reboot

19Can use a combination of all 3 strategies

COMP 530: Operating Systems

Which is a metadata consistency

problem?

• A. Null double indirect pointer

• B. File created before a crash is missing

• C. Free block bitmap contains a file data

block that is pointed to by an inode

• D. Directory contains corrupt file name

COMP 530: Operating Systems

Bigger Picture

21

Disk

DRAM

Journal

…

FS caches part of the
data structure in

memory, for Apps

Persists updates in
some combination of

updates to data
structure and log

COMP 530: Operating Systems

A logging continuum
• No log: All writes sync (slow!); fsck required

• Data structures mostly consistent, short log
(faster boot, some sync writes)

• Log-structured FS (e.g., F2FS): Very infrequent
data structure checkpoints to bound GC, only
sync writes are to flush log blocks

• Nothing but a log: Fast runtime, no sync
writes, but really slow boot, difficult GC

22

No Log on Disk

Only Log on Disk

COMP 530: Operating Systems

What about applications?
• For performance reasons, file systems often provide

crash consistency of metadata only

– I.e., a crash doesn’t corrupt the whole FS

• Crash consistency of the file contents left as an
exercise to application developer (i.e., you!)

• Alas, data consistency semantics not standard across
file systems 

23

COMP 530: Operating Systems

Motivating example
• Suppose I have a web application that stores xml for

clients

• Requirements:
– I can fail to save an xml file, but if I tell the client I have

saved it, I must return the exact file contents later

– The client must be able to update the file with new
versions. Old versions need not be retained.

– A file can be larger than 1 FS block

• Crash consistency concerns?

24

File must survive a crash
before sending ack to

client

When updating, can’t mix
blocks of two versions

COMP 530: Operating Systems

Two key tools for developers
1. sync(), fsync(), fdatasync()

2. rename()

25

COMP 530: Operating Systems

sync() and friends
• sync(): Write all dirty data and metadata for all files

and file systems systems to disk.

• fsync(fd): Write the inode and data blocks (if dirty) to
disk for file handle fd

• fdatasync(fd): Write any dirty data blocks for fd to
disk, but let the inode stay dirty in memory if
possible

– If the file size or block mapping changes, inode will be
written

– But may delay things like updating last modification time

26

COMP 530: Operating Systems

Where should we put fsync?
int fd = open(“foo.xml”,

O_CREAT|O_WRONLY, 0700);

write(fd, buffer, length);

close(fd);

dirfd = open(“.”, O_DIRECTORY|

 O_RDONLY);

fsync(dirfd);

27

fsync(fd); // Ensures foo.xml data blocks written to disk

Ensures directory updates written to disk

Directory contents also “data blocks”

COMP 530: Operating Systems

What about updates?
• If an xml file is larger than one block, no way to make

a multi-block write() atomic

– Can end up with half of two xml files

• How to work around this?

• Create (and fsync) a new, temporary file

• Then rename() the temp file over the old version

– Leverages atomicity of rename() call

• And fsync() the parent directory!

28

COMP 530: Operating Systems

Common FS Consistency Properties
• Metadata-only Journaling: Only ensure crash

consistency of changes to metadata

• Ordered mode: Metadata-only mode, with a twist:

– Data blocks always written to disk before inode goes into
journal

• Full data mode: Crash consistency of data and
metadata

29

COMP 530: Operating Systems

Conclusion
• Understand key issue of crash consistency: invariants

that span multiple LBAs

• Three key techniques for crash consistency in FS:

– Fsck, copy-on-write, journaling

• Logging creates opportunity to trade reboot time for
fewer sync writes

• Two key tools for crash consistency in application:

– Sync and rename

30

	Slide 1: File Systems: Crash Consistency
	Slide 2: Context (1)
	Slide 3: Context (2)
	Slide 4: Example: Add block to a file
	Slide 5: Example: Add block to a file
	Slide 6: Crash Inconsistency
	Slide 7: Crash Consistency Strategies
	Slide 8: A note on data loss
	Slide 9: Strategy 1: Brute-force checks
	Slide 10: fsck
	Slide 11: Strategy 2: Copy-on-write (CoW)
	Slide 12: CoW Caveats
	Slide 13: CoW Caveats, continued
	Slide 14: Checkpoints can be expensive
	Slide 15: Strategy 3: Logging/journaling
	Slide 16: Logging without CoW
	Slide 17: Faster fsck with a journal
	Slide 18: Limiting the size of the journal
	Slide 19: Recap: 3 crash consistency strategies
	Slide 20: Which is a metadata consistency problem?
	Slide 21: Bigger Picture
	Slide 22: A logging continuum
	Slide 23: What about applications?
	Slide 24: Motivating example
	Slide 25: Two key tools for developers
	Slide 26: sync() and friends
	Slide 27: Where should we put fsync?
	Slide 28: What about updates?
	Slide 29: Common FS Consistency Properties
	Slide 30: Conclusion

