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First lecture...

Open file Ok, here’s
“hw1.txt” handle 4

System Call Table (350—1200)
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Today s goal: Key OS building block

* Understand how system calls work
— As well as how exceptions (e.g., divide by zero) work

* Understand the hardware tools available for irregular
control flow.
— l.e., things other than a branch in a running program

* Building blocks for context switching, device
management, etc.
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Background: Control Flow

// x = 2, y = void printf(va args)
true {
if (y) | //. ..
2 /= x; }
printf (x) ;
y //. ..

Regular control flow: branches and calls
(logically follows source code)
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Background: Control Flow

void

Divide by zero! hand]_e_divzero () {

Program can’t make
progress!

X = 2;
2 /= x; }
printf (x) ;
y //. ..

Irregular control flow: exceptions, system calls, etc.
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Two types of interrupts

e Synchronous: will happen every time an instruction
executes (with a given program state)
— Divide by zero
— System call
— Bad pointer dereference

* Asynchronous: caused by an external event
— Usually device I/0
— Timer ticks (well, clocks can be considered a device)
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Asynchronous Interrupt Example
Stack

|

Stack

e (0 4 Gm | mm) |
Printf(“BOO”) ; Dlsk_handler () {

}

printf(va args..) {
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Intel nomenclature

* Interrupt —only refers to asynchronous interrupts

e Exception —synchronous control transfer

* Note: from the programmer’s perspective, these are
handled with the same abstractions
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Lecture outline

* Interrupt Overview
* How interrupts work in hardware
 How interrupt handlers work in software

 How system calls work
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Interrupt overview

* Each interrupt or exception includes a number
indicating its type

 E.g., 14 is a page fault, 3 is a debug breakpoint

* This number is the index into an interrupt table
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X86 interrupt table

Device IRQs

0 31 47 255

Reserved for Software Configurable

the CPU
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X86 Iinterrupt overview

e Each type of interrupt is assigned an index from 0—
255.

e 0—31 are for processor interrupts; generally fixed by
Intel

— E.g., 14 is always for page faults

e 32—255 are software configured

— 32—47 are for device interrupts (IRQs)
* Most device’s IRQ line can be configured
* Look up APICs for more info (Ch 4 of Bovet and Cesati)

— 0x80 (128 in decimal) issues system call in Linux (more on
this later)
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What happens (high level):
* Control jumps to the kernel

— At a prescribed address (the interrupt handler)

* The register state of the program is dumped on the
kernel’s stack
— Sometimes, extra info is loaded into CPU registers

— E.g., page faults store the faulting address that caused the
fault in the cr2 register

 Kernel code runs and handles the interrupt

 When handler completes, resume program (see
iret instr.)
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Important digression: Register state

e Really, really, really big idea:

— The state of a program’s execution is succinctly and
completely represented by CPU register state

* Pause a program: dump the registers in memory
e Resume a program: slurp the registers back into CPU
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How is this configured?

 Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT
— Can be anywhere in memory
— Pointed to by special register (1dtr)

* c.f., segment registers and gdtr and 1dtr

* Entry O configures interrupt 0, and so on
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X86 interrupt table

5

Linear Address of
Interrupt Table
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X86 interrupt table

Code Segment: Kernel Code

Segment Offset: &page fault handler //linear addr
Ring: 0 // kernel

Present: 1

Gate Type: Exception
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Software interrupts

e The int <num> instruction allows software to
raise an interrupt

— 0x80 is just a Linux convention.

* There are a lot of spare indices

— You could have multiple system call tables for different
purposes or types of processes!
* Windows does: one for the kernel and one for win32k
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Software interrupts, cont

* OSsetsring level required to raise an interrupt

— Generally, user programs can’tissue an int 14 (page
fault) manually

[

— An unauthorized int instruction causes a general
protection fault
* |nterrupt 13
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Summary

Most interrupt handling hardware state set during
boot

Each interrupt has an IDT entry specifying:
— What code to execute, privilege level to raise the interrupt




THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

Lecture outline

* Interrupt Overview
 How interrupts work in hardware
* How interrupt handlers work in software

 How system calls work
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High-level goal

 Respond to some event, return control to the
appropriate process

* What to do on:
— Network packet arrives
— Disk read completion
— Divide by zero
— System call
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Interrupt Handlers

e Just plain old kernel code
— Sort of like exception handlers in Java
— But separated from the control flow of the program

 The IDT stores a pointer to the right handler routine
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Lecture outline

* Interrupt Overview
 How interrupts work in hardware
 How interrupt handlers work in software

 How system calls work
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What is a system call?

* A function provided to applications by the OS kernel
— Generally to use a hardware abstraction (file, socket)
— Or OS-provided software abstraction (IPC, scheduling)

 Why not put these directly in the application?

— Protection of the OS/hardware from buggy/malicious
programs

— Applications are not allowed to directly interact with
hardware, or access kernel data structures
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System call “interrupt”

* Originally, system calls issued using int instruction

e Dispatch routine was just an interrupt handler
* Like interrupts, system calls are arranged in a table
— See arch/x86/kernel/syscall_table*.S in Linux source

* Program selects the system call it wants by placing
index in eax register

— Arguments go in the other registers by calling convention
— Return value goes in eax
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Two levels of function pointer tables

! Interrupt Table (CPU automatically walks)

0 31 47

255

(system call)

syscall handler: // Walks syscall table in software

_

Syscall Table ~350
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How many system calls?

* Linux exports about 350 system calls

 Windows exports about 400 system calls for core
APIs, and another 800 for GUI methods
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But why use interrupts?

* Because protection is paramount

* Forces applications to call well-defined “public”

functions
— Rather than calling arbitrary internal kernel functions

 Example (where foo is a system call):

public foo() {
if (!permission_ok()) return —EP Calling _foo()

return _foo(); // no permission cSCIEEIAVCEIL
circumvent

} permission check
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Summary
e System calls are the “public” OS APIs

 Kernel leverages interrupts to restrict applications to
specific functions
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