TTTTTTTTTTTTT

gmonTn canoniNg COMP 530: Operating Systems

Interrupts and System Calls

Don Porter

=_N THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

First lecture...

Open file Ok, here’s
“hw1.txt” handle 4

System Call Table (350—1200)

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

Today s goal: Key OS building block

* Understand how system calls work
— As well as how exceptions (e.g., divide by zero) work

* Understand the hardware tools available for irregular
control flow.
— l.e., things other than a branch in a running program

* Building blocks for context switching, device
management, etc.

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

Background: Control Flow

// x = 2, y = void printf(va args)
true {
if (y) | //. ..
2 /= x; }
printf (x) ;
y //. ..

Regular control flow: branches and calls
(logically follows source code)

TTTTTTTTTTTTT

of NoRTH caRoLINA COMP 530: Operating Systems

Background: Control Flow

void

Divide by zero! hand]_e_divzero () {

Program can’t make
progress!

X = 2;
2 /= x; }
printf (x) ;
y //. ..

Irregular control flow: exceptions, system calls, etc.

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

Two types of interrupts

e Synchronous: will happen every time an instruction
executes (with a given program state)
— Divide by zero
— System call
— Bad pointer dereference

* Asynchronous: caused by an external event
— Usually device I/0
— Timer ticks (well, clocks can be considered a device)

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Asynchronous Interrupt Example
Stack

|

Stack

e (0 4 Gm | mm) |
Printf(“BOO”) ; Dlsk_handler () {

}

printf(va args..) {

TTTTTTTTTTTTT

=_N
@ ORI CAROLINA COMP 530: Operating Systems

Intel nomenclature

* Interrupt —only refers to asynchronous interrupts

e Exception —synchronous control transfer

* Note: from the programmer’s perspective, these are
handled with the same abstractions

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

Lecture outline

* Interrupt Overview
* How interrupts work in hardware
 How interrupt handlers work in software

 How system calls work

=3\ | THE UNIVERSITY
@ ORI CAROLINA COMP 530: Operating Systems

Interrupt overview

* Each interrupt or exception includes a number
indicating its type

 E.g., 14 is a page fault, 3 is a debug breakpoint

* This number is the index into an interrupt table

=3\ | THE UNIVERSITY
@ ORI CAROLINA COMP 530: Operating Systems

X86 interrupt table

Device IRQs

0 31 47 255

Reserved for Software Configurable

the CPU

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

X86 Iinterrupt overview

e Each type of interrupt is assigned an index from 0—
255.

e 0—31 are for processor interrupts; generally fixed by
Intel

— E.g., 14 is always for page faults

e 32—255 are software configured

— 32—47 are for device interrupts (IRQs)
* Most device’s IRQ line can be configured
* Look up APICs for more info (Ch 4 of Bovet and Cesati)

— 0x80 (128 in decimal) issues system call in Linux (more on
this later)

TTTTTTTTTTTTT

of NoRTH caRoLINA COMP 530: Operating Systems

What happens (high level):
* Control jumps to the kernel

— At a prescribed address (the interrupt handler)

* The register state of the program is dumped on the
kernel’s stack
— Sometimes, extra info is loaded into CPU registers

— E.g., page faults store the faulting address that caused the
fault in the cr2 register

 Kernel code runs and handles the interrupt

 When handler completes, resume program (see
iret instr.)

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

LLLLLLLLLLLL

Important digression: Register state

e Really, really, really big idea:

— The state of a program’s execution is succinctly and
completely represented by CPU register state

* Pause a program: dump the registers in memory
e Resume a program: slurp the registers back into CPU

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

How is this configured?

 Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT
— Can be anywhere in memory
— Pointed to by special register (1dtr)

* c.f., segment registers and gdtr and 1dtr

* Entry O configures interrupt 0, and so on

=3\ | THE UNIVERSITY
@L ORI CAROLINA COMP 530: Operating Systems

X86 interrupt table

5

Linear Address of
Interrupt Table

=\ THE UNIVERSITY
@ of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

X86 interrupt table

Code Segment: Kernel Code

Segment Offset: &page fault handler //linear addr
Ring: 0 // kernel

Present: 1

Gate Type: Exception

=_N THE UNIVERSITY
ﬂ;ﬂ_ of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Software interrupts

e The int <num> instruction allows software to
raise an interrupt

— 0x80 is just a Linux convention.

* There are a lot of spare indices

— You could have multiple system call tables for different
purposes or types of processes!
* Windows does: one for the kernel and one for win32k

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Software interrupts, cont

* OSsetsring level required to raise an interrupt

— Generally, user programs can’tissue an int 14 (page
fault) manually

[

— An unauthorized int instruction causes a general
protection fault
* |nterrupt 13

=)

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

Summary

Most interrupt handling hardware state set during
boot

Each interrupt has an IDT entry specifying:
— What code to execute, privilege level to raise the interrupt

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

Lecture outline

* Interrupt Overview
 How interrupts work in hardware
* How interrupt handlers work in software

 How system calls work

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

High-level goal

 Respond to some event, return control to the
appropriate process

* What to do on:
— Network packet arrives
— Disk read completion
— Divide by zero
— System call

=3\ | THE UNIVERSITY
@ of NORTH camoniNa COMP 530: Operating Systems

Interrupt Handlers

e Just plain old kernel code
— Sort of like exception handlers in Java
— But separated from the control flow of the program

 The IDT stores a pointer to the right handler routine

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=)

Lecture outline

* Interrupt Overview
 How interrupts work in hardware
 How interrupt handlers work in software

 How system calls work

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

What is a system call?

* A function provided to applications by the OS kernel
— Generally to use a hardware abstraction (file, socket)
— Or OS-provided software abstraction (IPC, scheduling)

 Why not put these directly in the application?

— Protection of the OS/hardware from buggy/malicious
programs

— Applications are not allowed to directly interact with
hardware, or access kernel data structures

=_N THE UNIVERSITY
@ ORI CAROLINA COMP 530: Operating Systems

Ill

System call “interrupt”

* Originally, system calls issued using int instruction

e Dispatch routine was just an interrupt handler
* Like interrupts, system calls are arranged in a table
— See arch/x86/kernel/syscall_table*.S in Linux source

* Program selects the system call it wants by placing
index in eax register

— Arguments go in the other registers by calling convention
— Return value goes in eax

TTTTTTTTTTTTT

of NORTH CAROLINA COMP 530: Operating Systems

Two levels of function pointer tables

! Interrupt Table (CPU automatically walks)

0 31 47

255

(system call)

syscall handler: // Walks syscall table in software

_

Syscall Table ~350

TTTTT ”“ COMP 530: Operating Systems

How many system calls?

* Linux exports about 350 system calls

 Windows exports about 400 system calls for core
APIs, and another 800 for GUI methods

TTTTTTTTTTTTT

of NoRTH caRoLINA COMP 530: Operating Systems

But why use interrupts?

* Because protection is paramount

* Forces applications to call well-defined “public”

functions
— Rather than calling arbitrary internal kernel functions

 Example (where foo is a system call):

public foo() {
if (!permission_ok()) return —EP Calling _foo()

return _foo(); // no permission cSCIEEIAVCEIL
circumvent

} permission check

THE UNIVERSITY

of NORTH CAROLINA COMP 530: Operating Systems

at CHAPEL HILL

=

Summary
e System calls are the “public” OS APIs

 Kernel leverages interrupts to restrict applications to
specific functions

	Default Section
	Slide 1: Interrupts and System Calls
	Slide 2: First lecture…
	Slide 3: Today’s goal: Key OS building block
	Slide 4: Background: Control Flow
	Slide 5: Background: Control Flow
	Slide 6: Two types of interrupts
	Slide 7: Asynchronous Interrupt Example
	Slide 8: Intel nomenclature

	How interrupts work in hardware
	Slide 9: Lecture outline
	Slide 10: Interrupt overview
	Slide 11: x86 interrupt table
	Slide 12: x86 interrupt overview
	Slide 13: What happens (high level):
	Slide 14: Important digression: Register state
	Slide 15: How is this configured?
	Slide 16: x86 interrupt table
	Slide 17: x86 interrupt table
	Slide 18: Software interrupts
	Slide 19: Software interrupts, cont
	Slide 20: Summary

	How interrupt handlers work in software
	Slide 21: Lecture outline
	Slide 22: High-level goal
	Slide 23: Interrupt Handlers

	How system calls work
	Slide 24: Lecture outline
	Slide 25: What is a system call?
	Slide 26: System call “interrupt”
	Slide 27: Two levels of function pointer tables
	Slide 28: How many system calls?
	Slide 29: But why use interrupts?
	Slide 30: Summary

