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Lecture goal
• This lecture is about allocating small objects

– Less than one page in size (<4KB)

– Past lectures have focused on allocating physical pages or 
segments

• Understand how memory allocators work

• Understand trade-offs and current best practices
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Background: Embedded Lists
• In CS2, I learned to code linked lists like this:

– Requires 2 allocations per node: object & node

• A common C idiom is to turn this around:
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libc.soheap

Big Picture

int main () {

 struct foo *x = malloc(sizeof(struct foo));

   ...

void * malloc (ssize_t n) {

  if (heap empty)

    mmap(); // add pages to heap

  find a free block of size n;

}
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Key idea: Sub-divide a page for each malloc() call
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Today’s Lecture
• How to implement malloc() or new

– Note that new is essentially malloc + constructor

– malloc() is part of libc, and executes in the application

• malloc() gets pages of memory from the OS via 
mmap() and then sub-divides them for the 
application

• A brief history of Linux-internal kmalloc 
implementations 
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Bump allocator

• malloc (6)

• malloc (12)

• malloc(20)

• malloc (5)
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Bump allocator
• Simply “bumps” up the free pointer

• How does free() work?  It doesn’t

– Well, you could try to recycle cells if you wanted, but 
complicated bookkeeping

• Controversial observation: This is ideal for simple 
programs

– You only care about free() if you need the memory for 
something else
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Assume memory is limited
• Hoard: best-of-breed concurrent allocator

– User applications

– Seminal paper

• Your lab 3 is a simplified version of Hoard

– No concurrency, no large (>2K) objects, no realloc etc.

• There are other good designs out there

– jemalloc

– supermalloc
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Overarching issues
• Fragmentation

• Allocation and free latency

• Implementation complexity
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Fragmentation
• Review: What is it?  Why does it happen?

• What is 

– Internal fragmentation?
• Wasted space when you round an allocation up

– External fragmentation?
• When you end up with small chunks of free memory that are too 

small to be useful

• Which kind does our bump allocator have?
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Hoard: Superblocks
• At a high level, allocator operates on superblocks

– Chunk of (virtually) contiguous pages

– All objects in a superblock are the same size

• A given superblock is treated as an array of same-
sized objects

– They generalize to “powers of b > 1”; 

– In usual practice, b == 2
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Superblock intuition
512 byte 

object heap

4 KB page

(Free space)

4 KB page

next next next

next next next

Free next

Free list in 
LIFO order

Each page an 
array of 
objects

Store list pointers 
in free objects!
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Big picture (for one CPU)

13One of these per CPU (and one shared)

Free
List:

Power
of 2: 3

…

Free
List:

7

Free
List:

9

Free
List:

11

Superblocks sub-
divided differently at 

each level

Some sizes can 
be empty

10
Free
List:

Free
List:

8



COMP 530: Operating Systems

Superblock Intuition

malloc (8);

1) Find the nearest power of 2 heap (23 == 8)

2) Find free object in superblock

3) Add a superblock if needed.  Goto 2.
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malloc (400)
512 byte 

object heap

4 KB page

(Free space)

4 KB page

next next next

next next next

Free next

Pick first free 
object
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Superblock example
• Suppose my program allocates objects of sizes:

– 14, 15, 17, 34, and 40 bytes.

• How many superblocks do I need (if b ==2)?

– 3 – (16, 32, and 64 byte chunks)

• If I allocate a 15 byte object from an 16 byte 
superblock, doesn’t that yield internal 
fragmentation?

– Yes, but it is bounded to < 50%

– Give up some space to bound worst case and complexity
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High-level strategy
• Allocate a heap for each processor, and one shared 

heap

– Note: not threads, but CPUs

– Can only use as many heaps as CPUs at once

– Requires some way to figure out current processor

• Try per-CPU heap first

• If no free blocks of right size, then try global heap

– Why try this first?

• If that fails, get another superblock for per-CPU heap
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Example: malloc() on CPU 0
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CPU 0 Heap CPU 1 Heap

Global Heap

First, try 
per-CPU 

heap

Second, try 
global heap

If global heap 
full, grow 

per-CPU heap
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Big objects
• If an object size is bigger than half the size of a 

superblock, just mmap() it

– Recall, a superblock is on the order of pages already

• What about fragmentation?

– Example: 4097 byte object (1 page + 1 byte)

– Argument: More trouble than it is worth
• Extra bookkeeping, potential contention, and potential bad cache 

behavior 
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Memory free
• Simply put back on free list within its superblock

• How do you tell which superblock an object is from?

– Suppose superblock is 8k (2pages)
• And always mapped at an address evenly divisible by 8k

– Object at address 0x431a01c 

– Just mask out the low 13 bits!

– Came from a superblock that starts at 0x431a000

• Simple math can tell you where an object came 
from!
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free(x)
512 byte 

object heap

4 KB page

(Free space)

4 KB page

next next

next

Free list

X
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X

next

next

Add to front 
of free list
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LIFO
• Why are objects re-allocated most-recently used 

first?

– Aren’t all good OS heuristics FIFO?

– More likely to be already in cache (hot)

– Recall from undergrad architecture that it takes quite a few 
cycles to load data into cache from memory

– If it is all the same, let’s try to recycle the object already in 
our cache
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Hoard Simplicity
• The bookkeeping for alloc and free is straightforward

– Many allocators are quite complex (looking at you, slab)

• Overall: (# CPUs + 1) heaps

– Per heap: 1 list of superblocks per object size (22—211)

– Per superblock: 
• Need to know which/how many objects are free

– LIFO list of free blocks
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CPU 0 Heap, Illustrated

24One of these per CPU (and one shared)
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Hoard summary
• Really nice piece of work

• Establishes nice balance among concerns

• Good performance results

– It is ok if you don’t understand synchronization and 
alignment issues
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Part 2: Linux kernel allocators
• malloc() and friends, but in the kernel

• Focus today on dynamic allocation of small objects

– Later class on management of physical pages

– And allocation of page ranges to allocators
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kmem_caches
• Linux has a kmalloc and kfree, but caches preferred 

for common object types

• Like Hoard, a given cache allocates a specific type of 
object

– Ex: a cache for file descriptors, a cache for inodes, etc.

• Unlike Hoard, objects of the same size not mixed

– Allocator can do initialization automatically

– May also need to constrain where memory comes from
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Caches (2)
• Caches can also keep a certain “reserve” capacity

– No guarantees, but allows performance tuning

– Example: I know I’ll have ~100 list nodes frequently 
allocated and freed; target the cache capacity at 120 
elements to avoid expensive page allocation

– Often called a memory pool

• Universal interface: can change allocator underneath

• Kernel has kmalloc and kfree too

– Implemented on caches of various powers of 2 (familiar?)
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Superblocks to slabs
• The default cache allocator (at least as of early 2.6) 

was the slab allocator

• Slab is a chunk of contiguous pages, similar to a 
superblock in Hoard

• Similar basic ideas, but substantially more complex 
bookkeeping

– The slab allocator came first, historically
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Complexity backlash
• I’ll spare you the details, but slab bookkeeping is 

complicated

• 2 groups upset:  (guesses who?)

– Users of very small systems

– Users of large multi-processor systems
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Small systems
• Think 4MB of RAM on a small device (thermostat)

• As system memory gets tiny, the bookkeeping 
overheads become a large percent of total system 
memory

• How bad is fragmentation really going to be?

– Note: not sure this has been carefully studied; may just be 
intuition
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SLOB allocator
• Simple List Of Blocks

• Just keep a free list of each available chunk and its 
size

• Grab the first one big enough to work

– Split block if leftover bytes

• No internal fragmentation, obviously

• External fragmentation?  Yes.  Traded for low 
overheads
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Large systems
• For very large (thousands of CPU) systems, complex 

allocator bookkeeping gets out of hand

• Example: slabs try to migrate objects from one CPU 
to another to avoid synchronization

– Per-CPU * Per-CPU bookkeeping
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SLUB Allocator
• The Unqueued Slab Allocator

• A much more Hoard-like design

– All objects of same size from same slab

– Simple free list per slab

– No cross-CPU nonsense

• Now the default Linux cache allocator
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Conclusion
• Different allocation strategies have different trade-

offs

– No one, perfect solution

• Allocators try to optimize for multiple variables:

– Fragmentation, speed, simplicity, etc.

• Understand tradeoffs: Hoard vs Slab vs. SLOB

• [Personal note]
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Misc notes
• When is a superblock considered free and eligible to 

be move to the global bucket?

– See figure 2, free(), line 9

– Essentially a configurable “empty fraction”

• Is a "used block" count stored somewhere? 

– Not clear, but probably
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