
COMP 530: Operating Systems

The Art and Science of
(small) Memory Allocation

Don Porter

1

COMP 530: Operating Systems

Lecture goal
• This lecture is about allocating small objects

– Less than one page in size (<4KB)

– Past lectures have focused on allocating physical pages or
segments

• Understand how memory allocators work

• Understand trade-offs and current best practices

2

COMP 530: Operating Systems

Background: Embedded Lists
• In CS2, I learned to code linked lists like this:

– Requires 2 allocations per node: object & node

• A common C idiom is to turn this around:

3

next:
object:

next:
object:

next:
object:

A:
B:
…

. . .

A:
B:
…

A:
B:
…

Next:
A:
B:
…

Next:
A:
B:
…

Next:
A:
B:
…

. . .

COMP 530: Operating Systems

libc.soheap

Big Picture

int main () {

 struct foo *x = malloc(sizeof(struct foo));

 ...

void * malloc (ssize_t n) {

 if (heap empty)

 mmap(); // add pages to heap

 find a free block of size n;

}

4

Virtual Address Space

0 0xffffffff

Code
(.text)

stack
heap

(empty)

n

Key idea: Sub-divide a page for each malloc() call

COMP 530: Operating Systems

Today’s Lecture
• How to implement malloc() or new

– Note that new is essentially malloc + constructor

– malloc() is part of libc, and executes in the application

• malloc() gets pages of memory from the OS via
mmap() and then sub-divides them for the
application

• A brief history of Linux-internal kmalloc
implementations

5

COMP 530: Operating Systems

Bump allocator

• malloc (6)

• malloc (12)

• malloc(20)

• malloc (5)

6

COMP 530: Operating Systems

Bump allocator
• Simply “bumps” up the free pointer

• How does free() work? It doesn’t

– Well, you could try to recycle cells if you wanted, but
complicated bookkeeping

• Controversial observation: This is ideal for simple
programs

– You only care about free() if you need the memory for
something else

7

COMP 530: Operating Systems

Assume memory is limited
• Hoard: best-of-breed concurrent allocator

– User applications

– Seminal paper

• Your lab 3 is a simplified version of Hoard

– No concurrency, no large (>2K) objects, no realloc etc.

• There are other good designs out there

– jemalloc

– supermalloc

8

COMP 530: Operating Systems

Overarching issues
• Fragmentation

• Allocation and free latency

• Implementation complexity

9

COMP 530: Operating Systems

Fragmentation
• Review: What is it? Why does it happen?

• What is

– Internal fragmentation?
• Wasted space when you round an allocation up

– External fragmentation?
• When you end up with small chunks of free memory that are too

small to be useful

• Which kind does our bump allocator have?

10

COMP 530: Operating Systems

Hoard: Superblocks
• At a high level, allocator operates on superblocks

– Chunk of (virtually) contiguous pages

– All objects in a superblock are the same size

• A given superblock is treated as an array of same-
sized objects

– They generalize to “powers of b > 1”;

– In usual practice, b == 2

11

COMP 530: Operating Systems

Superblock intuition
512 byte

object heap

4 KB page

(Free space)

4 KB page

next next next

next next next

Free next

Free list in
LIFO order

Each page an
array of
objects

Store list pointers
in free objects!

12

COMP 530: Operating Systems

Big picture (for one CPU)

13One of these per CPU (and one shared)

Free
List:

Power
of 2: 3

…

Free
List:

7

Free
List:

9

Free
List:

11

Superblocks sub-
divided differently at

each level

Some sizes can
be empty

10
Free
List:

Free
List:

8

COMP 530: Operating Systems

Superblock Intuition

malloc (8);

1) Find the nearest power of 2 heap (23 == 8)

2) Find free object in superblock

3) Add a superblock if needed. Goto 2.

14

COMP 530: Operating Systems

malloc (400)
512 byte

object heap

4 KB page

(Free space)

4 KB page

next next next

next next next

Free next

Pick first free
object

15

COMP 530: Operating Systems

Superblock example
• Suppose my program allocates objects of sizes:

– 14, 15, 17, 34, and 40 bytes.

• How many superblocks do I need (if b ==2)?

– 3 – (16, 32, and 64 byte chunks)

• If I allocate a 15 byte object from an 16 byte
superblock, doesn’t that yield internal
fragmentation?

– Yes, but it is bounded to < 50%

– Give up some space to bound worst case and complexity

16

COMP 530: Operating Systems

High-level strategy
• Allocate a heap for each processor, and one shared

heap

– Note: not threads, but CPUs

– Can only use as many heaps as CPUs at once

– Requires some way to figure out current processor

• Try per-CPU heap first

• If no free blocks of right size, then try global heap

– Why try this first?

• If that fails, get another superblock for per-CPU heap

17

COMP 530: Operating Systems

Example: malloc() on CPU 0

18

CPU 0 Heap CPU 1 Heap

Global Heap

First, try
per-CPU

heap

Second, try
global heap

If global heap
full, grow

per-CPU heap

COMP 530: Operating Systems

Big objects
• If an object size is bigger than half the size of a

superblock, just mmap() it

– Recall, a superblock is on the order of pages already

• What about fragmentation?

– Example: 4097 byte object (1 page + 1 byte)

– Argument: More trouble than it is worth
• Extra bookkeeping, potential contention, and potential bad cache

behavior

19

COMP 530: Operating Systems

Memory free
• Simply put back on free list within its superblock

• How do you tell which superblock an object is from?

– Suppose superblock is 8k (2pages)
• And always mapped at an address evenly divisible by 8k

– Object at address 0x431a01c

– Just mask out the low 13 bits!

– Came from a superblock that starts at 0x431a000

• Simple math can tell you where an object came
from!

20

COMP 530: Operating Systems

free(x)
512 byte

object heap

4 KB page

(Free space)

4 KB page

next next

next

Free list

X

21

X

next

next

Add to front
of free list

COMP 530: Operating Systems

LIFO
• Why are objects re-allocated most-recently used

first?

– Aren’t all good OS heuristics FIFO?

– More likely to be already in cache (hot)

– Recall from undergrad architecture that it takes quite a few
cycles to load data into cache from memory

– If it is all the same, let’s try to recycle the object already in
our cache

22

COMP 530: Operating Systems

Hoard Simplicity
• The bookkeeping for alloc and free is straightforward

– Many allocators are quite complex (looking at you, slab)

• Overall: (# CPUs + 1) heaps

– Per heap: 1 list of superblocks per object size (22—211)

– Per superblock:
• Need to know which/how many objects are free

– LIFO list of free blocks

23

COMP 530: Operating Systems

CPU 0 Heap, Illustrated

24One of these per CPU (and one shared)

Free
List:

Order: 5

…

Free
List:

7

Free
List:

9

Free
List:

11

Free List: LIFO
order

Some sizes can
be empty

10
Free
List:

Free
List:

8

COMP 530: Operating Systems

Hoard summary
• Really nice piece of work

• Establishes nice balance among concerns

• Good performance results

– It is ok if you don’t understand synchronization and
alignment issues

25

COMP 530: Operating Systems

Part 2: Linux kernel allocators
• malloc() and friends, but in the kernel

• Focus today on dynamic allocation of small objects

– Later class on management of physical pages

– And allocation of page ranges to allocators

26

COMP 530: Operating Systems

kmem_caches
• Linux has a kmalloc and kfree, but caches preferred

for common object types

• Like Hoard, a given cache allocates a specific type of
object

– Ex: a cache for file descriptors, a cache for inodes, etc.

• Unlike Hoard, objects of the same size not mixed

– Allocator can do initialization automatically

– May also need to constrain where memory comes from

27

COMP 530: Operating Systems

Caches (2)
• Caches can also keep a certain “reserve” capacity

– No guarantees, but allows performance tuning

– Example: I know I’ll have ~100 list nodes frequently
allocated and freed; target the cache capacity at 120
elements to avoid expensive page allocation

– Often called a memory pool

• Universal interface: can change allocator underneath

• Kernel has kmalloc and kfree too

– Implemented on caches of various powers of 2 (familiar?)

28

COMP 530: Operating Systems

Superblocks to slabs
• The default cache allocator (at least as of early 2.6)

was the slab allocator

• Slab is a chunk of contiguous pages, similar to a
superblock in Hoard

• Similar basic ideas, but substantially more complex
bookkeeping

– The slab allocator came first, historically

29

COMP 530: Operating Systems

Complexity backlash
• I’ll spare you the details, but slab bookkeeping is

complicated

• 2 groups upset: (guesses who?)

– Users of very small systems

– Users of large multi-processor systems

30

COMP 530: Operating Systems

Small systems
• Think 4MB of RAM on a small device (thermostat)

• As system memory gets tiny, the bookkeeping
overheads become a large percent of total system
memory

• How bad is fragmentation really going to be?

– Note: not sure this has been carefully studied; may just be
intuition

31

COMP 530: Operating Systems

SLOB allocator
• Simple List Of Blocks

• Just keep a free list of each available chunk and its
size

• Grab the first one big enough to work

– Split block if leftover bytes

• No internal fragmentation, obviously

• External fragmentation? Yes. Traded for low
overheads

32

COMP 530: Operating Systems

Large systems
• For very large (thousands of CPU) systems, complex

allocator bookkeeping gets out of hand

• Example: slabs try to migrate objects from one CPU
to another to avoid synchronization

– Per-CPU * Per-CPU bookkeeping

33

COMP 530: Operating Systems

SLUB Allocator
• The Unqueued Slab Allocator

• A much more Hoard-like design

– All objects of same size from same slab

– Simple free list per slab

– No cross-CPU nonsense

• Now the default Linux cache allocator

34

COMP 530: Operating Systems

Conclusion
• Different allocation strategies have different trade-

offs

– No one, perfect solution

• Allocators try to optimize for multiple variables:

– Fragmentation, speed, simplicity, etc.

• Understand tradeoffs: Hoard vs Slab vs. SLOB

• [Personal note]

35

COMP 530: Operating Systems

Misc notes
• When is a superblock considered free and eligible to

be move to the global bucket?

– See figure 2, free(), line 9

– Essentially a configurable “empty fraction”

• Is a "used block" count stored somewhere?

– Not clear, but probably

36

	Slide 1: The Art and Science of (small) Memory Allocation
	Slide 2: Lecture goal
	Slide 3: Background: Embedded Lists
	Slide 4: Big Picture
	Slide 5: Today’s Lecture
	Slide 6: Bump allocator
	Slide 7: Bump allocator
	Slide 8: Assume memory is limited
	Slide 9: Overarching issues
	Slide 10: Fragmentation
	Slide 11: Hoard: Superblocks
	Slide 12: Superblock intuition
	Slide 13: Big picture (for one CPU)
	Slide 14: Superblock Intuition
	Slide 15: malloc (400)
	Slide 16: Superblock example
	Slide 17: High-level strategy
	Slide 18: Example: malloc() on CPU 0
	Slide 19: Big objects
	Slide 20: Memory free
	Slide 21: free(x)
	Slide 22: LIFO
	Slide 23: Hoard Simplicity
	Slide 24: CPU 0 Heap, Illustrated
	Slide 25: Hoard summary
	Slide 26: Part 2: Linux kernel allocators
	Slide 27: kmem_caches
	Slide 28: Caches (2)
	Slide 29: Superblocks to slabs
	Slide 30: Complexity backlash
	Slide 31: Small systems
	Slide 32: SLOB allocator
	Slide 33: Large systems
	Slide 34: SLUB Allocator
	Slide 35: Conclusion
	Slide 36: Misc notes

