
COMP 530: Operating Systems

Page Replacement
Algorithms

Don Porter

Portions courtesy Emmett Witchel and Kevin Jeffay

1

COMP 530: Operating Systems

• Key concept: Demand paging

– Load pages into memory only when a

page fault occurs

• Issues:

– Placement strategies

• Place pages anywhere – no placement

policy required

– Replacement strategies

• What to do when there exist more jobs

than can fit in memory

– Load control strategies

• Determining how many jobs can be

in memory at one time

Operating System

User Program 1

User Program 2User Program 2

User Program n

..
.

Memory

Virtual Memory Management: Recap

COMP 530: Operating Systems

• Typically i VASi >> Physical Memory

• With demand paging, physical memory fills quickly

• When a process faults & memory is full, some page must be
swapped out

– Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

Page Replacement Algorithms

COMP 530: Operating Systems

• Record a trace of the pages accessed by a process

– Example: (Virtual page, offset) address trace...

(3,0), (1,9), (4,1), (2,1), (5,3), (2,0), (1,9), (2,4), (3,1), (4,8)

– generates page trace

3, 1, 4, 2, 5, 2, 1, 2, 3, 4 (represented as c, a, d, b, e, b, a, b, c, d)

• Hardware can tell OS when a new page is loaded into the TLB
– Set a used bit in the page table entry

– Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and
record the number of page faults generated

fewer faults better performance

Page Replacement: Eval. Methodology

COMP 530: Operating Systems

• Replace the page that won’t be needed for the longest time in the
future

c a d b e b a b c d

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100

Requests

Time

Time page
needed next

Initial allocation

Optimal Strategy: Clairvoyant Replacement

COMP 530: Operating Systems

• Replace the page that won’t be needed for the longest time in the
future

• Also called Belady’s MIN algorithm (cuz it MINimizes swapping!)

c a d b e b a b c d

a a a a a a a a a d

b b b b b b b b b b

c c c c c c c c c c

Faults • •

P
ag

e
Fr

am
es

d d d d e e e e e e

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100

Requests

Time

a = 7
b = 6
c = 9
d = 10

Time page
needed next

a = 15
b = 11
c = 13
d = 14

Optimal Strategy: Clairvoyant Replacement

COMP 530: Operating Systems

Where on the motherboard is my crystal
ball?

• Hint: it isn’t there

• So we have to use our knowledge at each point in
time

– Technical keyword: online algorithm

7

COMP 530: Operating Systems

• Simple to implement

– A single pointer suffices

• Performance with 4 page frames:

c a d b e b a b c d

Faults

Pa
ge

Fr
am

es

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Physical

Memory
1

2

0

Frame List

Local Replacement: FIFO

COMP 530: Operating Systems

• Simple to implement

– A single pointer suffices

• Performance with 4 page frames:

c a d b e b a b c d

a a a a e e e e e d

b b b b b b a a a a

c c c c c c c b b b

Faults • • • • •

Pa
ge

Fr
am

es

d d d d d d d d c c

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Physical

Memory
0

2

3

Frame List

Local Replacment: FIFO

COMP 530: Operating Systems

• Use the recent past as a predictor of the near future

• Replace the page that hasn’t been referenced for the longest time

c a d b e b a b c d

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100
Requests

Time

Time page
last used

Least Recently Used (LRU) Replacement

COMP 530: Operating Systems

c a d b e b a b c d

a a a a a a a a a a

b b b b b b b b b b

c c c c e e e e e d

Faults • • •

P
ag

e
Fr

am
es

d d d d d d d d c c

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100
Requests

Time

a = 2
b = 4
c = 1
d = 3

Time page
last used

a = 7
b = 8
e = 5
d = 3

a = 7
b = 8
e = 5
c = 9

Least Recently Used (LRU) Replacement
• Use the recent past as a predictor of the near future

• Replace the page that hasn’t been referenced for the longest time

COMP 530: Operating Systems

• Maintain a “stack” of recently used pages

c a d b e b a b c d

a a a a a a a a a a

b b b b b b b b b b

c c c c e e e e e d

Faults • • •

P
ag

e
Fr

am
es

d d d d d d d d c c

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100

Requests

Time

LRU
page stack

Page to replace

How to Implement LRU?

COMP 530: Operating Systems

• Maintain a “stack” of recently used pages

c a d b e b a b c d

a a a a a a a a a a

b b b b b b b b b b

c c c c e e e e e d

Faults • • •

P
ag

e
Fr

am
es

d d d d d d d d c c

0

1

2

3

a

b

c

d

1 2 3 4 5 6 7 8 9 100

Requests

Time

c

c

a

c

a

d

c

a

d

b

a

d

b

e

a

d

e

b

d

e

b

a

d

e

a

b

e

a

b

c

a

b

c

d
LRU
page stack

Page to replace c d e

How to Implement LRU?

COMP 530: Operating Systems

• What is the goal of a page replacement

algorithm?

– A. Make life easier for OS implementer

– B. Reduce the number of page faults

– C. Reduce the penalty for page faults when they

occur

– D. Minimize CPU time of algorithm

COMP 530: Operating Systems

• Maintain a circular list of pages resident in memory
– Use a clock (or used/referenced) bit to track how often a page is accessed

– The bit is set whenever a page is referenced

• Clock hand sweeps over pages looking for one with used bit = 0
– Replace pages that haven’t been referenced for one complete revolution

of the clock

func Clock_Replacement

begin

 while (victim page not found) do
 if(used bit for current page = 0) then
 replace current page
 else

 reset used bit
 end if

 advance clock pointer
 end while

end Clock_Replacement

resident bit
used bit
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1

Approximate LRU: The Clock Algorithm

COMP 530: Operating Systems

d

c

b

a

c

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

d

0

Requests

Time

Page table entries
for resident pages:

1

d

c

b

a

a

2

d

c

b

a

d

3

d

c

b

a

b

4

e

5

b

6

a

7

b

8

c

9

d

10

1

1

1

1

a

b

c

d

Clock Example

COMP 530: Operating Systems

d

c

b

a

c

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

d

0

Requests

Time

Page table entries
for resident pages:

1

d

c

b

a

a

2

d

c

b

a

d

3

d

c

b

a

b

4

d

c

b

e

e

5

•

d

c

b

e

b

6

d

a

b

e

a

7

•

d

a

b

e

b

8

c

a

b

e

c

9

•

c

a

b

d

d

10

•

1

0

0

0

e

b

c

d

1

1

0

0

e

b

c

d

1

0

1

0

e

b

a

d

1

1

1

0

e

b

a

d

1

1

1

1

e

b

a

c

1

0

0

0

d

b

a

c

1

1

1

1

a

b

c

d

Clock Example

COMP 530: Operating Systems

• There is a significant cost to replacing “dirty” pages
– Why?

• Must write back contents to disk before freeing!

• Modify the Clock algorithm to allow dirty pages to always survive one
sweep of the clock hand
– Use both the dirty bit and the used bit to drive replacement

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 191Page 3: 1

0

0

1

0

1

Before clock
sweep

After clock
sweep

used dirty

0

0

1

1

0

1

0

1

used dirty

0

0

0

0

0

1

replace page

Second Chance Algorithm

Optimization: Second Chance Algorithm

resident bit
used bit
frame number

COMP 530: Operating Systems

d

c

b

a

c

Faults

Pa
ge

Fr
am

es

0

1

2

3

a

b

c

d

0

Requests

Time

Page table
entries

for resident
pages:

1

d

c

b

a

aw

2

d

c

b

a

d

3

d

c

b

a

bw

4

b

6

aw

7

b

8

10

10

10

10

a

b

c

d

e

5

c

9

d

10

Second Chance Example

COMP 530: Operating Systems

d

c

b

a

c

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

d

0

Requests

Time

Page table
entries for

resident
pages:

1

d

c

b

a

aw

2

d

c

b

a

d

3

d

c

b

a

bw

4

d

e

b

a

b

6

d

e

b

a

aw

7

d

e

b

a

b

8

00

00

10

00

a*

b*

e

d

00

10

10

00

a

b

e

d

11

10

10

00

a

b

e

d

11

10

10

10

a

b

e

c

00

10

00

00

a*

d

e

c

10

10

10

10

a

b

c

d

11

11

10

10

a

b

c

d

d

e

b

a

e

5

•

c

e

b

a

c

9

•

c

e

d

a

d

10

•

Second Chance Example

COMP 530: Operating Systems

Local vs. Global Replacement
• The examples to date assume either:

– Only one process on the system (global, but facile), or

– One process that has only 4 page frames (local)

• Let’s now consider the issue of when to take memory
away from one process and give it to another
– Truly global page replacement

• Our goal is still to minimize page faults — system
wide

• Let’s start by considering whether to take memory
away from a process…

21

COMP 530: Operating Systems

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

a b c d a b c d a b c d

Faults

P
ag

e
Fr

am
es 0

1

2

a

b

c

1 2 3 4 5 6 7 8 9 10 11 120

Requests

Time

–

Local Replacement and Memory Sensitivity

COMP 530: Operating Systems

Faults

P
ag

e
Fr

am
es

0

1

2

3

a

b

c

a b c d a b c d a b c d

a a a d d d c c c b b b

b b b b a a a d d d c c

c c c c c b b b a a a d

Faults • • • • • • • • •

P
ag

e
Fr

am
es 0

1

2

a

b

c

1 2 3 4 5 6 7 8 9 10 11 120

Requests

Time

–

a a a a a a a a a a a a

b b b b b b b b b b b b

c c c c c c c c c c c c

 d d d d d d d d d

 •

Local Replacement and Memory Sensitivity

COMP 530: Operating Systems

Key observations
• Decreasing the number of page frames for a process may

increase swapping
– But it isn’t a linear relationship

• There is a low-water mark for every process where it
goes from rarely swapping to constantly swapping
– Goal 1: Don’t let a process stay below this line

• And some situations where a process is not actually using
all of its page frames
– Goal 2: Find those cases and reclaim memory that won’t be

missed

• But how do we know?
– Let’s start by revisiting the clairvoyant approach

24

COMP 530: Operating Systems

• VMIN — Replace a page that is not referenced in the next
accesses

• Example: = 4

c c d b c e c e a d

Faults

P
ag

es
in

 M
em

o
ry Page a

Page b

Page c

Page d

•

-

-

•

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e -

t = 0

t = -1

Optimal Replacement with a Variable
Number of Frames

COMP 530: Operating Systems

c c d b c e c e a d
- - - - - - - - F -

- - - F - - - - - -

F • • • • • • - - -

Faults • • • • •

P
ag

es
in

 M
em

o
ry

• • • - - - - - - F

Page a

Page b

Page c

Page d

•

-

-

•

1 2 3 4 5 6 7 8 9 100

Requests

Time

- - - - - F • • - -Page e -

t = 0

t = -1

• VMIN — Replace a page if not referenced in the next accesses

– Not necessarily just on a page fault (can also happen when waiting/blocked)

– Calculate on each step, even if no fault

• Example: = 4

Optimal Replacement with a Variable
Number of Frames

COMP 530: Operating Systems

Key take-aways from VMIN
• We can profitably unmap pages that are not likely to

be used in the future

– May accept more swapping for the current process, in
exchange for less total swapping

• But, alas, we still don’t have clairvoyance…

– But we can use past behavior to guess…

27

COMP 530: Operating Systems

• Local page replacement

– LRU — Ages pages based on when they were last used

– FIFO — Ages pages based on when they’re brought into memory

• Towards global page replacement ... with variable number of

page frames allocated to processes

The principle of locality

o 90% of the execution of a program is sequential

o Most iterative constructs consist of a relatively small number of instructions

o When processing large data structures, the dominant cost is sequential

processing on individual structure elements

o Temporal vs. physical locality

Page Replacement Performance

COMP 530: Operating Systems

• Assume recently referenced pages are likely to be referenced again

soon…

• ... and only keep those pages recently referenced in memory (called

the working set)

– Thus pages may be removed even when no page fault occurs
– The number of frames allocated to a process will vary over time

• A process is allowed to execute only if its working set fits into

memory

– The working set model performs implicit load control

The Working Set Model

COMP 530: Operating Systems

• Keep track of the last references (including faulting reference)
– The pages referenced during the last memory accesses are

 the working set
– is called the window size

• Example: Working set computation, = 4 references:

c c d b c e c e a d

Faults

P
ag

es
in

 M
em

o
ry Page a

Page b

Page c

Page d

•

-

-

•

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e •

t = 0

t = -1

t = -2

Working Set Page Replacement

COMP 530: Operating Systems

c c d b c e c e a d
• • • - - - - - F •

- - - F • • • - - -

F • • • • • • • • •

Faults • • • • •

P
ag

es
in

 M
em

o
ry

• • • • • • - - - F

Page a

Page b

Page c

Page d

•

-

-

•

1 2 3 4 5 6 7 8 9 100

Requests

Time

• - - - - F • • • •Page e •

t = 0

t = -1

t = -2

• Keep track of the last references
– The pages referenced during the last memory accesses are

 the working set

– is called the window size

• Example: Working set computation, = 4 references:

Working Set Page Replacement

COMP 530: Operating Systems

• An alternate approach to computing working set

• Explicitly attempt to minimize page faults
– When page fault frequency is high — increase working set

– When page fault frequency is low — decrease working set

Algorithm:
 Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault
Record the time, tlast, of the last page fault

If the time between page faults is “large” then reduce the working
set

If tcurrent – tlast > , then remove from memory all pages not
referenced in [tlast, tcurrent]

If the time between page faults is “small” then increase working set
If tcurrent – tlast ≤ , then add faulting page to the working set

Page-Fault-Frequency Page Replacment

COMP 530: Operating Systems

• Example, window size = 2

• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent] from

the working set

• If tcurrent – tlast ≤ 2, just add faulting page to the working set

tcur – tlast

c c d b c e c e a d

Faults

P
ag

es
in

 M
em

o
ry Page a

Page b

Page c

Page d

•

-

-

•

1 2 3 4 5 6 7 8 9 100

Requests

Time

Page e •

Page Fault Frequency Replacement

COMP 530: Operating Systems

3tcur – tlast 2 3 1

c c d b c e c e a d
• • • - - - - - F •

- - - F • • • • - -

F • • • • • • • • •

Faults • • • • •

P
ag

es
in

 M
em

o
ry

• • • • • • • • - F

Page a

Page b

Page c

Page d

•

-

-

•

1 2 3 4 5 6 7 8 9 100

Requests

Time

• • • - - F • • • •Page e •

1

• Example, window size = 2

• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent] from

the working set

• If tcurrent – tlast ≤ 2, just add faulting page to the working set

Page Fault Frequency Replacement

COMP 530: Operating Systems

What does theory teach us?
• Famous result from Sleator and Tarjan’s “Amortized

Efficiency of List Update and Paging Rules”, STOC
1985:
– “We analyze the amortized complexity of LRU, showing

that its efficiency differs from that of the off-line paging
rule (Belady’s MlN algorithm) by a factor that depends on
the size of fast memory. No on-line paging algorithm has
better amortized performance.”

• Online here just means no knowledge of the future (including
observing prior executions)

• And, although not stated here, excludes randomized algorithms

• Colloquially, sometimes taken to mean:
– “LRU is optimal” for swapping

35

COMP 530: Operating Systems

What the paper shows
• Their Theorem 5 shows a worst-case lower bound on any

online algorithm (call it LRU) relative to clairvoyant
– There is a trade-off space between how much extra memory

LRU has vs how many additional swaps

• My take-aways:
– Mem size dominates perf.

– And not about LRU specifically

36

Sw
ap

s

Additional memory given to online
algorithm

Worst-case online swapping,
relative to clairvoyantSame memory:

adversary can make
every access fault

Infinite memory:
No swaps

COMP 530: Operating Systems

What the paper shows (2)
• Theorem 6 (paraphrased):

– For LRU, FIFO, and some other non-terrible replacement
algorithms the bound is tight

• Can’t do more than a constant worse than this

• My take-aways:

– For non-brain-dead replacement algorithms, the previous
bound is tight, within an additive constant

• Brain-dead === LFU, LIFO, or ones that deliberately choose the
opposite of recent history

– Result not specific to LRU --- includes FIFO

37

COMP 530: Operating Systems

Can you do better in practice?
• Sure!

• This is a worst-case analysis with absolutely no
assumptions about program behavior, not an average
case analysis

38

COMP 530: Operating Systems

LRU not optimal for reduced associativity
• Another common misunderstanding of this result is

that LRU is optimal for cache replacement in limited
associativity.

– Virtual memory is fully associative, CPU caches restrict
placement of data to certain portions of the cache

• Recent work (Bender et al., under submission)
proves that LRU is in fact not optimal

– Some randomization actually improves performance
compared to LRU by dealing with hotspots more
effectively

– Note: Shameless plug of my own research (I’m a coauthor)

39

COMP 530: Operating Systems

• High multiprogramming level

Issues
➢ What criterion should be used to determine when to increase or

decrease the MPL?
➢ Which task should be swapped out if the MPL must be reduced?

Low paging overhead
➢ MPLmin = 1 process

minimum number of frames required for a process to execute

number of page frames
➢ MPLmax =

Load Control: Fundamental Trade-off

COMP 530: Operating Systems

i.e., based on CPU utilization

• Assume memory is nearly full

• A chain of page faults occur
– A queue of processes forms at

the paging device

• CPU utilization falls

• Operating system increases MPL
– New processes fault, taking memory away from existing processes

• CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

I/O
Device

..
.

Paging
Device

CPU

Load Control Done Wrong

COMP 530: Operating Systems

Better criteria for load control: Adjust MPL so that:
➢ mean time between page faults (MTBF) = page fault service time

(PFST)

➢ WSi = size of memory

1.0

CPU
Utilization

Multiprogramming Level

• Thrashing can be ameliorated by local page replacement

Nmax NI/O-BALANCE

MTBF
PFST

1.0

Load Control and Thrashing

COMP 530: Operating Systems

• When the multiprogramming level should be
decreased, which process should be swapped
out?

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

RunningReady

?

Paging Disk

Physical
Memory

➢ Lowest priority process?
➢ Smallest process?
➢ Largest process?
➢ Oldest process?
➢ Faulting process?

Load Control and Thrashing

	Slide 1: Page Replacement Algorithms
	Slide 2: Virtual Memory Management: Recap
	Slide 3: Page Replacement Algorithms
	Slide 4: Page Replacement: Eval. Methodology
	Slide 5: Optimal Strategy: Clairvoyant Replacement
	Slide 6: Optimal Strategy: Clairvoyant Replacement
	Slide 7: Where on the motherboard is my crystal ball?
	Slide 8: Local Replacement: FIFO
	Slide 9: Local Replacment: FIFO
	Slide 10: Least Recently Used (LRU) Replacement
	Slide 11: Least Recently Used (LRU) Replacement
	Slide 12: How to Implement LRU?
	Slide 13: How to Implement LRU?
	Slide 14
	Slide 15: Approximate LRU: The Clock Algorithm
	Slide 16: Clock Example
	Slide 17: Clock Example
	Slide 18: Optimization: Second Chance Algorithm
	Slide 19: Second Chance Example
	Slide 20: Second Chance Example
	Slide 21: Local vs. Global Replacement
	Slide 22: Local Replacement and Memory Sensitivity
	Slide 23: Local Replacement and Memory Sensitivity
	Slide 24: Key observations
	Slide 25: Optimal Replacement with a Variable Number of Frames
	Slide 26: Optimal Replacement with a Variable Number of Frames
	Slide 27: Key take-aways from VMIN
	Slide 28: Page Replacement Performance
	Slide 29: The Working Set Model
	Slide 30: Working Set Page Replacement
	Slide 31: Working Set Page Replacement
	Slide 32: Page-Fault-Frequency Page Replacment
	Slide 33: Page Fault Frequency Replacement
	Slide 34
	Slide 35: What does theory teach us?
	Slide 36: What the paper shows
	Slide 37: What the paper shows (2)
	Slide 38: Can you do better in practice?
	Slide 39: LRU not optimal for reduced associativity
	Slide 40: Load Control: Fundamental Trade-off
	Slide 41: Load Control Done Wrong
	Slide 42: Load Control and Thrashing
	Slide 43: Load Control and Thrashing

