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• Key concept: Demand paging 

– Load pages into memory only when a 

page fault occurs 

• Issues:

– Placement strategies

• Place pages anywhere – no placement 

policy required 

– Replacement strategies

• What to do when there exist more jobs 

than can fit in memory

– Load control strategies

• Determining how many jobs can be 

in memory at one time

Operating System

User Program 1

User Program 2User Program 2

User Program n

..
.

Memory

Virtual Memory Management: Recap
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• Typically i VASi  >> Physical Memory

• With demand paging, physical memory fills quickly

• When a process faults & memory is full, some page must be 
swapped out

– Handling a page fault now requires 2 disk accesses not 1!

Which page should be replaced?
Local replacement   — Replace a page of the faulting process
Global replacement — Possibly replace the page of another process

Page Replacement Algorithms
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• Record a trace of the pages accessed by a process

– Example: (Virtual page, offset) address trace...

(3,0),  (1,9),  (4,1),  (2,1),  (5,3),  (2,0),  (1,9),  (2,4),  (3,1),  (4,8)

– generates page trace

3, 1, 4, 2, 5, 2, 1, 2, 3, 4  (represented as c, a, d, b, e, b, a, b, c, d)

• Hardware can tell OS when a new page is loaded into the TLB
– Set a used bit in the page table entry

– Increment or shift a register

Simulate the behavior of a page replacement algorithm on the trace and 
record the number of page faults generated

fewer faults           better performance

Page Replacement: Eval. Methodology
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• Replace the page that won’t be needed for the longest time in the 
future
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Optimal Strategy: Clairvoyant Replacement
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• Replace the page that won’t be needed for the longest time in the 
future

• Also called Belady’s MIN algorithm (cuz it MINimizes swapping!)
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Where on the motherboard is my crystal 
ball?

• Hint: it isn’t there

• So we have to use our knowledge at each point in 
time

– Technical keyword: online algorithm

7
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• Simple to implement

– A single pointer suffices

• Performance with 4 page frames:
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• Simple to implement

– A single pointer suffices

• Performance with 4 page frames:
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• Use the recent past as a predictor of the near future

• Replace the page that hasn’t been referenced for the longest time
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• Maintain a “stack” of recently used pages
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• Maintain a “stack” of recently used pages
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• What is the goal of a page replacement 

algorithm?

– A. Make life easier for OS implementer

– B. Reduce the number of page faults

– C. Reduce the penalty for page faults when they 

occur

– D. Minimize CPU time of algorithm
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• Maintain a circular list of pages resident in memory
– Use a clock (or used/referenced) bit to track how often a page is accessed 

– The bit is set whenever a page is referenced

• Clock hand sweeps over pages looking for one with used bit = 0
– Replace pages that haven’t been referenced for one complete revolution 

of the clock

func Clock_Replacement

begin

  while (victim page not found) do
    if(used bit for current page = 0) then
      replace current page
    else

      reset used bit
    end if

    advance clock pointer
  end while

end Clock_Replacement

resident bit
used bit 
frame number

01Page 7: 1

50Page 1: 1 30Page 4: 1

41Page 0: 111Page 3: 1

Approximate LRU: The Clock Algorithm
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• There is a significant cost to replacing “dirty” pages
– Why?  

• Must write back contents to disk before freeing!

• Modify the Clock algorithm to allow dirty pages to always survive one 
sweep of the clock hand
– Use both the dirty bit and the used bit to drive replacement

01Page 7: 1
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41Page 0: 191Page 3: 1
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Optimization: Second Chance Algorithm
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Local vs. Global Replacement
• The examples to date assume either:

– Only one process on the system (global, but facile), or

– One process that has only 4 page frames (local)

• Let’s now consider the issue of when to take memory 
away from one process and give it to another
– Truly global page replacement

• Our goal is still to minimize page faults — system 
wide

• Let’s start by considering whether to take memory 
away from a process…

21
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Key observations
• Decreasing the number of page frames for a process may 

increase swapping 
– But it isn’t a linear relationship

• There is a low-water mark for every process where it 
goes from rarely swapping to constantly swapping
– Goal 1: Don’t let a process stay below this line

• And some situations where a process is not actually using 
all of its page frames
– Goal 2: Find those cases and reclaim memory that won’t be 

missed

• But how do we know?
– Let’s start by revisiting the clairvoyant approach

24
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• VMIN — Replace a page that is not referenced in the next  
accesses

• Example:  = 4
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• VMIN — Replace a page if not referenced in the next  accesses

– Not necessarily just on a page fault (can also happen when waiting/blocked)

– Calculate on each step, even if no fault

• Example:  = 4

Optimal Replacement with a Variable 
Number of Frames
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Key take-aways from VMIN
• We can profitably unmap pages that are not likely to 

be used in the future

– May accept more swapping for the current process, in 
exchange for less total swapping

• But, alas, we still don’t have clairvoyance…

– But we can use past behavior to guess…

27
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• Local page replacement

– LRU — Ages pages based on when they were last used

– FIFO — Ages pages based on when they’re brought into memory

• Towards global page replacement ... with variable number of 

page frames allocated to processes

The principle of locality

o 90% of the execution of a program is sequential

o Most iterative constructs consist of a relatively small number of instructions

o When processing large data structures, the dominant cost is sequential 

processing on individual structure elements

o Temporal vs. physical locality

Page Replacement Performance
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• Assume recently referenced pages are likely to be referenced again 

soon…

• ... and only keep those pages recently referenced in memory (called 

the working set)

– Thus pages may be removed even when no page fault occurs
– The number of frames allocated to a process will vary over time

• A process is allowed to execute only if its working set fits into 

memory

– The working set model performs implicit load control

The Working Set Model



COMP 530: Operating Systems

• Keep track of the last  references (including faulting reference)
–  The pages referenced during the last  memory accesses are 

 the working set
–   is called the window size

• Example: Working set computation,  = 4 references:
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Working Set Page Replacement
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• An alternate approach to computing working set

• Explicitly attempt to minimize page faults
– When page fault frequency is high — increase working set

– When page fault frequency is low  — decrease working set

Algorithm: 
      Keep track of the rate at which faults occur

When a fault occurs, compute the time since the last page fault
Record the time, tlast, of the last page fault

If the time between page faults is “large” then reduce the working 
set

If tcurrent – tlast > , then remove from memory all pages not 
referenced in [tlast,  tcurrent ]

If the time between page faults is “small” then increase working set
If tcurrent – tlast ≤ , then add faulting page to the working set

Page-Fault-Frequency Page Replacment
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• Example, window size = 2

• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent ] from 

the working set

• If tcurrent – tlast ≤ 2, just add faulting page to the working set
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3tcur – tlast 2 3 1
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• Example, window size = 2

• If tcurrent – tlast > 2, remove pages not referenced in [tlast, tcurrent ] from 

the working set

• If tcurrent – tlast ≤ 2, just add faulting page to the working set

Page Fault Frequency Replacement
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What does theory teach us?
• Famous result from Sleator and Tarjan’s “Amortized 

Efficiency of List Update and Paging Rules”, STOC 
1985: 
– “We analyze the amortized complexity of LRU, showing 

that its efficiency differs from that of the off-line paging 
rule (Belady’s MlN algorithm) by a factor that depends on 
the size of fast memory. No on-line paging algorithm has 
better amortized performance.”

• Online here just means no knowledge of the future (including 
observing prior executions)

• And, although not stated here, excludes randomized algorithms

• Colloquially, sometimes taken to mean:
–  “LRU is optimal” for swapping

35



COMP 530: Operating Systems

What the paper shows
• Their Theorem 5 shows a worst-case lower bound on any 

online algorithm (call it LRU) relative to clairvoyant
– There is a trade-off space between how much extra memory 

LRU has vs how many additional swaps

• My take-aways:
– Mem size dominates perf. 

– And not about LRU specifically

36
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What the paper shows (2)
• Theorem 6 (paraphrased):

– For LRU, FIFO, and some other non-terrible replacement 
algorithms the bound is tight

• Can’t do more than a constant worse than this

• My take-aways:

– For non-brain-dead replacement algorithms, the previous 
bound is tight, within an additive constant

• Brain-dead === LFU, LIFO, or ones that deliberately choose the 
opposite of recent history

– Result not specific to LRU --- includes FIFO

37
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Can you do better in practice?
• Sure!

• This is a worst-case analysis with absolutely no 
assumptions about program behavior, not an average 
case analysis

38
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LRU not optimal for reduced associativity
• Another common misunderstanding of this result is 

that LRU is optimal for cache replacement in limited 
associativity.  

– Virtual memory is fully associative, CPU caches restrict 
placement of data to certain portions of the cache

• Recent work (Bender et al., under submission) 
proves that LRU is in fact not optimal

– Some randomization actually improves performance 
compared to LRU by dealing with hotspots more 
effectively

– Note: Shameless plug of my own research (I’m a coauthor)

39
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• High multiprogramming level

Issues
➢ What criterion should be used to determine when to increase or 

decrease the MPL?
➢ Which task should be swapped out if the MPL must be reduced?

Low paging overhead
➢ MPLmin = 1 process

minimum number of frames required for a process to execute

number of page frames
➢ MPLmax  =

Load Control: Fundamental Trade-off
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i.e., based on CPU utilization

• Assume memory is nearly full

• A chain of page faults occur
– A queue of processes forms at 

the paging device

• CPU utilization falls

• Operating system increases MPL 
– New processes fault, taking memory away from existing processes

• CPU utilization goes to 0, the OS increases the MPL further...

System is thrashing — spending all of its time paging

I/O
Device

..
.

Paging
Device

CPU

Load Control Done Wrong
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Better criteria for load control: Adjust MPL so that:
➢  mean time between page faults (MTBF)  = page fault service time 

(PFST)

➢   WSi  = size of memory

1.0

CPU
Utilization

Multiprogramming Level

• Thrashing can be ameliorated by local page replacement

Nmax NI/O-BALANCE

MTBF
PFST

1.0

Load Control and Thrashing
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• When the multiprogramming level should be 
decreased, which process should be swapped 
out?

Suspended

suspended
queue

ready
queue

semaphore/condition queues

Waiting

RunningReady

?

Paging Disk

Physical
Memory

➢ Lowest priority process?
➢ Smallest process?
➢ Largest process?
➢ Oldest process?
➢ Faulting process?

Load Control and Thrashing
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