
Application Note 062

Product and company names are trademarks or trade names of their respective companies.

340897A-01 © Copyright 1995 National Instruments Corporation. All rights reserved. October 1995

IEEE 1284 – Updating the PC Parallel Port
Heidi Frock

Most personal computers today are equipped with a parallel port, commonly used to connect the computer to a
parallel printer. Because it is available on most personal computers, the parallel port is a perfect choice for
connection to other peripheral devices. However, communication to peripherals across the parallel port is limited
because the interface is traditionally unidirectional and there is no standard specification for the interface.
Additionally, although the performance of the PC has dramatically increased, the parallel port has remained the
same. This situation has led to the development of a new parallel port standard – IEEE Standard 1284-1994. This
standard is based on the original Centronics Standard Parallel Port (SPP) specification, and includes the Enhanced
Parallel Port (EPP) and Extended Capabilities Port (ECP).

This document describes SPP, EPP, and ECP, as defined by IEEE 1284.

The Standard Parallel Port – the Centronics Parallel Port
The Standard Parallel Port (SPP) is also known as the Centronics parallel port. Centronics Data Computer
Corporation developed the interface in the mid-1960s to be an 8-bit unidirectional parallel host-to-printer
connection. The interface became widely used; however, no industry-standard specification was developed to
define the interface.

The Centronics "standard" defines a 36-pin champ connector and interface signals for the printer side of the
connection. The host side implementation varied widely until the introduction of the IBM PC in 1981. The host
parallel port implementation used on the IBM PC, also referred to as the PC parallel interface, became the de facto
industry PC parallel port interface. The PC parallel interface defines a 25-pin DSub connector with 8 unidirectional
data lines, four control lines, and five status lines. A description of these signals is in Table 1.

Because there is no written standard, the timing relationships between the handshaking signals vary widely among
printers from different manufacturers, even though they may all claim Centronics compatibility. This document will
focus on the IBM PC parallel interface timing, the most common in the industry.

2

Table 1. The IEEE 1284 Signal Line Descriptions

SPP Signal Name EPP Signal Name ECP Signal Name Source Connector
Pinout

Data8-1
Unidirectional data lines. Data8
is the most significant.

AD8-1
Bi-directional address and data
lines. AD8 is the most
significant.

Data8-1
Bi-directional address and data
lines. Data8 is the most
significant.

Host/
Peripheral

1284-A: 9 - 2
1284-B: 9 - 2
1284-C: 13 - 6

STROBE*
Data is valid during an active
low pulse on this line.

WRITE*
This signal is low during a write
operation and high during a read
operation.

HostClk
This forward direction
handshaking line is interlocked
with PeriphAck and driven low
when data is valid.

Host 1284-A: 1
1284-B: 1
1284-C: 15

AUTOFD*
Usage of this line varies. Most
printers will perform a line feed
after each carriage return when
this line is low, and carriage
returns only when this line is
high.

DSTROBE*
This signal denotes data cycles.
During a write operation, data is
valid when this signal is active.
During a read operation, this
signal is low when the host is
ready to receive data.

HostAck
In the forward direction, this line
is driven low for a command
transfer, and high for a data
transfer. In the reverse direction,
this signal is a handshaking line
interlocked with PeriphClk.

Host 1284-A: 14
1284-B: 14
1284-C: 17

INIT*
This line is held low for a
minimum of 50 µs to reset the
printer and clear the print buffer.

INIT*
This line is driven low to
terminate EPP mode and return
to SPP mode.

ReverseRequest*
This line is driven low to place the
parallel port interface in the
reverse direction.

Host 1284-A: 16
1284-B: 31
1284-C: 14

SelectIn*
The host drives this line low to
select the peripheral.

ASTROBE*
This line denotes address cycles.
When this signal is low, AD8-1
is an address.

1284 Active
The host drives this line high
while in ECP mode, and low to
terminate ECP mode.

Host 1284-A: 17
1284-B: 36
1284-C: 16

ACK*
The peripheral pulses this line
low when it has received the
previous data and is ready to
receive more data. The rising
edge of ACK* can be enabled to
interrupt the host.

INTR*
The peripheral can enable this
signal to interrupt the host on the
low to high transition.

PeriphClk
The peripheral drives this reverse
direction handshaking line low to
indicate that the data is valid.
PeriphClk is interlocked with
HostAck.

Peripheral 1284-A: 10
1284-B: 10
1284-C: 3

BUSY
The peripheral drives this signal
high to indicate that it is not
ready to receive data.

WAIT*
The peripheral drives this signal
low to acknowledge that it has
successfully completed the data
or address transfer initiated by
the host.

PeriphAck
This forward direction
handshaking line is interlocked
with HostClk and driven by the
peripheral to acknowledge data
received from the host. During
reverse direction transfers, the
peripheral drives this line high
during data transfers and low
during command transfers.

Peripheral 1284-A: 11
1284-B: 11
1284-C: 1

PError
Usage of this line varies.
Printers typically drive this
signal high during a paper empty
condition.

User Defined AckReverse*
The peripheral drives this line to
follow the level of the
ReverseRequest* line.

Peripheral 1284-A: 12
1284-B: 12
1284-C: 5

Select
The peripheral drives this signal
high when it is selected and
ready for data transfer.

User Defined XFlag
The peripheral drives this line
high to indicate that it uses ECP
mode.

Peripheral 1284-A: 13
1284-B: 13
1284-C: 2

FAULT*
Usage of this line varies.
Peripherals usually drive this
line low when an error condition
exists.

User Defined PeriphRequest*
The peripheral drives this signal
low to request a reverse transfer.
This line can be used to interrupt
the host.

Peripheral 1284-A: 15
1284-B: 32
1284-C: 4

3

Figure 1. SPP Data Transfer Timing

The basic SPP data transfer is shown in Figure 1. When the printer is ready to receive data, it drives BUSY low.
The host drives valid data on the data lines, waits a minimum of 500 ns, then pulses STROBE* for a minimum of
500 ns. Valid data must remain on the data lines for a minimum of 500 ns after the rising edge of STROBE*. The
printer will receive the data and drive BUSY active to indicate that it is processing the data. When the printer has
completed the data transfer, it will pulse the ACK* line active for a minimum of 500 ns and de-assert BUSY,
indicating it is ready for the next data byte.

The SPP defines three registers to manipulate the parallel port data and control lines and read the parallel port status
lines. These registers and the corresponding offset to the parallel port starting address are shown in Table 2.

Table 2. SPP Registers

Register Offset 7 6 5 4 3 2 1 0

Data Register 0 D7 D6 D5 D4 D3 D2 D1 D0

Status Register 1 BUSY* ACK* PError Select FAULT* IRQ* Reserved Reserved

Control Register 2 Reserved Reserved Reserved IRQEN SelectIn INIT* AUTOFD STROBE

The host computer software must execute four steps to perform one data byte transfer across the parallel port:

1. Write valid data to the data register

2. Poll the BUSY line - wait for it to be inactive

3. Write to the control register to drive STROBE active

4. Write to the control register to de-assert the STROBE signal

The minimum setup, hold and pulse width times required by SPP data transfers greatly limits performance. Taking
into account software latency times, the maximum possible transfer rates are 150 kbytes/s. Typical transfer rates are
around 10 kbytes/s.

4

Many file transfer programs overcome the unidirectional limitation of the PC parallel port by using four of the status
lines (SLCT, BUSY, PE, ERROR) to send data to the host four bits at a time. The ACK line can be used to interrupt
the host to indicate that data is ready to be read.

The Bidirectional Port
The IBM PS/2 computer enhanced the standard PC parallel interface by adding bidirectional drivers to the eight data
lines. The I/O connector and signal assignments remained the same. A parallel port with bidirectional drivers is
often referred to as an extended mode parallel port. IBM refers to a bidirectional port as a Type 1 parallel port.
IBM also defines Type 2 and Type 3 parallel ports which use a DMA channel to write/read blocks of data to/from
the parallel port. The parallel port on most computers is configured at the factory to operate as an unidirectional
parallel port. A setup utility specifically for the system must be used to select bidirectional operation.

The Register map for an IBM PS/2 parallel port is shown in Table 3. An extended mode (Type 1) parallel port has
only the first three registers. These registers are identical to the SPP register set with an additional Direction bit in
the parallel port control register. The last three registers in Table 3 are only present in Type 2 and 3 parallel ports.

Type 2 and 3 DMA transfers follow the SPP timing as described earlier. During Type 2 or 3 DMA writes, the DMA
controller writes data to the data register and a STROBE pulse is automatically sent. When the ACK is received
from the peripheral, a DMA request is sent and the next byte is then transferred. The peripheral can drive BUSY to
hold off the transfer. During Type 2 or 3 DMA reads, a pulse on the ACK line generates a DMA request and
initiates the transfer to system memory. The DMA controller reads the data register and a STROBE pulse is
automatically generated.

Although IBM defined Type 2 and 3 parallel ports to increase parallel port performance, only IBM computers
implement the ports. Thus, there is a lack of software that takes advantage of the DMA feature. By comparison,
EPP and ECP are industry standards supported by a wide variety of hardware and software manufacturers.

Table 3. Bidirectional Port Registers

Register Offset 7 6 5 4 3 2 1 0

Data Register 0 D7 D6 D5 D4 D3 D2 D1 D0

Status Register 1 BUSY* ACK* PError Select FAULT* IRQ* Reserved Reserved

Control Register 2 Auto
Strobe

Reserved Direction IRQEN SelectIn INIT* AUTOFD STROBE

Interface Control
Register

3 Start
DMA

Reset
EOD

TC/ACK
IRQEN

Select
IRQEN

FAULT
IRQEN

PError
IRQEN

Set EOD DMAEN

Interface Status
Register

4 Reserved EOD TC/ACK
INT

Select
INT

FAULT
INT

PError
INT

Reserved Reserved

Reserved
Register

5 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Enhanced Parallel Port – EPP
EPP was developed to provide for high-speed, bidirectional data transfers that are compatible with the register map
of the existing standard parallel port. The EPP specification assigns traditional microprocessor bus signaling
functions to the standard parallel port lines (i.e. address strobe, data strobe) to access adapter hardware directly.
See Table 1 for a description of these parallel port signals.

A data transfer on a standard parallel port requires several software steps. EPP adds additional hardware and
registers to automatically generate control strobes and data transfer handshaking with a single I/O instruction. With

5

an ISA machine, maximum possible transfer rates are 2 Mbytes/s. Transfer rates up to 10 Mbytes/s can be achieved
on other platforms.

EPP operations are typically two-phase bus cycles initiated by the host. The host first selects a register within the
peripheral and performs an address cycle. Then the host performs a series of read and/or writes to that selected
register. EPP defines a single interrupt request signal, INTR, enabling the peripheral with a means to signal the host.
EPP has four basic operations – address write, address read, data write, and data read.

An EPP Address Write cycle is shown in Figure 2. The host first asserts WRITE*, places the address byte on the
AD8-1 lines, and asserts ASTROBE*. The peripheral de-asserts WAIT* indicating that it is ready for the address
byte. The host then de-asserts ASTROBE* and the peripheral latches the address lines on the rising edge of
ASTROBE*. The peripheral then indicates that it is ready for the next cycle by asserting WAIT*.

Figure 2. EPP Address Write Cycle

An EPP Address Read cycle is shown in Figure 3. The host de-asserts WRITE*, places the AD7-0 lines in a high
impedance state, and asserts the ASTROBE* signal. The peripheral then drives the address byte on the AD7-0 lines
and re-asserts WAIT* to indicate that the address byte is valid. The host will read the address lines when it sees the
WAIT* unasserted, and then de-asserts ASTROBE. The peripheral then places the AD8-1 lines in an high
impedance state and asserts WAIT* to indicate it is ready for the next cycle.

Figure 3. EPP Address Read Cycle

An EPP Data Write cycle is shown in Figure 4. The host first asserts WRITE*, places the data byte on the AD8-1
lines, and asserts DSTROBE*. The peripheral de-asserts WAIT* indicating that it is ready for the data byte. The

6

host then de-asserts DSTROBE* and the peripheral latches the data lines on the rising edge of DSTROBE*. The
peripheral then indicates that it is ready for the next cycle by asserting WAIT*.

WRITE*

ASTROBE*

DSTROBE*

AD8-1

WAIT*

Data Byte

Figure 4. EPP Data Write Cycle

An EPP Data Read cycle is shown in Figure 5. The host de-asserts WRITE*, places the AD8-1 lines in a high
impedance state, and asserts the DSTROBE* signal. The peripheral then drives the data byte on the AD8-1 lines
and re-asserts WAIT* to indicate that the data byte is valid. The host will read the data lines when it sees the
WAIT* unasserted, and then de-asserts DSTROBE*. The peripheral then places the AD8-1 lines in an high
impedance state and asserts WAIT* to indicate it is ready for the next cycle.

WRITE*

ASTROBE*

DSTROBE*

AD8-1

WAIT*

Data Byte

Figure 5. EPP Data Read Cycle

EPP defines five parallel port registers in addition to the three registers of the standard parallel port. These registers
are used to automatically place the address or data information on the parallel port data lines and then generate the
address strobe and data strobe signals automatically. The parallel port register set for EPP is shown in Table 4. The
parallel port data register, status register, and control register have the same bit assignments as described for
standard parallel ports.

Data written to the Auto Address Strobe register is placed on the parallel port data lines followed by an automatic
active low pulse on the ASTROBE* line. Data written to any of the Auto Data Strobe registers is placed on the
parallel port data lines followed by an automatic active low pulse on the DSTROBE* line. When one of the Auto
Data Strobe registers is read, the DSTROBE* line is pulsed and the value on the parallel port data lines is returned.

The microprocessor bus architecture of the EPP standard makes it ideal for communicating directly to peripheral
hardware; it acts like a mini-expansion port aimed at accessing intelligent peripherals which are controlled with
register accesses.

7

Table 4. EPP Mode Parallel Port Register Map

Register Read or Write Register Offset

Parallel Port Data Register Write 0

Parallel Port Status Register Read 1

Parallel Port Control Register Read/Write 2

Auto Address Strobe Register Read/Write 3

Auto Data Strobe Register Read/Write 4

Auto Data Strobe Register Read/Write 5

Auto Data Strobe Register Read/Write 6

Auto Data Strobe Register Read/Write 7

Extended Capabilities Port – ECP
ECP is an extension to the standard parallel port developed by Microsoft and Hewlett Packard. The specification
defines automatic hardware handshaking, command and data cycles, and DMA transfers to a FIFO location. The
handshaking signals for data transfers have the same timing relationships as defined for standard parallel ports.
Table 1 shows the parallel port signal line descriptions for an ECP parallel port. ECP claims maximum transfer
rates of 2.4 Mbytes/s when performing DMA transfers on an ISA computer.

ECP defines data transfers from the host computer to the peripheral as forward transfers. Figure 6 shows an ECP
forward transfer. In the forward direction, the host will drive HostClk low when data is available on the parallel port
lines, and the peripheral will drive PeriphAck high after it accepts the data.

D8-1

HostClk

PeriphAck

ReverseRequest*

Figure 6. ECP Forward Transfer

8

Data transfers from the peripheral to the host computer are called reverse transfers. Figure 7 shows an ECP reverse
direction transfer. In the reverse direction, the peripheral will drive PeriphClk low when data is available on the
parallel port lines, and the host will drive HostAck low after it has accepted the data.

D8-1

PeriphClk

HostAck

ReverseRequest*

AckReverse*

Figure 7. ECP Reverse Transfer

9

ECP defines two types of address cycles. The first is channel addressing which is used to address registers in a
peripheral. The second is part of a simple data compression scheme. A run length count is specified during the
address cycle to indicate the number of times the next data byte received is to occur in the data buffer.

Table 5. ECP Mode Parallel Port Register Map

Register Offset 7 6 5 4 3 2 1 0

Data Register 0 D7 D6 D5 D4 D3 D2 D1 D0

Status Register 1 BUSY* ACK* PError Select FAULT* IRQ* Reserved Reserved

Control
Register

2 Auto

Strobe

Reserved Direction IRQEN SelectIn INIT* AUTOFD STROBE

ECP Address
FIFO Register

0 dType A6 A5 A4 A3 A2 A1 A0

ECP Data FIFO
Register

400 D7 D6 D5 D4 D3 D2 D1 D0

ECP Data FIFO
Upper Register
(optional)

401 D15 D14 D13 D12 D11 D10 D9 D8

Test FIFO
Register (ECP
FIFO Mode)

400 D7 D6 D5 D4 D3 D2 D1 D0

Test FIFO
Upper Register
(ECP FIFO
Mode)

401 D15 D14 D13 D12 D11 D10 D9 D8

Configuration
Register A
(ECP Config.
Mode)

400 impID3 impID2 impID1 impID0 Reserved Reserved Reserved Reserved

Configuration
Register B
(ECP Config.
Mode)

401 compress intrValue intrLine2 intrLine1 intrLine0 dmaCh2 dmaCh1 dmaCh0

Extended
Control
Register

402 mode2 mode1 mode0 ErrIntr
En*

dmaEn service

Intr

full empty

ECP defines six registers in addition to the three standard parallel port registers. These new registers automatically
place the address or data information on the parallel port data lines and then generate the parallel port handshaking
signals. The parallel port register set for ECP is shown in Table 5. The ECP Address and Data FIFOs contain at
least 16 bytes and are used in both the forward and reverse directions for smooth data flow and improved data
transfer rates. Data written to the ECP Address FIFO register is automatically transmitted on the parallel port. The
ECP Data FIFO Register is used to transfer data between the host and peripheral.

The goal of ECP is to improve the parallel port for plug-and-play and Windows environments by making the
interface bidirectional and increasing performance.

10

The IEEE 1284 Standard
The IEEE 1284 standard defines an interface compatible with several distinct operating modes including EPP, ECP,
a Compatibility mode for unidirectional communication with existing SPP ports, and Nibble and Byte modes for
bidirectional communication with existing unidirectional and bidirectional ports.

Negotiation

All devices in an IEEE 1284 system power up in Compatibility mode; a device may be designed to use one or
several of the IEEE 1284 operating modes. Using a negotiation sequence, the host obtains a Device/ID code from
the peripheral and then selects a compatible operating mode. The host performs the following steps to execute an
IEEE 1284 negotiation sequence. See Figure 8.

• Place the IEEE 1284 8-bit extensibility code on the data lines, see Table 6.

• Assert the SelectIn* line high and the AUTOFD* line low.

• The peripheral will then drive PError high, ACK* low, FAULT* high and Select high if it is IEEE 1284
compliant. If the peripheral does not drive these lines, the host must assume that it is not 1284 compliant and
treat it as such.

• Drive STROBE* low.

• Drive STROBE* high, AUTOFD* high.

• The peripheral will then drive PError low, FAULT* low, Select high if the extensibility code matched a mode
that it offers.

• The peripheral will drive ACK* high indicating the status lines are valid.

Figure 8. IEEE 1284 Negotiation

11

Table 6. 1284 Extensibility Request Bytes

Extensibility Byte Definition Description

1000 0000 Request Extensibility Link This byte is used to add a second
extensibility request byte to the
negotiation phase. This allows for
mode modes in the future.

0100 0000 Request EPP Mode

0010 0000 Request ECP Mode with RLE ECP mode with run-length encoding
(RLE) data decompression

0001 0000 Request ECP Mode ECP mode without data decompression

0000 1000 Reserved Reserved for future use

0000 0100 Request Device ID using Nibble
Mode

Receive the Device ID a nibble at a
time across the status lines

0000 0101 Request Device ID using Byte Mode Receive the Device ID a byte at a time
across the data lines.

0001 0100 Request Device ID using ECP Mode
without RLE

Receive the Device ID without ECP
data compression

0011 0100 Request Device ID using ECP Mode
with RLE

Receive the Device ID with ECP data
compression

0000 0010 Reserved Reserved for future use

0000 0001 Byte Mode Reverse Channel Transfer Use the data lines bidirectionally to
send data from the peripheral to the
host.

0000 0000 Nibble Mode Reverse Channel
Transfer

Use the parallel port status lines to
send data one nibble at a time from the
peripheral to the host.

To exit the Nibble, Byte, or one of the ECP modes, the host sets SelectIn* low. To exit the EPP mode, the host
asserts the INIT* line. In both cases, the peripheral device will reset into Compatibility Mode (unidirectional SPP
operation).

Device ID

The Device ID is a length field followed by a string of ASCII characters defining the peripheral's characteristics
and/or capabilities. This method was chosen because it does not require a central authority to assign device and
manufacturer codes. In a Plug and Play system, the host must be able to determine that a device has been added,
identify it, and automatically install the necessary device drivers. The host will use the Device ID sequence to
recognize parallel port devices.

Connectors and Cables

IEEE 1284 defines three interface connectors: 1284-A, 1284-B and 1284-C. The 1284-A connector is equivalent to
the existing 25-pin DSub connector commonly used on the host side of the connection. The 1284-B connector is
equivalent to the 36-pin Champ connector commonly used on the peripheral side of the connection. The 1284-C
connection is a new 36-pin 0.050 centerline connector. The 1284 specification recommends this connector for both
the host and peripheral sides of the connection. See Table 7 for the SPP pin assignments for each specified IEEE
1284 connector.

12

Table 7. SPP Signal Assignments for Defined IEEE 1284 Connectors

Pin
Number

1284-A
25-pin Dsub

1284-B
36-pin Champ

1284-C
36-pin high density

1 STROBE* STROBE* BUSY

2 Data1 Data1 Select

3 Data2 Data2 ACK*

4 Data3 Data3 FAULT*

5 Data4 Data4 PError

6 Data5 Data5 Data1

7 Data6 Data6 Data2

8 Data7 Data7 Data3

9 Data8 Data8 Data4

10 ACK* ACK* Data5

11 BUSY BUSY Data6

12 PError PError Data7

13 Select Select Data8

14 AUTOFD* AUTOFD* INIT*

15 FAULT* Not Defined STROBE*

16 INIT* Logic Ground SelectIn*

17 SelectIn* Chassis Ground AUTOFD*

18 Ground Peripheral Logic High Host Logic High

19 Ground Ground Ground

20 Ground Ground Ground

21 Ground Ground Ground

22 Ground Ground Ground

23 Ground Ground Ground

24 Ground Ground Ground

25 Ground Ground Ground

13

Pin
Number

1284-A
25-pin Dsub

1284-B
36-pin Champ

1284-C
36-pin high density

26 Ground Ground

28 Ground Ground

29 Ground Ground

30 Ground Ground

31 INIT* Ground

32 FAULT* Ground

33 Not Defined Ground

34 Not Defined Ground

35 Not Defined Ground

36 SelectIn* Peripheral Logic High

The 1284 standard also specifies a new "IEEE 1284 compliant" cable assembly, which shall meet specific electrical
characteristics. These cables are designed for maximum performance and must be clearly labeled as IEEE 1284
compliant.

Daisy Chaining

Under the IEEE 1284 Daisy Chain Specification, up to eight devices can be connected to a single parallel port. Each
daisy chain device has two parallel port connectors – a host and a pass through connector. The host is connected to
the host connector on the first device. The pass through connector of the first device is connected to the host
connector of the next device, and so on. A device that does not support daisy chaining can be connected to the pass
through connector of the last daisy chain device.

Conclusion
The IEEE 1284 standard brings definition and higher performance to the PC parallel port. Parallel port devices will
become easier to configure because new operating systems will bring Plug and Play to the parallel port with the
Device/ID identification sequence. With these enhancements, the parallel port will be an even better low-cost,
readily available I/O port on the PC.

References
IEEE Standard 1284-1994

IBM PS/2 Technical Reference, IBM

ECP Specification, Microsoft

1284 Daisy Chain Specification, DISCTEC

Plug and Play Parallel Port Devices Specification, Microsoft

