
COMP 790: OS Implementation

Block Device Scheduling

Don Porter

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

2

Today’s Lecture

COMP 790: OS Implementation

Quick Recap
• CPU Scheduling
– Balance competing concerns with heuristics

• What were some goals?
– No perfect solution

• Today: Block device scheduling
– How different from the CPU?
– Focus primarily on a traditional hard drive
– Extend to new storage media

COMP 790: OS Implementation

Block device goals
• Throughput
• Latency
• Safety – file system can be recovered after a crash
• Fairness – surprisingly, very little attention is given to

storage access fairness
– Hard problem – solutions usually just prevent starvation
– Disk quotas for space fairness

COMP 790: OS Implementation

Big Picture
VFS

Low-level FS (ext4, BTRFS, etc.)

Page Cache

Block Device

IO Scheduler

Driver

Disk

COMP 790: OS Implementation

OS Model of a Block Dev.
• Simple array of sectors
– Sectors are usually 512 or 4k bytes

COMP 790: OS Implementation

Recall: Page Cache

`

Page Cache

Block Dev

Page (blue) w/ 3
buffer heads (green)

Buffer
Heads map
disk blocks

COMP 790: OS Implementation

Caching
• Obviously, the number 1 trick in the OS designer’s

toolbox is caching disk contents in RAM
– Remember the page cache?

• Latency – can be hidden by pre-reading data into
RAM
– And keeping any free RAM full of disk contents

– Doesn’t help synchronous reads (that miss in RAM cache)
or synchronous writes

COMP 790: OS Implementation

Caching + throughput
• Assume that most reads and writes to disk are

asynchronous
– Dirty data can be buffered and written at OS’s leisure

– Most reads hit in RAM cache – most disk reads are read-
ahead optimizations

• Key problem: How to optimally order pending disk
I/O requests?
– Hint: it isn’t first-come, first-served

COMP 790: OS Implementation

Another view of the problem
• Between page cache and disk, you have a queue of

pending requests
• Requests are a tuple of (block #, read/write, buffer

addr)
• You can reorder these as you like to improve

throughput
• What reordering heuristic to use? If any?
• Heuristic is called the IO Scheduler

COMP 790: OS Implementation

A simple disk model
• Disks are slow. Why?
– Moving parts << circuits

• Programming interface: simple array of sectors
(blocks)

• Physical layout:
– Concentric circular “tracks” of blocks on a platter
– E.g., sectors 0-9 on innermost track, 10-19 on next track,

etc.
– Disk arm moves between tracks
– Platter rotates under disk head to align w/ requested

sector

COMP 790: OS Implementation

Disk Model

01
2
3

4 5
6
7

Each block on
a sector

Disk
Head

Disk Head
reads at

granularity of
entire sector

Disk spins at a
constant speed.
Sectors rotate

underneath head.

COMP 790: OS Implementation

Disk Model

Disk
Head01

2
3

4 5
6
7

89
10

11
12

13
14 15 16

17
18
19

20
21

Concentric
tracks

Disk head seeks to
different tracksGap between 7

and 8 accounts for
seek time

COMP 790: OS Implementation

Many Tracks

Disk
Head

COMP 790: OS Implementation

Several (~4) Platters

Platters spin
together at same

speed

Each platter has a head;
All heads seek together

COMP 790: OS Implementation

Implications of multiple platters
• Blocks actually striped across platters
• Example:
– Sector 0 on platter 0
– Sector 1 on platter 1 at same position
– Sector 2 on platter 2, Sec. 3 on Plat. 3 also at same position
– 4 heads can read all 4 sectors simultaneously

COMP 790: OS Implementation

3 key latencies
• I/O delay: time it takes to read/write a sector
• Rotational delay: time the disk head waits for the

platter to rotate desired sector under it
– Note: disk rotates continuously at constant speed

• Seek delay: time the disk arm takes to move to a
different track

COMP 790: OS Implementation

Observations
• Latency of a given operation is a function of current

disk arm and platter position
• Each request changes these values
• Idea: build a model of the disk
– Maybe use delay values from measurement or manuals
– Use simple math to evaluate latency of each pending

request
– Greedy algorithm: always select lowest latency

COMP 790: OS Implementation

Example formula
• s = seek latency, in time/track
• r = rotational latency, in time/sector
• i = I/O latency, in seconds

• Time = (Δtracks * s) + (Δsectors * r) + I
• Note: Δsectors must factor in position after seek is

finished. Why?

COMP 790: OS Implementation

Problem with greedy?
• “Far” requests will starve
• Disk head may just hover around the “middle” tracks

COMP 790: OS Implementation

Elevator Algorithm
• Require disk arm to move in continuous “sweeps” in

and out
• Reorder requests within a sweep
– Ex: If disk arm is moving “out,” reorder requests between

the current track and the outside of disk in ascending
order (by block number)

– A request for a sector the arm has already passed must be
ordered after the outermost request, in descending order

COMP 790: OS Implementation

Elevator Algo, pt. 2
• This approach prevents starvation
– Sectors at “inside” or “outside” get service after a bounded

time
• Reasonably good throughput
– Sort requests to minimize seek latency
– Can get hit with rotational latency pathologies (How?)

• Simple to code up!
– Programming model hides low-level details; difficult to do

fine-grained optimizations in practice

COMP 790: OS Implementation

Modular Schedulers
• Linux allows the disk scheduler to be replaced
– Just like the CPU scheduler

• Can choose a different heuristic that favors:
– Fairness
– Real-time constraints
– Performance

COMP 790: OS Implementation

Complete Fairness Queue (CFQ)
• Idea: Add a second layer of queues (one per process)
– Round-robin promote them to the “real” queue

• Goal: Fairly distribute disk bandwidth among tasks

• Problems?
– Overall throughput likely reduced

– Ping-pong disk head around

COMP 790: OS Implementation

Deadline Scheduler
• Associate expiration times with requests
• As requests get close to expiration, make sure they

are deployed
– Constrains reordering to ensure some forward progress

• Good for real-time applications

COMP 790: OS Implementation

Anticipatory Scheduler
• Idea: Try to anticipate locality of requests
– If process P tends to issue bursts of requests for close disk

blocks,
– When you see a request from P, hold the request in the

disk queue for a while
• See if more “nearby” requests come in
• Then schedule all the requests at once

– And coalesce adjacent requests

COMP 790: OS Implementation

Optimizations at Cross-purposes
• The disk itself does some optimizations:
– Caching

• Write requests can sit in a volatile cache for longer than expected
– Reordering requests internally

• Can’t assume that requests are serviced in-order
• Dependent operations must wait until first finishes

– Bad sectors can be remapped to “spares”
• Problem: disk arm flailing on an old disk

COMP 790: OS Implementation

A note on safety
• In Linux, and other OSes, the I/O scheduler can

reorder requests arbitrarily
• It is the file system’s job to keep unsafe I/O requests

out of the scheduling queues
– Or issue barriers in the queue

COMP 790: OS Implementation

Dangerous I/Os
• What can make an I/O request unsafe?
– File system bookkeeping has invariants on disk

• Example: Inodes point to file data blocks; data blocks are also
marked as free in a bitmap

– Updates must uphold these invariants
• Ex: Write an update to the inode, then the bitmap
• What if the system crashes between writes?
• Block can end up in two files!!!

COMP 790: OS Implementation

3 Simple Rules
(Courtesy of Ganger and McKusick, “Soft Updates” paper)

• Never write a pointer to a structure until it has been
initialized
– Ex: Don’t write a directory entry to disk until the inode has

been written to disk

• Never reuse a resource before nullifying all pointers
to it
– Ex: Before re-allocating a block to a file, write an update to

the inode that references it

• Never reset the last pointer to a live resource before
a new pointer has been set
– Ex: Renaming a file – write the new directory entry before

the old one (better 2 links than none)

COMP 790: OS Implementation

A note on safety
• It is the file system’s job to keep unsafe I/O requests

out of the scheduling queues
• While these constraints are simple, enforcing them in

the average file system is surprisingly difficult
– Journaling helps by creating a log of what you are in the

middle of doing, which can be replayed
– (Simpler) Constraint: Journal updates must go to disk

before FS updates

COMP 790: OS Implementation

Disks aren’t everything
• Flash is increasing in popularity
– Different types with slight variations (NAND, NOR, etc)

• No moving parts – who cares about block ordering
anymore?

• Can only write to a block of flash ~100k times
– Can read as much as you want

COMP 790: OS Implementation

More in a Flash
• Flash reads are generally fast, writes are more

expensive
• Prefetching has little benefit
• Queuing optimizations can take longer than a read
• New issue: wear leveling – need to evenly distribute

writes
– Flash devices usually have a custom, log-structured FS
– Group random writes

COMP 790: OS Implementation

Even newer hotness
• Byte-addressible, persistent RAMs (BPRAM)
– Optane, Phase-Change Memory (PCM), Memristors, etc.

• Splits the difference between RAM and flash:
– Byte-granularity writes (vs. blocks)
– Fast reads, slower, high-energy writes
– Doesn’t need energy to hold state (DRAM refresh)
– Wear an issue (bytes get stuck at last value)

• Intel shipping first Optane prototypes, more to
come…

COMP 790: OS Implementation

Important research topic
• Most work on optimizing storage accessed is tailored

to hard drives
• These heuristics are not easily adapted to new media
• Future systems will have a mix of disks, flash, PRAM,

DRAM
• Does it even make sense to treat them all the same?

COMP 790: OS Implementation

Summary
• Performance characteristics of disks, flash, BPRAM
• Disk scheduling heuristics
• Safety constraints for file systems

