
Memory Consistency

Don Porter

Difficult topic

- Memory consistency models are difficult to understand
 - Knowing when and how to use memory barriers in your programs takes a long time to master
- I read the long version of this paper about once a year
 - Started in graduate architecture, still mastering this
- Even if you can't master this material, it is worth conveying some intuitions and getting you started on the path
 - Multi-core programming is increasingly common

Background

- In the 90s, people were figuring out how to build and program shared memory multi-processors
- Several hardware and compiler optimizations that worked well on single-CPU systems were causing "heisen-bugs" in correct parallel code
 - Disabling all optimizations made this code correct, but slow
- Various consistency models strike different balances between optimization and programmability

Simple example

```
/* Pre condition: flag = 0 */
x = a + b
a isn't in the cache yet.(or ALU is busy, etc)
```

This line is independent of the one above. Execute first, since result is identical

Extended to multi-processors

```
/* Pre condition: flag = 0 */

Thread 1

x = a + b

flag = 1

val = x
```

flag is acting as a barrier to synchronize read of x after x was written

Distinction

- Compiler/CPU can figure out when instructions can be safely reordered within a given thread
- Hard to figure out when the order is meaningful to coordinate with other threads
- If you want optimizations (and you do), programmer
 MUST give hardware and compiler some hints
 - Hard to design hints that average programmer can successfully give the hardware

Definitions

- Cache coherence: The protocol by which writes to one cache invalidate or update other caches
- Memory consistency model: How are updates to memory published from one CPU to another
 - Reordering between CPU and cache/memory?
 - Are cache updates/invalidations delivered atomically?
 - Coherence protocol detail that impacts consistency
- Distinction between coherence and consistency muddled

Intuition

- On a bus-based multi-processor system (nearly all current x86 CPUs), a write to the cache immediately invalidates other caches
 - Making the write visible to other CPUs
- But, the update could spend some time in a write buffer or register on the CPU
- If a later write goes to the cache first, these will become visible to another CPU out of program order

Sequential Consistency

- Simplest possible model
- Every program instruction is executed in order
 - No buffered memory writes
- Only one CPU writes to memory at a time
 - Given a write to address x, all cached values of x are invalidated before any CPU can write anything else
- Simple to reason about

Sequential is too slow

- CPUs want to pipeline instructions
 - Hide high latency instructions
- Sequential consistency prevents these optimizations
- And these optimizations are harmless in the common case

Relaxed consistency

- If the common case is that reordering is safe, make the programmer tell the CPU when reordering is unsafe
 - Details of the model specify what can be reordered
 - Many different proposed models
- Barrier (or fence): common consistency abstraction
 - Every memory access before this barrier must be visible to other CPUs before any memory access after the barrier
 - Confusing to use in practice

Total Store Order (TSO)

- Model adopted in nearly all x86 CPUs
- All stores leave the CPU in program order
- CPU may load "ahead" of an unrelated store
 - Ex: x = 1; y = z;
 - CPU may load z from memory before x is stored
 - CPU may not reorder load and store of same variable
- Atomic instructions are treated like a barrier

TSO benefits

- Since nearly all locks involve an atomic write, the CPU will never reorder a critical region with a lock
 - If you use locks, you rarely need to worry about consistency issues
- When do you worry about memory consistency?
 - Custom synchronization / lock-free data structures
 - Device drivers

stores

5a Example

Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1

Register1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2

Both CPUs forward write of A internally before globally visible

Register
$$3 = A$$

Register4 = flag1

Register 1 = 1, R2 = 0, R3 = 2, R4 = 0

5a Example + barriers

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1

barrier

Store A must be visible before flag reads

Register 1 = A

Register2 = flag2

Thread 2

flag2 = 1

A = 2

barrier

Register3 = A

Register4 = flag

Flag writes must be globally visible before A is written (TSO)

Must be a sequential ordering of store A's

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

5a Example: order 1

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

flag1 = 1

A = 1 (1)

barrier

Register 1 = A

Register2 = flag2 (2)

Thread 2

flag2 = 1

A = 2 (3)

barrier

Register3 = A

Register4 = flag1

A = 2 and R2 = 0 or A = 1 and R4 = 0; R2 & R4 != 0

5a Example: order 2

/* Pre condition: A= flag1 = flag2 = 0 */

Thread 1

$$flag1 = 1$$

$$A=1 (3)$$

barrier

Register 1 = A

Register2 = flag2

Thread 2

$$flag2 = 1$$

$$A = 2$$
 (1)

barrier

Register
$$3 = A$$

Register4 = flag1 (2)

$$A = 2$$
 and $R2 = 0$ or $A = 1$ and $R4 = 0$; $R2 \& R4 != 0$

Summary

- Identifying where to put memory barriers is hard
 - Takes a lot of practice and careful thought
 - Looks easy until you try it alone
- But, CPUs would be super-slow on sequential consistency
- Understand: Why relaxed consistency? What is TSO?
 Roughly when do developers need barriers?
- Advice: Take grad architecture (if offered); read this paper yearly