
COMP 790: OS Implementation

Encrypted File Systems

Don Porter

1

COMP 790: OS Implementation

Goals
• Protect confidentiality of data at rest (i.e., on disk)
– Even if the media is lost or stolen
– Protecting confidentiality of in-memory data much harder

• Continue using file system features without losing
confidentiality
– Example: Backup

• Low overheads (space and CPU)
• Change keys and perhaps different keys for different

data

COMP 790: OS Implementation

Two major approaches

VFS

ext4

Encrypted block
device

Generic block
device

• Block device encryption
• Transparently encrypt

entire partition/disk
below the file system

• Linux: dm-crypt
• Windows: BitLocker
• Mac: FileVault 2

COMP 790: OS Implementation

Block encryption intuition
• File system is created on a virtual block device
• Low-level read of virtual block device:
– FS requests a block read into page cache page X
– Map to block(s) on real device
– Request that blocks be read into a temporary page Y
– Decrypt encrypted page Y into plaintext page X
– Return X to file system

• Similarly, writes encrypt pages before sending to disk

COMP 790: OS Implementation

Two major approaches

VFS

Encrypted FS

ext4

Generic block
device

• File System encryption
• Encrypt data between

VFS/Buffer cache and
low-level file system

• Linux: eCryptFS
• Windows: EFS
• Mac: FileVault 1

COMP 790: OS Implementation

File-based intuition
• Idea: Mount a layered file system over a real one
• Application writes encrypted file ‘foo’
• Encrypted FS opens real file foo
– Stores some crypto metadata (like the cipher used) at the

front
– Encrypts pages in page cache, transparently writes at an

offset

COMP 790: OS Implementation

File-based intuition
• Read of file ‘bar’
– Encrypted FS asks real FS for file ‘bar’
– Uses metadata + secret key to decrypt
– Stores decrypted pages in page cache

• Challenges:
– Managing private keys
– Enforcing read protection on decrypted data in page cache

COMP 790: OS Implementation

Pros/Cons of disk encryption
• Pros:
– Hides directory structure, used space, etc

• Metadata matters!

– Can put any file system on top of it

• Cons:
– Everything encrypted with one key

• Encryption provides no confidentiality between users on a shared
system

– Data must be re-encrypted before sending on network
– Encryption overhead for public data (like /etc/hostname)

COMP 790: OS Implementation

Vs. FS encryption
• Pros:
– Per-user (or per directory or file) encryption
– Only encrypt truly secret data
– Possibly send an encrypted file across network; use key

(sent separately!) to decrypt on remote host

• Cons:
– Harder to hide/obfuscate directory structure and metadata
– More keys to manage
– Possibly easier to steal keys (debatable---harder to use

TPMs)

COMP 790: OS Implementation

Challenges
• Key management
• Read protection of live data
– Swapping

• Booting the OS

COMP 790: OS Implementation

Key management
• Or, where do we keep the secret key?
• Not in the file system!
– There is a bootstrapping problem here

• Ideas?

COMP 790: OS Implementation

Trusted Platform Module
• New-ish hardware extension – common on PCs in

last ten+ years
– Usually now in CPU chip

• Provides two useful features:
• Measured Execution: Basically, checks that the

booted code (BIOS, bootloader, OS) match a given
hash
– Useful to detect tampering with your software

• Sealed Storage: Store a very small amount of data in
non-volatile memory in the TPM chip
– Only accessible from code with hash that wrote it

COMP 790: OS Implementation

TPM Idea
• Store the private key for the file system in the TPM’s

sealed storage
• Only the trusted BIOS/bootloader/OS can access the

decryption key
– The drive alone gets you nothing!
– Tampering with the OS image (on disk) to dump the disk

contents gets you nothing!

COMP 790: OS Implementation

Small problem
• Motherboard or CPU dies, taking TPM with it
• How to decrypt your files then?
– BitLocker: As part of initialization, allow user to print a

page with the decryption key. Put this in a safe place (not
laptop bag)

COMP 790: OS Implementation

Key management in FS-level encryption
• Each user has a key chain of decryption keys
– Kernel is trusted with these keys

• On-disk, keychain is encrypted with a master key
• Master key is protected with a passphrase
– That just happens to be the logon credentials

• So, with a user’s passphrase, we can decrypt the
master key for her home directory, then decrypt the
keyring, then the home directory

COMP 790: OS Implementation

Challenge 2
• The unencrypted data in the page cache needs to be

protected
• If I encrypt my home directory, but make it world

readable, any user on the system can still read my
home directory!

• Encryption is no substitute for access control!

COMP 790: OS Implementation

Swapping
• Care must be taken to prevent swapping of

unencrypted data
– Or keys!
– If part of the file system/key management is in a user

daemon, unencrypted keys can be swapped
• One strategy: Swap to an encrypted disk
• Another strategy: Give the encrypted file system

hooks to re-encrypt data before it is written out to
disk
– Or put the swap file on the encrypted FS

• Subtle issue

COMP 790: OS Implementation

Challenge 3: Booting
• You can’t boot an encrypted kernel
• Decryption facilities usually need a booted kernel to

work
• Big win for FS encryption: Don’t encrypt files needed

for boot
• Disk encryption: Usually puts files needed for boot

on a separate (unencrypted) partition

COMP 790: OS Implementation

Summary
• Two main types of encrypted storage:
– Block and file system encryption

• Understand pros and cons of each
• Understand key challenges:
– Key management
– Swapping
– Booting

