
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL M COMP 790: OS Implementation Overview · Many artifacts of hardware evolution - Configurability isn't free - Bake-in some reasonable assumptions - Initially reasonable assumptions get stale - Find ways to work-around going forward Keep backwards compatibility · General issues and abstractions

3

THE UNIVERSITY of NORTH CAROLINA ar CHAPEL HILL	COMP 790: OS Implementation			
	Port permissions			
Can be set	 Can be set with IOPL flag in EFLAGS 			
Or at finer a segment	 Or at finer granularity with a bitmap in task state segment 			
 Recall: this is the "other" reason people care about the TSS 				
8				

	THE UNIVERSITY d NORTH CABOLINA COMP 790: OS Implementation
	Buses
•	Buses are the computer's "plumbing" between major components
•	There is a bus between RAM and CPUs
•	There is often another bus between certain types of devices
	 For inter-operability, these buses tend to have standard specifications (e.g., PCI, ISA, AGP)
	 Any device that meets bus specification should work on a motherboard that supports the bus

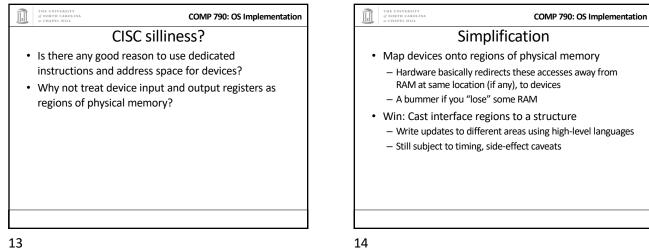
9

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

COMP 790: OS Implementation

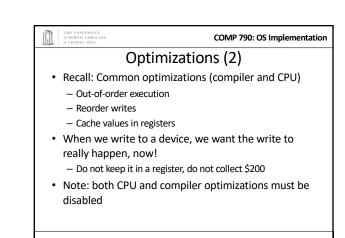
Clock imbalance

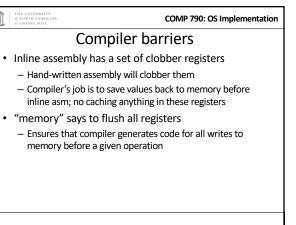
- All processors have a clock
 - Including the chips on every device in your system
 - Network card, disk controller, usb controler, etc.
 - And bus controllers have a clock
- Think now about older devices on a newer CPU
 - Newer CPU has a much faster clock cycle
 - It takes the older device longer to reliably read input from a bus than it does for the CPU to write it


COMP 790: OS Implementation Clocks (again, but different) • CPU Clock Speed: What does it mean at electrical level? - New inputs raise current on some wires, lower on others - How long to propagate through all logic gates? - Clock speed sets a safe upper bound Things like distance, wire size can affect propagation time - At end of a clock cycle read outputs reliably · May be in a transient state mid-cycle Not talking about timer device, which raises interrupts at wall clock time; talking about CPU GHz

10

THE UNIVERSITY of NORTH CAROLINA of CHAPEL HILL COMP 790: OS Implementation


More clock imbalance


- Ex: a CPU might be able to write 4 different values into a device input register before the device has finished one clock cycle
- Driver writer needs to know this - Read from manuals
- · Driver must calibrate device access frequency to device speed
 - Figure out both speeds, do math, add delays between ops
 - You will do this in lab 6! (outb 0x80 is handy!)

	THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	COMP 790: OS Implementation			
	Optimizations				
•	How does the compiler	(and CPU) know which s and other constraints?			
15					

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	COMP 790: OS Implementation			
volatile keyword				
A volatile varia	 A volatile variable cannot be cached in a register 			
 Writes must g 	o directly to memory			
 Reads must al 	lways come from memory/cache			
 volatile code blocks cannot be reordered by the compiler 				
- Must be exect	uted precisely at this point in program			
 – E.g., inline assembly 				
•volatile m	eans I really mean it!			

COMP 790: OS Implementation

Configuration

- Who sets up port mapping and I/O memory mappings?

- Who maps device interrupts onto IRQ lines?

- Sometimes constrained by device limitations

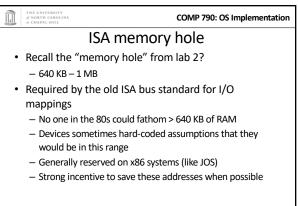
Older devices may only have a 16-bit chip
 Can only access lower memory addresses

• Where does all of this come from?

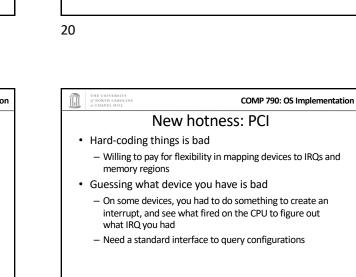
- Older devices hard-coded IRQs

Generally, the BIOS

of NORTH CAROLINA of CHAPEL HILL

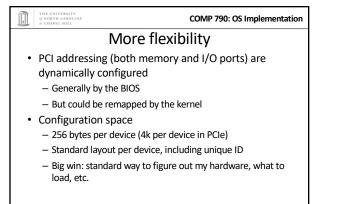

COMP 790: OS Implementation

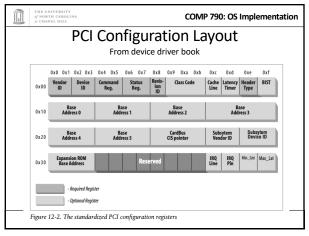
CPU Barriers

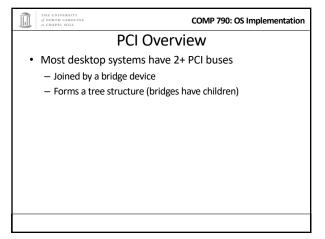

- Advanced topic: Don't need details
- Basic idea: In some cases, CPU can issue loads and stores out of program order (optimize perf)

 Subject to many constraints on x86 in practice
- In some cases, a "fence" instruction is required to ensure that pending loads/stores happen before the CPU moves forward
 - Rarely needed except in device drivers and lock-free data structures

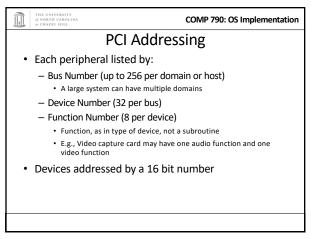
19

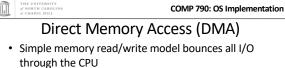



21

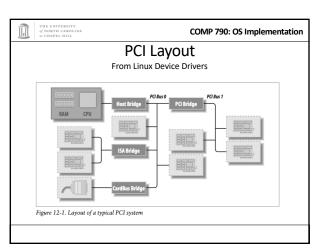


22


Î



25



27

- Fine for small data, totally awful for huge data

- Idea: just write where you want data to go (or come from) to device
 - Let device do bulk data transfers into memory without CPU intervention
 - Interrupt CPU on I/O completion (asynchronous)

26

 PCI Interrupts Each PCI slot has 4 interrupt pins Device does not worry about how those are mapped to IRQ lines on the CPU An APIC or other intermediate chip does this mapping Bonus: flexibility! Sharing limited IRQ lines is a hassle. Why? Trap handler must demultiplex interrupts Being able to "load balance" the IRQs is useful 		of NORTH CAROLINA COMP 790: OS Implementati
 Device does not worry about how those are mapped to IRQ lines on the CPU An APIC or other intermediate chip does this mapping Bonus: flexibility! Sharing limited IRQ lines is a hassle. Why? Trap handler must demultiplex interrupts 		PCI Interrupts
 to IRQ lines on the CPU An APIC or other intermediate chip does this mapping Bonus: flexibility! Sharing limited IRQ lines is a hassle. Why? Trap handler must demultiplex interrupts 	•	Each PCI slot has 4 interrupt pins
 Bonus: flexibility! Sharing limited IRQ lines is a hassle. Why? Trap handler must demultiplex interrupts 	•	,
 Sharing limited IRQ lines is a hassle. Why? Trap handler must demultiplex interrupts 		 An APIC or other intermediate chip does this mapping
Trap handler must demultiplex interrupts	•	Bonus: flexibility!
		– Sharing limited IRQ lines is a hassle. Why?
 Being able to "load balance" the IRQs is useful 		 Trap handler must demultiplex interrupts
		 Being able to "load balance" the IRQs is useful

28

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

DMA Buffers

COMP 790: OS Implementation

- DMA buffers must be physically contiguous
- Devices do not go through page tables
- Some buses (SBus) can use virtual addresses; most (PCI) use physical (avoid page translation overheads)

of NORTH CAROLINA

COMP 790: OS Implementation Ring buffers

- Many devices pre-allocate a "ring" of buffers

 Think network card
- · Device writes into ring; CPU reads behind
- If ring is well-sized to the load:
 - No dynamic buffer allocation
 - No stalls
- Trade-off between device stalls (or dropped packets) and memory overheads

31

COMP 790: OS Implementation IDMMU • It is a pain to allocate physically contiguous regions • Idea: "virtual addresses" for devices - We can take random physical pages and make them look contiguous to the device - Called "Bus address" for clarity • New to the x86 (called VT-d) - Until very recently, x86 kernels just suffered

32

	THE UNIVERSITY of NORTH CAROLINA al CHAPEL HILL		COMP 790: OS Implementation
	A no	ote on mem	ory protection
•		te to a network re to write the n	card's control register and ext packet
		other process's addres	used for something else? ss space
•	•	lege effectively e ss in physical me	equals privilege to write to mory!

33

of North Carolina af Chapel Hill

COMP 790: OS Implementation

VT-d Limitations

- IOMMU device restrictions are all-or-nothing
 - Can't share a network card
 - Although some devices may fix this too
- VT-d is only for devices on the PCI-Express bus
 - Usually just graphics and high-end network cards
 - Legacy PCI devices are behind a bridge
 All-or-nothing for an entire bridge
 - Similarly, no per-disk access control
 - All-or-nothing for disk controller (which multiplexes disks)

of NORTH CAROLINA of CHAPEL HILL

Why does x86 now care about IOMMUs?

COMP 790: OS Implementation

- Virtualization! (VT-d)
- Scenario: system with 4 NICs, 4 VMs
- Without IOMMU: Hypervisor must mediate all network traffic
- With IOMMU: Each VM can have a different virtual bus address space
- Looks like a single NIC; can only issue DMAs for its own memory (not other VM's memory)
- No Hypervisor mediation needed!

34

COMP 790: OS Implementation

Summary

- How to access devices: ports or memory
- Issues with CPU optimizations, timing delays, etc.
- Overview of PCI bus
- Overview of DMA and protection issues – IOMMU and use for virtualization