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Housekeeping
• Paper reading assigned for next class
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Last time…
• We’ve discussed how the OS schedules the CPU
– And how to block a process on a resource (disk, network)

• Today:
– How do processes block on each other?
– And more generally communicate?
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Outline
• Signals
– Overview and APIs
– Handlers
– Kernel-level delivery
– Interrupted system calls

• Interprocess Communication (IPC)
– Pipes and FIFOs
– System V IPC
– Windows Analogs
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What is a signal?
• Like an interrupt, but for applications
– <64 numbers with specific meanings
– A process can raise a signal to another process or thread
– A process or thread registers a handler function

• For both IPC and delivery of hardware exceptions
– Application-level handlers: divzero, segfaults, etc.

• No “message” beyond the signal was raised
– And maybe a little metadata

• PID of sender, faulting address, etc.
• But platform-specific (non-portable)
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Example

Pid 300

int main() { 
...
signal(SIGUSR1, &usr_handler);
...

}

Register usr_handler() to handle SIGUSR1 7
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Example

Pid 300

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() { 
...

}

int usr_handler() { …

PC
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Basic Model
• Application registers handlers with signal or sigaction
• Send signals with kill and friends
– Or raised by hardware exception handlers in kernel

• Signal delivery jumps to signal handler
– Irregular control flow, similar to an interrupt

API names are admittedly confusing 9
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Signal Types
• See man 7 signal for the full list: (varies by sys/arch)
SIGTSTP – 1 – Stop typed at terminal (Ctrl+Z)
SIGKILL – 9 – Kill a process, for realzies
SIGSEGV – 11 – Segmentation fault
SIGPIPE – 13 – Broken pipe (write with no readers)
SIGALRM – 14 – Timer 
SIGUSR1 – 10 – User-defined signal 1
SIGCHLD – 17 – Child stopped or terminated
SIGSTOP – 19 – Stop a process
SIGCONT – 18 – Continue if stopped
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Language Exceptions
• Signals are the underlying mechanism for Exceptions 

and catch blocks
• JVM or other runtime system sets signal handlers
– Signal handler causes execution to jump to the catch block
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Signal Handler Control Flow

From Understanding the Linux Kernel 12
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Alternate Stacks
• Signal handlers execute on a different stack than 

program execution. 
– Why?

• Safety: App can ensure stack is actually mapped
– And avoid assumptions about application not using space below rsp

– Set with sigaltstack() system call

• Like an interrupt handler, kernel pushes register state 
on interrupt stack
– Return to kernel with sigreturn() system call
– App can change its own on-stack register state!
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Nested Signals
• What happens when you get a signal in the signal 

handler?
• And why should you care?
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The Problem with Nesting
int main() {

/* ... */
signal(SIGINT, &handler);
signal(SIGTERM, &handler);
/* ... */

}
int handler() {

free(buf1);
free(buf2);

}

SIGINT

SIGTERM

Signal Stack

PC Calls 
munmap()

Another signal 
delivered on 

return
Double free!
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Nested Signals
• The original signal() specification was a total mess!
– Now deprecated---do not use!

• New sigaction() API lets you specify this in detail
– What signals are blocked (and delivered on sigreturn)
– Similar to disabling hardware interrupts

• As you might guess, blocking system calls inside of a 
signal handler are only safe with careful use of 
sigaction()
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Application vs. Kernel
• App: signals appear to be delivered roughly 

immediately
• Kernel (lazy): 
– Send a signal == mark a pending signal in the task

• And make runnable if blocked with TASK_INTERRUPTIBLE flag

– Check pending signals on return from interrupt or syscall
• Deliver if pending
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Example

Pid 300
RUNNING

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() { 
read();

}

int usr_handler() { …

PC

…

…
10Pid 300

INTERRUPTIBLE Block on disk 
read!

Mark pending 
signal, 

unblock

What happens 
to read?
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Interrupted System Calls
• If a system call blocks in the INTERRUPTIBLE state, a 

signal wakes it up
• Yet signals are delivered on return from a system call
• How is this resolved?
• The system call fails with a special error code
– EINTR and friends
– Many system calls transparently retry after sigreturn
– Some do not – check for EINTR in your applications!
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Default handlers
• Signals have default handlers:
– Ignore, kill, suspend, continue, dump core
– These execute inside the kernel

• Installing a handler with signal/sigaction overrides 
the default

• A few (SIGKILL) cannot be overridden
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RT Signals
• Default signals are only in 2 states: signaled or not
– If I send 2 SIGUSR1’s to a process, only one may be 

delivered
– If system is slow and I furiously hit Ctrl+C over and over, 

only one SIGINT delivered

• Real time (RT) signals keep a count
– Deliver one signal for each one sent
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Signal Summary
• Abstraction like hardware interrupts
– Some care must be taken to block other signals
– Easy to write buggy handlers and miss EINTR 

• Understand control flow from application and kernel 
perspective

• Understand basic APIs
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Other IPC
• Pipes, Sockets, and FIFOs
• System V IPC
• Windows comparison
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Pipes
• Stream of bytes between two processes
• Read and write like a file handle
– But not anywhere in the hierarchical file system
– And not persistent
– And no cursor or seek()-ing
– Actually, 2 handles: a read handle and a write handle

• Primarily used for parent/child communication
– Parent creates a pipe, child inherits it
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Example
int pipe_fd[2];

int rv = pipe(pipe_fd);
int pid = fork();

if (pid == 0) {

close(pipe_fd[1]); //Close unused write end

dup2(pipe_fd[0], 0); // Make the read end stdin

exec(“grep”, “quack”);

} else {
close (pipe_fd[0]);  // Close unused read end …

25

25

COMP 790: OS Implementation

FIFOs (aka Named Pipes)
• Existing pipes can’t be opened---only inherited
– Or passed over a Unix Domain Socket (beyond today’s lec)

• FIFOs, or Named Pipes, add an interface for opening 
existing pipes
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Sockets
• Similar to pipes, except for network connections
• Setup and connection management is a bit trickier
– A topic for another day (or class)
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Select
• What if I want to block until one of several handles 

has data ready to read?
• Read will block on one handle, but perhaps miss data 

on a second…
• Select will block a process until a handle has data 

available
– Useful for applications that use pipes, sockets, etc.
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Synthesis Example: The Shell
• Almost all ‘commands’ are really binaries
– /bin/ls

• Key abstraction: Redirection over pipes
– ‘>’, ‘<‘, and ‘|’implemented by the shell itself
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Shell Example
• Ex: ls | grep foo
• Implementation sketch: 
– Shell parses the entire string
– Sets up chain of pipes
– Forks and exec’s ‘ls’ and ‘grep’ separately
– Wait on output from ‘grep’, print to console
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Job control in a shell
• Shell keeps its own “scheduler” for background processes

• How to:
– Put a process in the background?

• SIGTSTP handler catches Ctrl-Z
• Send SIGSTOP to current foreground child

– Resume execution (fg)?
• Send SIGCONT to paused child, use waitpid() to block until finished

– Execute in background (bg)?
• Send SIGCONT to paused child, but block on terminal input
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Other hints
• Splice(), tee(), and similar calls are useful for 

connecting pipes together
– Avoids copying data into and out-of application
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System V IPC
• Semaphores – Lock
• Message Queues – Like a mail box, “small” messages
• Shared Memory – particularly useful
– A region of non-COW anonymous memory
– Map at a given address using shmat()

• Can persist longer than an application
– Must be explicitly deleted
– Can leak at system level
– But cleared after a reboot
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System V Keys and IDs
• Programmers pick arbitrary 32-bit keys
– Use these keys to name shared abstractions

• Find a key using shmget(), msgget(), etc.
– Kernel internally maps key to a 32-bit ID
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Windows Comparison
• Hardware exceptions are treated separately from IPC
– Upcalls to ntdll.dll (libc equivalent), to call handlers

• All IPC types can be represented as handles
– Process termination/suspend/resume signaled with 

process handles
– Signals can be an Event handle
– Semaphores and Mutexes have handles
– Shared memory equally complicated (but still handles)

• Single select()-like API to wait on a handle to be 
signaled
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Summary
• Understand signals
• Understand high-level properties of pipes and other 

Unix IPC abstractions
– High-level comparison with Windows
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