
2/21/20

1

COMP 790: OS Implementation

Signals and Inter-Process
Communication

Don Porter

1

1

COMP 790: OS Implementation

Housekeeping
• Paper reading assigned for next class

2

2

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
Process

Coordination

3

3

COMP 790: OS Implementation

Last time…
• We’ve discussed how the OS schedules the CPU
– And how to block a process on a resource (disk, network)

• Today:
– How do processes block on each other?
– And more generally communicate?

4

4

COMP 790: OS Implementation

Outline
• Signals
– Overview and APIs
– Handlers
– Kernel-level delivery
– Interrupted system calls

• Interprocess Communication (IPC)
– Pipes and FIFOs
– System V IPC
– Windows Analogs

5

5

COMP 790: OS Implementation

What is a signal?
• Like an interrupt, but for applications
– <64 numbers with specific meanings
– A process can raise a signal to another process or thread
– A process or thread registers a handler function

• For both IPC and delivery of hardware exceptions
– Application-level handlers: divzero, segfaults, etc.

• No “message” beyond the signal was raised
– And maybe a little metadata

• PID of sender, faulting address, etc.
• But platform-specific (non-portable)

6

6

2/21/20

2

COMP 790: OS Implementation

Example

Pid 300

int main() {
...
signal(SIGUSR1, &usr_handler);
...

}

Register usr_handler() to handle SIGUSR1 7

7

COMP 790: OS Implementation

Example

Pid 300

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() {
...

}

int usr_handler() { …

PC

8

8

COMP 790: OS Implementation

Basic Model
• Application registers handlers with signal or sigaction
• Send signals with kill and friends
– Or raised by hardware exception handlers in kernel

• Signal delivery jumps to signal handler
– Irregular control flow, similar to an interrupt

API names are admittedly confusing 9

9

COMP 790: OS Implementation

Signal Types
• See man 7 signal for the full list: (varies by sys/arch)
SIGTSTP – 1 – Stop typed at terminal (Ctrl+Z)
SIGKILL – 9 – Kill a process, for realzies
SIGSEGV – 11 – Segmentation fault
SIGPIPE – 13 – Broken pipe (write with no readers)
SIGALRM – 14 – Timer
SIGUSR1 – 10 – User-defined signal 1
SIGCHLD – 17 – Child stopped or terminated
SIGSTOP – 19 – Stop a process
SIGCONT – 18 – Continue if stopped

10

10

COMP 790: OS Implementation

Language Exceptions
• Signals are the underlying mechanism for Exceptions

and catch blocks
• JVM or other runtime system sets signal handlers
– Signal handler causes execution to jump to the catch block

11

11

COMP 790: OS Implementation

Signal Handler Control Flow

From Understanding the Linux Kernel 12

12

2/21/20

3

COMP 790: OS Implementation

Alternate Stacks
• Signal handlers execute on a different stack than

program execution.
– Why?

• Safety: App can ensure stack is actually mapped
– And avoid assumptions about application not using space below rsp

– Set with sigaltstack() system call

• Like an interrupt handler, kernel pushes register state
on interrupt stack
– Return to kernel with sigreturn() system call
– App can change its own on-stack register state!

13

13

COMP 790: OS Implementation

Nested Signals
• What happens when you get a signal in the signal

handler?
• And why should you care?

14

14

COMP 790: OS Implementation

The Problem with Nesting
int main() {

/* ... */
signal(SIGINT, &handler);
signal(SIGTERM, &handler);
/* ... */

}
int handler() {

free(buf1);
free(buf2);

}

SIGINT

SIGTERM

Signal Stack

PC Calls
munmap()

Another signal
delivered on

return
Double free!

15

15

COMP 790: OS Implementation

Nested Signals
• The original signal() specification was a total mess!
– Now deprecated---do not use!

• New sigaction() API lets you specify this in detail
– What signals are blocked (and delivered on sigreturn)
– Similar to disabling hardware interrupts

• As you might guess, blocking system calls inside of a
signal handler are only safe with careful use of
sigaction()

16

16

COMP 790: OS Implementation

Application vs. Kernel
• App: signals appear to be delivered roughly

immediately
• Kernel (lazy):
– Send a signal == mark a pending signal in the task

• And make runnable if blocked with TASK_INTERRUPTIBLE flag

– Check pending signals on return from interrupt or syscall
• Deliver if pending

17

17

COMP 790: OS Implementation

Example

Pid 300
RUNNING

kill(300, SIGUSR1);

Send signal to PID 300

Pid 400

int main() {
read();

}

int usr_handler() { …

PC

…

…
10Pid 300

INTERRUPTIBLE Block on disk
read!

Mark pending
signal,

unblock

What happens
to read?

18

18

2/21/20

4

COMP 790: OS Implementation

Interrupted System Calls
• If a system call blocks in the INTERRUPTIBLE state, a

signal wakes it up
• Yet signals are delivered on return from a system call
• How is this resolved?
• The system call fails with a special error code
– EINTR and friends
– Many system calls transparently retry after sigreturn
– Some do not – check for EINTR in your applications!

19

19

COMP 790: OS Implementation

Default handlers
• Signals have default handlers:
– Ignore, kill, suspend, continue, dump core
– These execute inside the kernel

• Installing a handler with signal/sigaction overrides
the default

• A few (SIGKILL) cannot be overridden

20

20

COMP 790: OS Implementation

RT Signals
• Default signals are only in 2 states: signaled or not
– If I send 2 SIGUSR1’s to a process, only one may be

delivered
– If system is slow and I furiously hit Ctrl+C over and over,

only one SIGINT delivered

• Real time (RT) signals keep a count
– Deliver one signal for each one sent

21

21

COMP 790: OS Implementation

Signal Summary
• Abstraction like hardware interrupts
– Some care must be taken to block other signals
– Easy to write buggy handlers and miss EINTR

• Understand control flow from application and kernel
perspective

• Understand basic APIs

22

22

COMP 790: OS Implementation

Other IPC
• Pipes, Sockets, and FIFOs
• System V IPC
• Windows comparison

23

23

COMP 790: OS Implementation

Pipes
• Stream of bytes between two processes
• Read and write like a file handle
– But not anywhere in the hierarchical file system
– And not persistent
– And no cursor or seek()-ing
– Actually, 2 handles: a read handle and a write handle

• Primarily used for parent/child communication
– Parent creates a pipe, child inherits it

24

24

2/21/20

5

COMP 790: OS Implementation

Example
int pipe_fd[2];

int rv = pipe(pipe_fd);
int pid = fork();

if (pid == 0) {

close(pipe_fd[1]); //Close unused write end

dup2(pipe_fd[0], 0); // Make the read end stdin

exec(“grep”, “quack”);

} else {
close (pipe_fd[0]); // Close unused read end …

25

25

COMP 790: OS Implementation

FIFOs (aka Named Pipes)
• Existing pipes can’t be opened---only inherited
– Or passed over a Unix Domain Socket (beyond today’s lec)

• FIFOs, or Named Pipes, add an interface for opening
existing pipes

26

26

COMP 790: OS Implementation

Sockets
• Similar to pipes, except for network connections
• Setup and connection management is a bit trickier
– A topic for another day (or class)

27

27

COMP 790: OS Implementation

Select
• What if I want to block until one of several handles

has data ready to read?
• Read will block on one handle, but perhaps miss data

on a second…
• Select will block a process until a handle has data

available
– Useful for applications that use pipes, sockets, etc.

28

28

COMP 790: OS Implementation

Synthesis Example: The Shell
• Almost all ‘commands’ are really binaries
– /bin/ls

• Key abstraction: Redirection over pipes
– ‘>’, ‘<‘, and ‘|’implemented by the shell itself

29

29

COMP 790: OS Implementation

Shell Example
• Ex: ls | grep foo
• Implementation sketch:
– Shell parses the entire string
– Sets up chain of pipes
– Forks and exec’s ‘ls’ and ‘grep’ separately
– Wait on output from ‘grep’, print to console

30

30

2/21/20

6

COMP 790: OS Implementation

Job control in a shell
• Shell keeps its own “scheduler” for background processes

• How to:
– Put a process in the background?

• SIGTSTP handler catches Ctrl-Z
• Send SIGSTOP to current foreground child

– Resume execution (fg)?
• Send SIGCONT to paused child, use waitpid() to block until finished

– Execute in background (bg)?
• Send SIGCONT to paused child, but block on terminal input

31

31

COMP 790: OS Implementation

Other hints
• Splice(), tee(), and similar calls are useful for

connecting pipes together
– Avoids copying data into and out-of application

32

32

COMP 790: OS Implementation

System V IPC
• Semaphores – Lock
• Message Queues – Like a mail box, “small” messages
• Shared Memory – particularly useful
– A region of non-COW anonymous memory
– Map at a given address using shmat()

• Can persist longer than an application
– Must be explicitly deleted
– Can leak at system level
– But cleared after a reboot

33

33

COMP 790: OS Implementation

System V Keys and IDs
• Programmers pick arbitrary 32-bit keys
– Use these keys to name shared abstractions

• Find a key using shmget(), msgget(), etc.
– Kernel internally maps key to a 32-bit ID

34

34

COMP 790: OS Implementation

Windows Comparison
• Hardware exceptions are treated separately from IPC
– Upcalls to ntdll.dll (libc equivalent), to call handlers

• All IPC types can be represented as handles
– Process termination/suspend/resume signaled with

process handles
– Signals can be an Event handle
– Semaphores and Mutexes have handles
– Shared memory equally complicated (but still handles)

• Single select()-like API to wait on a handle to be
signaled

35

35

COMP 790: OS Implementation

Summary
• Understand signals
• Understand high-level properties of pipes and other

Unix IPC abstractions
– High-level comparison with Windows

36

36

