
4/15/20

1

COMP 790: OS Implementation

Networking

Don Porter

(portions courtesy Vyas Sekar)

1

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

2

Today’s Lecture

2

COMP 790: OS Implementation

Networking (2 parts)
• Goals:
– Review networking basics
– Discuss APIs
– Trace how a packet gets from the network device to the

application (and back)
– Understand Receive livelock and NAPI

3

COMP 790: OS Implementation

4 to 7 layer diagram
(from Understanding Linux Network Internals)

4

COMP 790: OS Implementation

Nomenclature
• Frame: hardware
• Packet: IP
• Segment: TCP/UDP
• Message: Application

5

COMP 790: OS Implementation

TCP/IP Reality
• The OSI model is great for undergrad courses
• TCP/IP (or UDP) is what the majority of programs use
– Some random things (like networked disks) just use

ethernet + some custom protocols

6

4/15/20

2

COMP 790: OS Implementation

Ethernet (or 802.2 or 802.3)
• All slight variations on a theme (3 different

standards)
• Simple packet layout:
– Header: Type, source MAC address, destination MAC

address, length, (and a few other fields)
– Data block (payload)
– Checksum

• Higher-level protocols “nested” inside payload
• “Unreliable” – no guarantee a packet will be

delivered

7

COMP 790: OS Implementation

Ethernet History
• Originally designed for a shared wire (e.g., coax

cable)
• Each device listens to all traffic
– Hardware filters out traffic intended for other hosts

• I.e., different destination MAC address

– Can be put in “promiscuous” mode, and record everything
(called a network sniffer)

• Sending: Device hardware automatically detects if
another device is sending at same time
– Random back-off and retry

8

COMP 790: OS Implementation

Early competition
• Token-ring network: Devices passed a “token”

around
– Device with the token could send; all others listened
– Like the “talking stick” in a kindergarten class

• Send latencies increased proportionally to the
number of hosts on the network
– Even if they weren’t sending anything (still have to pass

the token)

• Ethernet has better latency under low contention
and better throughput under high

9

COMP 790: OS Implementation

Token ring

Source: http://www.datacottage.com/nch/troperation.htm

10

COMP 790: OS Implementation

Shared vs Switched

Source: http://www.industrialethernetu.com/courses/401_3.htm

11

COMP 790: OS Implementation

Switched networks
• Modern ethernets are switched
• What is a hub vs. a switch?
– Both are a box that links multiple computers together
– Hubs broadcast to all plugged-in computers (let computers

filter traffic)
– Switches track who is plugged in, only send to expected

recipient
• Makes sniffing harder L

12

4/15/20

3

COMP 790: OS Implementation

Internet Protocol (IP)
• 2 flavors: Version 4 and 6
– Version 4 widely used in practice---today’s focus

• Provides a network-wide unique device address (IP
address)

• This layer is responsible for routing data across
multiple ethernet networks on the internet
– Ethernet packet specifies its payload is IP
– At each router, payload is copied into a new point-to-point

ethernet frame and sent along

13

COMP 790: OS Implementation

Transmission Control Protocol (TCP)
• Higher-level protocol that layers end-to-end

reliability, transparent to applications
– Lots of packet acknowledgement messages, sequence

numbers, automatic retry, etc.
– Pretty complicated

• Applications on a host are assigned a port number
– A simple integer from 0-64k
– Multiplexes many applications on one device
– Ports below 1k reserved for privileged applications

14

COMP 790: OS Implementation

User Datagram Protocol (UDP)
• The simple alternative to TCP
– None of the frills (no reliability guarantees)

• Same port abstraction (1-64k)
– But different ports
– I.e., TCP port 22 isn’t the same port as UDP port 22

15

COMP 790: OS Implementation

Some well-known ports
• 80 – http
• 22 – ssh
• 53 – DNS
• 25 – SMTP

16

COMP 790: OS Implementation

Example
(from Understanding Linux Network Internals)

17

COMP 790: OS Implementation

Networking APIs
• Programmers rarely create ethernet frames
• Most applications use the socket abstraction
– Stream of messages or bytes between two applications
– Applications still specify: protocol (TCP vs. UDP), remote

host address
• Whether reads should return a stream of bytes or distinct

messages

• While many low-level details are abstracted,
programmers must understand basics of low-level
protocols

18

4/15/20

4

COMP 790: OS Implementation

Sockets, cont.
• One application is the server, or listens on a pre-

determined port for new connections
• The client connects to the server to create a

message channel
• The server accepts the connection, and they begin

exchanging messages

19

COMP 790: OS Implementation

Creation APIs
• int socket(domain, type, protocol) – create a file

handle representing the communication endpoint
– Domain is usually AF_INET (IP4), many other choices
– Type can be STREAM, DGRAM, RAW
– Protocol – usually 0

• int bind(fd, addr, addrlen) – bind this socket to a
specific port, specified by addr
– Can be INADDR_ANY (don’t care what port)

20

20

COMP 790: OS Implementation

Server APIs
• int listen(fd, backlog) – Indicate you want incoming

connections
– Backlog is how many pending connections to buffer until

dropped
• int accept(fd, addr, len, flags) – Blocks until you get a

connection, returns where from in addr
– Return value is a new file descriptor for child
– If you don’t like it, just close the new fd

21

COMP 790: OS Implementation

Client APIs
• Both client and server create endpoints using

socket()
– Server uses bind, listen, accept
– Client uses connect(fd, addr, addrlen) to connect to server

• Once a connection is established:
– Both use send/recv
– Pretty self-explanatory calls

22

COMP 790: OS Implementation

Linux implementation
• Sockets implemented in the kernel
– So are TCP, UDP and IP

• Benefits:
– Application doesn’t need to be scheduled for TCP ACKs,

retransmit, etc.
– Kernel trusted with correct delivery of packets

• A single system call (i386):
– sys_socketcall(call, args)

• Has a sub-table of calls, like bind, connect, etc.

23

COMP 790: OS Implementation

Plumbing
• Each message is put in a sk_buff structure
• Between socket/application and device, the sk_buff

is passed through a stack of protocol handlers
– These handlers update internal bookkeeping, wrap

payload in their headers, etc.
• At the bottom is the device itself, which

sends/receives the packets

24

4/15/20

5

COMP 790: OS Implementation

sk_buff
(from Understanding Linux Networking Internals)

25

COMP 790: OS Implementation

Efficient packet processing

• Moving pointers is more efficient than removing
headers

• Appending headers is more efficient than re-copy

26

COMP 790: OS Implementation
Walk through how a rcvd packet is

processed

Source = http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html#tth_sEc6.2

27

COMP 790: OS Implementation

Interrupt handler
• “Top half” responsible to:
– Allocate a buffer (sk_buff)
– Copy received data into the buffer
– Initialize a few fields
– Call “bottom half” handler

• In some cases, sk_buff can be pre-allocated, and
network card can copy data in (DMA) before firing
the interrupt
– Lab 6a will follow this design

28

COMP 790: OS Implementation

Quick review
• Why top and bottom halves?
– To minimize time in an interrupt handler with other

interrupts disabled
– Gives kernel more scheduling flexibility
– Simplifies service routines (defer complicated operations

to a more general processing context)

29

COMP 790: OS Implementation

Digression: Softirqs
• A hardware IRQ is the hardware interrupt line
– Also used for hardware “top half”

• Soft IRQ is the associated software “interrupt”
handler
– Or, “bottom half”

• How are these implemented in Linux?
– Two canonical ways: Softirq and Tasklet
– More general than just networking

30

4/15/20

6

COMP 790: OS Implementation

Softirqs
• Kernel’s view: per-CPU work lists
– Tuples of <function, data>

• At the right time, call function(data)
– Right time: Return from exceptions/interrupts/sys. calls
– Also, each CPU has a kernel thread ksoftirqd_CPU# that

processes pending requests
– ksoftirqd is nice +19. What does that mean?

• Lowest priority – only called when nothing else to do

31

COMP 790: OS Implementation

Softirqs, cont.
• Device programmer’s view:
– Only one instance of a softirq function will run on a CPU at

a time
• Doesn’t need to be reentrant

– reentrant if it can be interrupted in the middle of its execution and
then safely called again ("re-entered") before its previous invocations
complete execution

• If interrupted, won’t be called again by interrupt handler
– Subsequent calls enqueued!

– One instance can run on each CPU concurrently, though
• Must use locks

32

COMP 790: OS Implementation

Tasklets
• For the faint of heart (and faint of locking prowess)
• Constrained to only run one at a time on any CPU
– Useful for poorly synchronized device drivers

• Say those that assume a single CPU in the 90’s

– Downside: If your driver uses tasklets, and you have
multiple devices of the same type---the bottom halves of
different devices execute serially

33

COMP 790: OS Implementation

Softirq priorities
• Actually, there are 6 queues per CPU; processed in

priority order:
– HI_SOFTIRQ (high/first)
– TIMER
– NET TX
– NET RX
– SCSI
– TASKLET (low/last)

34

COMP 790: OS Implementation

Observation 1
• Devices can decide whether their bottom half is

higher or lower priority than network traffic (HI or
TASKLET)
– Example: Video capture device may want to run its bottom

half at HI, to ensure quality of service
– Example: Printer may not care

35

COMP 790: OS Implementation

Observation 2
• Transmit traffic prioritized above receive. Why?
– The ability to send packets may stem the tide of incoming

packets
• Obviously eliminates retransmit requests based on timeout

• Can also send “back-off” messages

36

4/15/20

7

COMP 790: OS Implementation

Receive bottom half
• For each pending sk_buff:
– Pass a copy to any taps (sniffers)
– Do any MAC-layer processing, like bridging
– Pass a copy to the appropriate protocol handler (e.g., IP)

• Recur on protocol handler until you get to a port
– Perform some handling transparently (filtering, ACK, retry)

• If good, deliver to associated socket
• If bad, drop

37

COMP 790: OS Implementation

Socket delivery
• Once the bottom half/protocol handler moves a

payload into a socket:
– Check and see if the task is blocked on input for this socket
– If so, wake it up

• Read/recv system calls copy data into application

38

COMP 790: OS Implementation

Socket sending
• Send/write system calls copy data into socket
– Allocate sk_buff for data
– Be sure to leave plenty of head and tail room!

• System call does protocol handling during
application’s timeslice
– Note that receive handling done during ksoftirqd timeslice

• Last protocol handler enqueues a softirq to transmit

39

COMP 790: OS Implementation

Transmission
• Softirq can go ahead and invoke low-level driver to

do a send
• Interrupt usually signals completion
– Interrupt handler just frees the sk_buff

40

COMP 790: OS Implementation

Switching gears
• We’ve seen the path network data takes through the

kernel in some detail
• Now, let’s talk about how network drivers handle

heavy loads

41

COMP 790: OS Implementation

Our cup runneth over
• Suppose an interrupt fires every time a packet comes

in
– This takes N ms to process the interrupt

• What happens when packets arrive at a frequency
approaching or exceeding N?
– You spend all of your time handling interrupts!

• Will the bottom halves for any of these packets get
executed?
– No. They are lower-priority than new packets

42

4/15/20

8

COMP 790: OS Implementation

Receive livelock
• The condition that the system never makes progress

because it spends all of its time starting to process
new packets

• Real problem: Hard to prioritize other work over
interrupts

• Principle: Better to process one packet to completion
than to run just the top half on a million

43

COMP 790: OS Implementation

Receive livelock in practice

Source: Mogul & Ramakrishnan, ToCS 96

Ideal

44

COMP 790: OS Implementation

Shedding load
• If you can’t process all incoming packets, you must

drop some
• Principle: If you are going to drop some packets,

better do it early!
• If you quit taking packets off of the network card, the

network card will drop packets once its buffers get
full

45

COMP 790: OS Implementation

Idea
• Under heavy load, disable the network card’s

interrupts
• Use polling instead
– Ask if there is more work once you’ve done the first batch

• This allows a packet to make it all the way through all
of the bottom half processing, the application, and
get a response back out

• Ensuring some progress! Yay!

46

COMP 790: OS Implementation

Why not poll all the time?
• If polling is so great, why even bother with

interrupts?
• Latency: When incoming traffic is rare, we want high-

priority, latency-sensitive applications to get their
data ASAP

47

COMP 790: OS Implementation

General insight
• If the expected input rate is low, interrupts are better
• When the expected input rate gets above a certain

threshold, polling is better
• Just need to figure out a way to dynamically switch

between the two methods…

48

4/15/20

9

COMP 790: OS Implementation

Pictorially..

Source: download.intel.com/design/intarch/PAPERS/323704.pdf

49

COMP 790: OS Implementation

Why haven’t we seen this before?
• Why don’t disks have this problem?
• Inherently rate limited
• If the CPU is bogged down processing previous disk

requests, it can’t issue more
• An external CPU can generate all sorts of network

inputs

50

COMP 790: OS Implementation

Linux NAPI
• Or New API. Seriously.
• Every driver provides a poll() method that does the

low-level receive
– Called in first step of softirq RX function

• Top half just schedules poll() to do the receive as
softirq
– Can disable the interrupt under heavy loads; use timer

interrupt to schedule a poll
– Bonus: Some rare NICs have a timer; can fire an interrupt

periodically, only if something to say!

51

COMP 790: OS Implementation

NAPI
• Gives kernel control to throttle network input
• Slow adoption – means some measure of driver

rewriting
• Backwards compatibility solution:
– Old top half still creates sk_buffs and puts them in a queue
– Queue assigned to a fake “backlog” device
– Backlog poll device is scheduled by NAPI softirq
– Interrupts can still be disabled

52

COMP 790: OS Implementation

NAPI Summary
• Too much input is a real problem
• NAPI lets kernel throttle interrupts until current

packets processed
• Softirq priorities let some devices run their bottom

halves before net TX/RX
– Net TX handled before RX

53

COMP 790: OS Implementation

General summary
• Networking basics and APIs
• Idea of plumbing from socket to driver
– Through protocol handlers and softirq poll methods

• NAPI and input throttling

54

