
COMP 790: OS Implementation

NFS

Don Porter

1

COMP 790: OS Implementation

Big picture
(from Sandberg et al.)

J
together as the !handle for a rue. The inode generation number is necessary because the server
may hand out an !handle with an inode number of a file that is later removed and the inode
reused. When the original fhandle comes back, the server must be able to tell that this inode
number now refers to a different rile. The generation number has to be incremented every time
the inode is freed.
Client Side
The client side provides the transparent interlace to the NFS. To make transparent access to
remote rues work we had to use a method of locating remote files that does not change the
structure of path names. Some UNIX based remote rue access schemes use host:path to name
remote files. This does not allow real transparent access since existing programs that parse
pathnames have to be modified.
Rather than doing a "late binding" of rile address, we decided to do the hostname lookup and
rile address binding once per rllesystem by allowing the client to attach a remote ruesystem to a
directory using the mount program. This method has the advantage that the client only has to
deal with hostnames once, at mount time. It also allows the server to limit access to filesystems
by checking client credentials. The disadvantage is that remote files are not available to the
client until a mount is done.
Transparent access to different types of rllesystems mounted on a single machine is provided by a
new rllesystems interlace in the kernel. Each "filesystem type" supports two sets of operations:
the Virtual Fllesystem (VFS) interface dermes the procedures that operate on the filesystem as a
whole; and the Virtual Node (vnode) interface dermes the procedures that operate on an
individual rue within that filesystem type. Figure 1 is a schematic diagram of the filesystem
interface and how the NFS uses it.

~~~~~~~

Figure 1

The Fllesystem Interface
The VFS interface is implemented using a structure that contains the operations that can be done
on a whole fllesystem. Ukewise. the vnode interface is a structure that contains the operations
that can be done on a node (rIle or directory) within a fllesystem. There is one VFS structure per



COMP 790: OS Implementation

Intuition
• Instead of translating VFS requests into hard drive 

accesses, translate them into remote procedure calls 
to a server

• Simple, right?  I mean, what could possibly go 
wrong?



COMP 790: OS Implementation

Challenges
• Server can crash or be disconnected
• Client can crash or be disconnected
• How to coordinate multiple clients accessing same 

file?
• Security
• New failure modes for applications
– Goal: Invent VFS to avoid changing applications; use 

network file system transparently



COMP 790: OS Implementation

Disconnection
• Just as a machine can crash between writes to the 

hard drive, a client can crash between writes to the 
server

• The server needs to think about how to recover if a 
client fails between requests
– Ex: Imagine a protocol that just sends low-level disk 

requests to a distributed virtual disk.  
– What happens if the client goes away after marking a block 

in use, but before doing anything with it?
– When is it safe to reclaim the block?
– What if, 3 months later, the client tries to use the block?



COMP 790: OS Implementation

Stateful protocols
• A stateful protocol has server state that persists 

across requests (aka connections)
– Like the example on previous slide

• Server Challenges:
– Knowing when a connection has failed (timeout)
– Tracking state that needs to be cleaned up on a failure

• Client Challenges: 
– If the server thinks we failed (timeout), recreating server 

state to make progress



COMP 790: OS Implementation

Stateless protocol
• The (potentially) simpler alternative:
– All necessary state is sent with a single request
– Server implementation much simpler!

• Downside:
– May introduce more complicated messages
– And more messages in general

• Intuition: A stateless protocol is more like polling, 
whereas a stateful protocol is more like interrupts
– How do you know when something changes on the server?



COMP 790: OS Implementation

NFS is stateless
• Every request sends all needed info
– User credentials (for security checking)
– File identifier and offset

• Each protocol-level request needs to match VFS-level 
operation for reliability
– E.g., write, delete, stat 



COMP 790: OS Implementation

Challenge 1: Lost request?
• What if I send a request to the NFS server, and 

nothing happens for a long time?
– Did the message get lost in the network (UDP)?
– Did the server die?
– Don’t want to do things twice, like write data at the end of 

a file twice

• Idea: make all requests idempotent or having the 
same effect when executed multiple times
– Ex: write() has an explicit offset, same effect if done 2x



COMP 790: OS Implementation

Challenge 2: Inode reuse
• Suppose I open file ‘foo’ and it maps to inode 30
• Suppose another process unlinks file ‘foo’
– On a local file system, the file handle holds a reference to 

the inode, preventing reuse
– NFS is stateless, so the server doesn’t know I have an open 

handle
• The file can be deleted and the inode reused
• My request for inode 30 goes to the wrong file!  Uh-oh!



COMP 790: OS Implementation

Generation numbers
• Each time an inode in NFS is recycled, its generation 

number is incremented
• Client requests include an inode + generation 

number
– Detect attempts to access an old inode



COMP 790: OS Implementation

Security
• Local uid/gid passed as part of the call
– Uids must match across systems
– Yellow pages (yp) service; evolved to NIS 
– Replaced with LDAP or Active Directory

• Root squashing: if you access a file as root, you get 
mapped to a bogus user (nobody)
– Is this effective security to prevent someone with root on 

another machine from getting access to my files?



COMP 790: OS Implementation

File locking
• I want to be able to change a file without 

interference from another client.
– I could get a server-side lock
– But what happens if the client dies?
– Lots of options (timeouts, etc), but very fraught
– Punted to a separate, optional locking service



COMP 790: OS Implementation

Removal of open files
• Unix allows you to delete an open file, and keep 

using the file handle; a hassle for NFS
• On the client, check if a file is open before removing 

it
• If so, rename it instead of deleting it
– .nfs* files in modern NFS

• When file is closed, then delete the file
• If client crashes, there is a garbage file left which 

must be manually deleted



COMP 790: OS Implementation

Changing Permissions
• On Unix/Linux, once you have a file open, a 

permission change generally won’t revoke access
– Permissions cached on file handle, not checked on inode
– Not necessarily true anymore in Linux
– NFS checks permissions on every read/write---introduces 

new failure modes

• Similarly, you can have issues with an open file being 
deleted by a second client
– More new failure modes for applications



COMP 790: OS Implementation

Time synchronization
• Each CPU’s clock ticks at slightly different rates
• These clocks can drift over time
• Tools like ‘make’ use modification timestamps to tell 

what changed since the last compile
– In the event of too much drift between a client and server, 

make can misbehave (tries not to)

• In practice, most systems sharing an NFS server also 
run network time protocol (NTP) to same time server



COMP 790: OS Implementation

Cached writes
• A local file system sees performance benefits from 

buffering writes in memory
– Rather than immediately sending all writes to disk
– E.g., grouping sequential writes into one request

• Similarly, NFS sees performance benefits from 
caching writes at the client machine
– E.g., grouping writes into fewer synchronous requests



COMP 790: OS Implementation

Caches and consistency
• Suppose clients A and B have a file in their cache
• A writes to the file
– Data stays in A’s cache
– Eventually flushed to the server

• B reads the file
• Does B read the old contents or the new file 

contents? 



COMP 790: OS Implementation

Consistency
• Trade-off between performance and consistency
• Performance: buffer everything, write back when 

convenient
– Other clients can see old data, or make conflicting updates

• Consistency: Write everything immediately; 
immediately detect if another client is trying to write 
same data
– Much more network traffic, lower performance
– Common case: accessing an unshared file



COMP 790: OS Implementation

Close-to-open consistency
• NFS Model: Flush all writes on a close
• When you open, you get the latest version on the 

server
– Copy entire file from server into local cache

• Can definitely have weirdness when two clients 
touch the same file

• Reasonable compromise between performance and 
consistency



COMP 790: OS Implementation

Other optimizations
• Caching inode (stat) data and directory entries on the 

client ended up being a big performance win
• So did read-ahead on the server
• And demand paging on the client



COMP 790: OS Implementation

NFS Evolution
• You read about what is basically version 2
• Version 3 (1995): 
– 64-bit file sizes and offsets (large file support)
– Bundle file attributes with other requests to eliminate 

more stats
– Other optimizations
– Still widely used today



COMP 790: OS Implementation

NFS V4 (2000)
• Attempts to address many of the problems of V3
– Security (eliminate homogeneous uid assumptions)
– Performance

• Becomes a stateful prototocol
• pNFS – proposed extensions for parallel, distributed 

file accesses
• Slow adoption



COMP 790: OS Implementation

Summary
• NFS is still widely used, in part because it is simple 

and well-understood
– Even if not as robust as its competitors

• You should understand architecture and key trade-
offs

• Basics of NFS protocol from paper


