
COMP 630: OS Implementation

Page Frame Reclaiming

Don Porter

1

COMP 630: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
(kernel level mem.

management)

2

COMP 630: OS Implementation

Last time…
• We saw how you go from a file or process to the

constituent memory pages making it up
– Where in memory is page 2 of file “foo”?
– Or, where is address 0x1000 in process 100?

• Today, we look at reverse mapping:
– Given physical page X, what has a reference to it?

• Then we will look at page reclamation:
– Which page is the best candidate to reuse?

3

COMP 630: OS Implementation

Motivation: Swapping
• Most OSes allow virtual memory to become

“overcommitted”
– Processes may allocate more virtual memory than there is

physical memory in the system

• How does this work?
– OS transparently takes some pages away and writes them

to disk
– I.e., the OS “swaps” them to disk and reassigns the physical

page

4

COMP 630: OS Implementation

Swapping, cont.
• If we swap a page out, what do we do with the old

page table entries pointing to it?
– We clear the PTE_P bit so that we get a page fault

• What do we do when we get a page fault for a
swapped page?
– We need to allocate another physical page, reread the

page from disk, and re-map the new page

5

COMP 630: OS Implementation

Choices, choices…
• The Linux kernel decides what to swap based on

scanning the page descriptor table
– Similar to the Pages array in JOS
– I.e., primarily by looking at physical pages

• Today’s lecture:
1) Given a physical page descriptor, how do I find all of the

mappings? Remember, pages can be shared.
2) What strategies should we follow when selecting a page to

swap?

6

COMP 630: OS Implementation

Shared memory
• Recall: A vma represents a region of a process’s

virtual address space
• A vma is private to a process
• Yet physical pages can be shared
– The pages caching libc in memory
– Even anonymous application data pages can be shared,

after a copy-on-write fork()

• So far, we have elided this issue. No longer!

7

COMP 630: OS Implementation

Anonymous memory
• When anonymous memory is mapped, a vma is

created
– Pages are added on demand (laziness rules!)

• When the first page is added, an anon_vma structure
is also created
– vma and page descriptor point to anon_vma
– anon_vma stores all mapping vmas in a circular linked list

• When a mapping becomes shared (e.g., COW fork),
create a new VMA, link it on the anon_vma list

8

COMP 630: OS Implementation

Example

Physical memory

Process A Process B (forked)

Virtual memory

Page Tables
Page Tables

Physical page descriptors

vma vma
anon
vma

9

COMP 630: OS Implementation

Example (2nd Page)

Physical memory

Process A Process B

Virtual memory

Page Tables
Page Tables

Physical page descriptors

vma vma
anon
vma

No update?
Anonymous

VMAs tend to
be COW

10

COMP 630: OS Implementation

Reverse mapping
• Suppose I pick a physical page X, what is it being

used for?
• Many ways you could represent this
• Remember, some systems have a lot of physical

memory
– So we want to keep fixed, per-page overheads low
– Can dynamically allocate some extra bookkeeping

11

COMP 630: OS Implementation

Linux strategy
• Add 2 fields to each page descriptor
• _mapcount: Tracks the number of active mappings
– -1 == unmapped
– 0 == single mapping (unshared)
– 1+ == shared

• mapping: Pointer to the owning object
– Address space (file/device) or anon_vma (process)
– Least Significant Bit encodes the type (1 == anon_vma)

12

COMP 630: OS Implementation

Anonymous page lookup
• Given a physical address, page descriptor index is just

simple division by page size
• Given a page descriptor:
– Look at _mapcount to see how many mappings. If 0+:
– Read mapping to get pointer to the anon_vma

• Be sure to check, mask out low bit

• Iterate over vmas on the anon_vma list
– Linear scan of page table entries for each vma

• vma-> mm -> pgdir

13

COMP 630: OS Implementation

Example

Physical memory

Process A Process B

Virtual memory

Page Tables
Page Tables

Physical page descriptors

vma vma
anon
vma

Page 0x10000
Divide by 0x1000 (4k)

Page 0x10
_mapcount: 1

mapping:
(anon vma + low bit)

foreach vma

Linear scan
of page tables

14

COMP 630: OS Implementation

File vs. anon mappings
• Given a page mapping a file, we store a pointer in its

page descriptor to the inode address space
– page->index caches the offset into the file being mapped

• Now to find all processes mapping the file…
• So, let’s just do the same thing for files as

anonymous mappings, no?
– Could just link all VMAs mapping a file into a linked list on

the inode’s address_space.

• 2 complications:

15

COMP 630: OS Implementation

Complication 1
• Not all file mappings map the entire file
– Many map only a region of the file

• So, if I am looking for all mappings of page 4 of a file
a linear scan of each mapping may have to filter
vmas that don’t include page 4

16

COMP 630: OS Implementation

Complication 2
• Intuition: anonymous mappings won’t be shared

much
– How many children won’t exec a new executable?

• In contrast, (some) mapped files will be shared a lot
– Example: libc

• Problem: Lots of entries on the list + many that might
not overlap

• Solution: Need some sort of filter

17

COMP 630: OS Implementation

Priority Search Tree
• Idea: binary search tree that uses overlapping ranges

as node keys
– Bigger, enclosing ranges are the parents, smaller ranges

are children
– Not balanced (in Linux, some uses balance them)

• Use case: Search for all ranges that include page N
• Most of that logarithmic lookup goodness you love

from tree-structured data!

18

COMP 630: OS Implementation

Figure 17-2
(from Understanding the Linux Kernel)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 17: Page Frame Reclaiming

retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers
that neither of them include the page.

We won’t be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We’ll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the shared.
prio_tree_node field of each memory region descriptor. The shared.vm_set data struc-
ture is used—as an alternative to shared.prio_tree_node—to insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and
removed by executing the vma_prio_tree_insert() and vma_prio_tree_remove() func-
tions; both of them receive as their parameters the address of a memory region
descriptor and the address of a PST root. Queries on the PST can be performed by exe-
cuting the vma_prio_tree_foreach macro, which implements a loop over all memory
region descriptors that includes at least one page in a specified range of linear
addresses.

The try_to_unmap_file() function

The try_to_unmap_file() function is invoked by try_to_unmap() to perform the
reverse mapping of mapped pages. This function is quite simple to describe when the
memory mapping is linear (see the section “Memory Mapping” in Chapter 16). In
this case, it performs the following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose
root is stored in the page->mapping->i_mmap field. For each vm_area_struct
descriptor found by the macro, the function invokes try_to_unmap_one() to try
to clear the Page Table entry of the memory region that contains the page (see
the earlier section “Reverse Mapping for Anonymous Pages”). If for some reason
this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates immediately.

Figure 17-2. A simple example of priority search tree

radix size heap

(a) (b)

0 1 2 3 4 5

0,5,5
0,2,2
0,4,4
2,3,5
2,0,2
1,2,3
0,0,0

0,0,0 0,2,2 1,2,3 2,0,2

0,5,5

0,4,4 2,3,5

• Radix – start of interval, heap = last page
• Range is exclusive, e.g., [0, 5)

19

COMP 630: OS Implementation

How to find page 1?

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 17: Page Frame Reclaiming

retrieved. Then the algorithm visits the children (1,2,3) and (2,0,2), but it discovers
that neither of them include the page.

We won’t be able, for lack of space, to describe in detail the data structures and the
functions that implement the Linux PSTs. We’ll only mention that a node of a PST is
represented by a prio_tree_node data structure, which is embedded in the shared.
prio_tree_node field of each memory region descriptor. The shared.vm_set data struc-
ture is used—as an alternative to shared.prio_tree_node—to insert the memory
region descriptor in a duplicate list of a PST node. PST nodes can be inserted and
removed by executing the vma_prio_tree_insert() and vma_prio_tree_remove() func-
tions; both of them receive as their parameters the address of a memory region
descriptor and the address of a PST root. Queries on the PST can be performed by exe-
cuting the vma_prio_tree_foreach macro, which implements a loop over all memory
region descriptors that includes at least one page in a specified range of linear
addresses.

The try_to_unmap_file() function

The try_to_unmap_file() function is invoked by try_to_unmap() to perform the
reverse mapping of mapped pages. This function is quite simple to describe when the
memory mapping is linear (see the section “Memory Mapping” in Chapter 16). In
this case, it performs the following actions:

1. Gets the page->mapping->i_mmap_lock spin lock.

2. Applies the vma_prio_tree_foreach() macro to the priority search tree whose
root is stored in the page->mapping->i_mmap field. For each vm_area_struct
descriptor found by the macro, the function invokes try_to_unmap_one() to try
to clear the Page Table entry of the memory region that contains the page (see
the earlier section “Reverse Mapping for Anonymous Pages”). If for some reason
this function returns a SWAP_FAIL value, or if the _mapcount field of the page
descriptor indicates that all Page Table entries referencing the page frame have
been found, the scanning terminates immediately.

Figure 17-2. A simple example of priority search tree

radix size heap

(a) (b)

0 1 2 3 4 5

0,5,5
0,2,2
0,4,4
2,3,5
2,0,2
1,2,3
0,0,0

0,0,0 0,2,2 1,2,3 2,0,2

0,5,5

0,4,4 2,3,5

• If in range: search both children
• If out of range: search only right or left child

All

All
Right AllAll

Left

20

COMP 630: OS Implementation

PST + vmas
• Each node in the PST contains a list of vmas mapping

that interval
– Only one vma for unusual mappings

• So what about duplicates (ex: all programs using
libc)?
– A very long list on the (0, filesz, filesz) node

• I.e., the root of the tree

21

COMP 630: OS Implementation

Reverse lookup, review
• Given a page, how do I find all mappings?

22

COMP 630: OS Implementation

Problem 2: Reclaiming
• Until there is a problem, kernel caches and processes

can go wild allocating memory
• Sometimes there is a problem, and the kernel needs

to reclaim physical pages for other uses
– Low memory, hibernation, free memory below a “goal”

• Which ones to pick?
– Goal: Minimal performance disruption on a wide range of

systems (from phones to supercomputers)

23

COMP 630: OS Implementation

Types of pages
• Unreclaimable – free pages (obviously), pages pinned

in memory by a process, temporarily locked pages,
pages used for certain purposes by the kernel

• Swappable – anonymous pages, tmpfs, shared IPC
memory

• Syncable – cached disk data
• Discardable – unused pages in cache allocators

24

COMP 630: OS Implementation

General principles
• Free harmless pages first
• Steal pages from user programs, especially those that

haven’t been used recently
• When a page is reclaimed, remove all references at

once
– Removing one reference is a waste of time

• Temporal locality: get pages that haven’t been used
in a while

• Laziness: Favor pages that are “cheaper” to free
– Ex: Waiting on write back of dirty data takes time
– Note: Dirty pages are still reclaimed, just not preferred!

25

COMP 630: OS Implementation

Another view
• Suppose the system is bogging down because

memory is scarce
• The problem is only going to go away permanently if

a process can get enough memory to finish
– Then it will free memory permanently!

• When the OS reclaims memory, we want to avoid
harming progress by taking away memory a process
really needs to make progress

• If possible, avoid this with educated guesses

26

COMP 630: OS Implementation

LRU lists
• All pages are on one of 2 LRU lists: active or inactive
• Intuition: a page access causes it to be switched to

the active list
– A page that hasn’t been accessed in a while moves to the

inactive list

27

COMP 630: OS Implementation

How to detect use?
• Tag pages with “last access” time
• Obviously, explicit kernel operations (mmap,

mprotect, read, etc.) can update this
• What about when a page is mapped?
– Remember those hardware access bits in the page table?
– Periodically clear them; if they don’t get re-set by the

hardware, you can assume the page is “cold”
• If they do get set, it is “hot”

28

COMP 630: OS Implementation

Big picture
• Kernel keeps a heuristic “target” of free pages
– Makes a best effort to maintain that target; can fail

• Kernel gets really worried when it cannot allocate
physical pages
– In the worst case, starts out-of-memory (OOM) killing

processes until memory can be reclaimed

29

COMP 630: OS Implementation

Editorial
• Choosing the “right” pages to free is a problem

without a lot of good science behind it
– Many systems don’t cope well with low-memory

conditions
– But they need to get better

• (Think phones and other small devices)

• Important problem – perhaps an opportunity?

30

COMP 630: OS Implementation

Summary
• Reverse mappings for shared:
– Anonymous pages
– File-mapping pages

• Basic tricks of page frame reclaiming
– LRU lists
– Free cheapest pages first
– Unmap all at once
– Etc.

31

