
2/21/20

1

COMP 790: OS Implementation

Scheduling, Part 2

Don Porter

1

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture
Switching to CPU

scheduling

2

2

COMP 790: OS Implementation

Last time…
• Scheduling overview, key trade-offs, etc.
• O(1) scheduler – older Linux scheduler

• Today:
– Completely Fair Scheduler (CFS) – new hotness
– Other advanced scheduling issues

• Real-time scheduling
• Kernel preemption

3

3

COMP 790: OS Implementation

Fair Scheduling
• Simple idea: 50 tasks, each should get 2% of CPU

time
• Do we really want this?
– What about priorities?
– Interactive vs. batch jobs?
– CPU topologies?
– Per-user fairness?

• Alice has one task and Bob has 49; why should Bob get 98% of CPU
time?

– Etc.?

4

4

COMP 790: OS Implementation

Editorial
• Real issue: O(1) scheduler bookkeeping is

complicated
– Heuristics for various issues makes it more complicated
– Heuristics can end up working at cross-purposes

• Software engineering observation:
– Kernel developers better understood scheduling issues and

workload characteristics, could make more informed
design choice

• Elegance: Structure (and complexity) of solution
matches problem

5

5

COMP 790: OS Implementation

CFS idea
• Back to a simple list of tasks (conceptually)
• Ordered by how much time they’ve had
– Least time to most time

• Always pick the “neediest” task to run
– Until it is no longer neediest
– Then re-insert old task in the timeline
– Schedule the new neediest

6

6

2/21/20

2

COMP 790: OS Implementation

CFS Example

5 10 15 22 26

List sorted by
how many

“ticks” the task
has had

Schedule
“neediest” task

7

7

COMP 790: OS Implementation

CFS Example

10 15 22 26

11
Once no longer

the neediest, put
back on the list

8

8

COMP 790: OS Implementation

But lists are inefficient
• Duh! That’s why we really use a tree
– Red-black tree: 9/10 Linux developers recommend it

• log(n) time for:
– Picking next task (i.e., search for left-most task)
– Putting the task back when it is done (i.e., insertion)
– Remember: n is total number of tasks on system

9

9

COMP 790: OS Implementation

Details
• Global virtual clock: ticks at a fraction of real time
– Runqueue->fair_clock
– Fraction is number of total tasks

• Each task counts how many clock ticks it has had
• Example: 4 tasks, equal number of virtual ticks
– Global vclock ticks once every 4 real ticks
– Each task scheduled for one real tick; advances local clock

by one tick

10

10

COMP 790: OS Implementation

More details
• Task’s ticks make key in RB-tree
– Fewest tick count get serviced first

• No more runqueues
– Just a single tree-structured timeline

11

11

COMP 790: OS Implementation

CFS Example (more realistic)

1

4

8

10

12

Global Ticks: 12 • Tasks sorted by ticks
executed

• 4 ticks for first task
• Reinsert into list
• 1 tick to new first task

55

12

12

2/21/20

3

COMP 790: OS Implementation

Edge case 1
• What about a new task?
– If task ticks start at zero, doesn’t it get to unfairly run for a

long time?
• Strategies:
– Could initialize to current time (start at right)
– Could get half of parent’s deficit

13

13

COMP 790: OS Implementation

What happened to priorities?
• Priorities let me be deliberately unfair
– This is a useful feature

• In CFS, priorities weigh the length of a task’s “tick”
• Example:
– For a high-priority task, a virtual, task-local tick may last for

10 actual clock ticks
– For a low-priority task, a virtual, task-local tick may only

last for 1 actual clock tick

• Result: Higher-priority tasks run longer, low-priority
tasks make some progress

Note: 10:1 ratio is a
made-up example.
See code for real

weights.

14

14

COMP 790: OS Implementation

Interactive latency
• Recall: GUI programs are I/O bound
– We want them to be responsive to user input
– Need to be scheduled as soon as input is available
– Will only run for a short time

15

15

COMP 790: OS Implementation

GUI program strategy
• Just like O(1) scheduler, CFS takes blocked programs

out of the RB-tree of runnable processes
• Virtual clock continues ticking while tasks are

blocked
– Increasingly large deficit between task and global vclock

• When a GUI task is runnable, generally goes to the
front
– Dramatically lower vclock value than CPU-bound jobs
– Reminder: “front” is left side of tree

16

16

COMP 790: OS Implementation

Other refinements
• Per group or user scheduling
– Real to virtual tick ratio becomes a function of number of

both global and user’s/group’s tasks
• Unclear how CPU topologies are addressed

17

17

COMP 790: OS Implementation

Recap: Ticks galore!
• Real time is measured by a timer device, which

“ticks” at a certain frequency by raising a timer
interrupt

• A process’s virtual tick is some number of real ticks
– We implement priorities, per-user fairness, etc. by tuning

this ratio

• The global tick counter tracks maximum possible
virtual ticks
– Used to calculate one’s deficit

18

18

2/21/20

4

COMP 790: OS Implementation

CFS Summary
• Simple idea: logically a queue of runnable tasks,

ordered by who has had the least CPU time
• Implemented with a tree for fast lookup, reinsertion
• Global clock counts virtual ticks
• Priorities and other features/tweaks implemented by

playing games with length of a virtual tick
– Virtual ticks vary in wall-clock length per-process

19

19

COMP 790: OS Implementation

Real-time scheduling
• Different model: need to do a modest amount of

work by a deadline
• Example:
– Audio application needs to deliver a frame every nth of a

second
– Too many or too few frames unpleasant to hear

20

20

COMP 790: OS Implementation

Strawman
• If I know it takes n ticks to process a frame of audio,

just schedule my application n ticks before the
deadline

• Problems?
• Hard to accurately estimate n
– Interrupts
– Cache misses
– Disk accesses
– Variable execution time depending on inputs

21

21

COMP 790: OS Implementation

Hard problem
• Gets even worse with multiple applications +

deadlines
• May not be able to meet all deadlines
• Interactions through shared data structures worsen

variability
– Block on locks held by other tasks
– Cached file system data gets evicted
– Optional reading (interesting): Nemesis – an OS without

shared caches to improve real-time scheduling

22

22

COMP 790: OS Implementation

Simple hack
• Create a highest-priority scheduling class for real-

time process
– SCHED_RR – RR == round robin

• RR tasks fairly divide CPU time amongst themselves
– Pray that it is enough to meet deadlines
– If so, other tasks share the left-overs

• Assumption: like GUI programs, RR tasks will spend
most of their time blocked on I/O
– Latency is key concern

23

23

COMP 790: OS Implementation

Next issue: Kernel time
• Should time spent in the OS count against an

application’s time slice?
– Yes: Time in a system call is work on behalf of that task
– No: Time in an interrupt handler may be completing I/O

for another task

24

24

2/21/20

5

COMP 790: OS Implementation

Timeslices + syscalls
• System call times vary
• Context switches generally at system call boundary
– Can also context switch on blocking I/O operations

• If a time slice expires inside of a system call:
– Task gets rest of system call “for free”

• Steals from next task

– Potentially delays interactive/real time task until finished

25

25

COMP 790: OS Implementation

Idea: Kernel Preemption
• Why not preempt system calls just like user code?
• Well, because it is harder, duh!
• Why?
– May hold a lock that other tasks need to make progress
– May be in a sequence of HW config options that assumes it

won’t be interrupted
• General strategy: allow fragile code to disable

preemption
– Cf: Interrupt handlers can disable interrupts if needed

26

26

COMP 790: OS Implementation

Kernel Preemption
• Implementation: actually not too bad
– Essentially, it is transparently disabled with any locks held
– A few other places disabled by hand

• Result: UI programs a bit more responsive

27

27

COMP 790: OS Implementation

Summary
• Understand:
– Completely Fair Scheduler (CFS)
– Real-time scheduling issues
– Kernel preemption

28

28

