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Scheduling, Part 2

Don Porter
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Last time…
• Scheduling overview, key trade-offs, etc.
• O(1) scheduler – older Linux scheduler

• Today: 
– Completely Fair Scheduler (CFS) – new hotness
– Other advanced scheduling issues

• Real-time scheduling
• Kernel preemption
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Fair Scheduling
• Simple idea: 50 tasks, each should get 2% of CPU 

time
• Do we really want this?
– What about priorities?
– Interactive vs. batch jobs?
– CPU topologies?
– Per-user fairness? 

• Alice has one task and Bob has 49; why should Bob get 98% of CPU 
time?

– Etc.?
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Editorial
• Real issue: O(1) scheduler bookkeeping is 

complicated
– Heuristics for various issues makes it more complicated
– Heuristics can end up working at cross-purposes

• Software engineering observation:
– Kernel developers better understood scheduling issues and 

workload characteristics, could make more informed 
design choice

• Elegance: Structure (and complexity) of solution 
matches problem
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CFS idea
• Back to a simple list of tasks (conceptually)
• Ordered by how much time they’ve had
– Least time to most time

• Always pick the “neediest” task to run
– Until it is no longer neediest
– Then re-insert old task in the timeline
– Schedule the new neediest
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CFS Example

5 10 15 22 26

List sorted by 
how many 

“ticks” the task 
has had

Schedule 
“neediest” task
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CFS Example

10 15 22 26

11
Once no longer 

the neediest, put 
back on the list
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But lists are inefficient
• Duh! That’s why we really use a tree
– Red-black tree: 9/10 Linux developers recommend it

• log(n) time for:
– Picking next task (i.e., search for left-most task)
– Putting the task back when it is done (i.e., insertion)
– Remember: n is total number of tasks on system
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Details
• Global virtual clock: ticks at a fraction of real time
– Runqueue->fair_clock
– Fraction is number of total tasks

• Each task counts how many clock ticks it has had
• Example: 4 tasks, equal number of virtual ticks
– Global vclock ticks once every 4 real ticks
– Each task scheduled for one real tick; advances local clock 

by one tick
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More details
• Task’s ticks make key in RB-tree
– Fewest tick count get serviced first

• No more runqueues
– Just a single tree-structured timeline
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CFS Example (more realistic)

1

4

8

10

12

Global Ticks: 12 • Tasks sorted by ticks 
executed

• 4 ticks for first task
• Reinsert into list
• 1 tick to new first task
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Edge case 1
• What about a new task?  
– If task ticks start at zero, doesn’t it get to unfairly run for a 

long time?
• Strategies:
– Could initialize to current time (start at right)
– Could get half of parent’s deficit
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What happened to priorities?
• Priorities let me be deliberately unfair
– This is a useful feature

• In CFS, priorities weigh the length of a task’s “tick”
• Example:
– For a high-priority task, a virtual, task-local tick may last for 

10 actual clock ticks
– For a low-priority task, a virtual, task-local tick may only 

last for 1 actual clock tick

• Result: Higher-priority tasks run longer, low-priority 
tasks make some progress

Note: 10:1 ratio is a 
made-up example.  
See code for real 

weights.
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Interactive latency
• Recall: GUI programs are I/O bound
– We want them to be responsive to user input
– Need to be scheduled as soon as input is available
– Will only run for a short time
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GUI program strategy
• Just like O(1) scheduler, CFS takes blocked programs 

out of the RB-tree of runnable processes
• Virtual clock continues ticking while tasks are 

blocked
– Increasingly large deficit between task and global vclock

• When a GUI task is runnable, generally goes to the 
front
– Dramatically lower vclock value than CPU-bound jobs
– Reminder: “front” is left side of tree
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Other refinements
• Per group or user scheduling
– Real to virtual tick ratio becomes a function of number of 

both global and user’s/group’s tasks
• Unclear how CPU topologies are addressed 
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Recap: Ticks galore!
• Real time is measured by a timer device, which 

“ticks” at a certain frequency by raising a timer 
interrupt

• A process’s virtual tick is some number of real ticks
– We implement priorities, per-user fairness, etc. by tuning 

this ratio

• The global tick counter tracks maximum possible 
virtual ticks
– Used to calculate one’s deficit
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CFS Summary
• Simple idea: logically a queue of runnable tasks, 

ordered by who has had the least CPU time
• Implemented with a tree for fast lookup, reinsertion
• Global clock counts virtual ticks
• Priorities and other features/tweaks implemented by 

playing games with length of a virtual tick
– Virtual ticks vary in wall-clock length per-process
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Real-time scheduling
• Different model: need to do a modest amount of 

work by a deadline
• Example:
– Audio application needs to deliver a frame every nth of a 

second
– Too many or too few frames unpleasant to hear
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Strawman
• If I know it takes n ticks to process a frame of audio, 

just schedule my application n ticks before the 
deadline

• Problems?
• Hard to accurately estimate n
– Interrupts
– Cache misses
– Disk accesses
– Variable execution time depending on inputs
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Hard problem
• Gets even worse with multiple applications + 

deadlines
• May not be able to meet all deadlines
• Interactions through shared data structures worsen 

variability
– Block on locks held by other tasks
– Cached file system data gets evicted
– Optional reading (interesting): Nemesis – an OS without 

shared caches to improve real-time scheduling
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Simple hack
• Create a highest-priority scheduling class for real-

time process
– SCHED_RR – RR == round robin

• RR tasks fairly divide CPU time amongst themselves
– Pray that it is enough to meet deadlines
– If so, other tasks share the left-overs

• Assumption: like GUI programs, RR tasks will spend 
most of their time blocked on I/O
– Latency is key concern
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Next issue: Kernel time
• Should time spent in the OS count against an 

application’s time slice?
– Yes: Time in a system call is work on behalf of that task
– No: Time in an interrupt handler may be completing I/O 

for another task
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Timeslices + syscalls
• System call times vary
• Context switches generally at system call boundary
– Can also context switch on blocking I/O operations

• If a time slice expires inside of a system call:
– Task gets rest of system call “for free”

• Steals from next task

– Potentially delays interactive/real time task until finished
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Idea: Kernel Preemption
• Why not preempt system calls just like user code?
• Well, because it is harder, duh!
• Why?
– May hold a lock that other tasks need to make progress
– May be in a sequence of HW config options that assumes it 

won’t be interrupted
• General strategy: allow fragile code to disable 

preemption
– Cf: Interrupt handlers can disable interrupts if needed
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Kernel Preemption
• Implementation: actually not too bad
– Essentially, it is transparently disabled with any locks held
– A few other places disabled by hand

• Result: UI programs a bit more responsive
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Summary
• Understand:
– Completely Fair Scheduler (CFS)
– Real-time scheduling issues
– Kernel preemption
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