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Warm-up
• What is synchronization?
– Code on multiple CPUs coordinate their operations

• Examples:
– Locking provides mutual exclusion while changing a 

pointer-based data structure
– Threads might wait at a barrier for completion of a phase 

of computation
– Coordinating which CPU handles an interrupt
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Why Linux synchronization?
• A modern OS kernel is one of the most complicated 

parallel programs you can study
– Other than perhaps a database

• Includes most common synchronization patterns
– And a few interesting, uncommon ones
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Historical perspective
• Why did OSes have to worry so much about 

synchronization back when most computers have 
only one CPU?
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The old days: They didn’t worry!
• Early/simple OSes (like JOS, pre-lab4): No need for 

synchronization
– All kernel requests wait until completion – even disk 

requests
– Heavily restrict when interrupts can be delivered (all traps 

use an interrupt gate)
– No possibility for two CPUs to touch same data
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Slightly more recently
• Optimize kernel performance by blocking inside the 

kernel
• Example: Rather than wait on expensive disk I/O, 

block and schedule another process until it 
completes
– Cost: A bit of implementation complexity

• Need a lock to protect against concurrent update to 
pages/inodes/etc. involved in the I/O

• Could be accomplished with relatively coarse locks
• Like the Big Kernel Lock (BKL)

– Benefit: Better CPU utilitzation
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A slippery slope
• We can enable interrupts during system calls 
– More complexity, lower latency

• We can block in more places that make sense
– Better CPU usage, more complexity

• Concurrency was an optimization for really fancy 
OSes, until…
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The forcing function
• Multi-processing
– CPUs aren’t getting faster, just smaller
– So you can put more cores on a chip

• The only way software (including kernels) will get 
faster is to do more things at the same time
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Performance Scalability
• How much more work can this software complete in 

a unit of time if I give it another CPU?
– Same: No scalability---extra CPU is wasted
– 1 -> 2 CPUs doubles the work: Perfect scalability

• Most software isn’t scalable
• Most scalable software isn’t perfectly scalable

10

10

COMP 790: OS Implementation

Performance Scalability
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Performance Scalability
(more visually intuitive)
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Performance Scalability
(A 3rd visual)
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Coarse vs. Fine-grained locking
• Coarse: A single lock for everything
– Idea: Before I touch any shared data, grab the lock
– Problem: completely unrelated operations wait on each 

other
• Adding CPUs doesn’t improve performance
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Fine-grained locking
• Fine-grained locking: Many “little” locks for individual 

data structures
– Goal: Unrelated activities hold different locks

• Hence, adding CPUs improves performance

– Cost: complexity of coordinating locks
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How do locks work?
• Two key ingredients:
– A hardware-provided atomic instruction

• Determines who wins under contention

– A waiting strategy for the loser(s)
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Atomic instructions
• A “normal” instruction can span many CPU cycles
– Example: ‘a = b + c’ requires 2 loads and a store
– These loads and stores can interleave with other CPUs’ 

memory accesses

• An atomic instruction guarantees that the entire 
operation is not interleaved with any other CPU
– x86: Certain instructions can have a ‘lock’ prefix
– Intuition: This CPU ‘locks’ all of memory
– Expensive!  Not ever used automatically by a compiler; 

must be explicitly used by the programmer
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Atomic instruction examples
• Atomic increment/decrement ( x++ or x--)
– Used for reference counting
– Some variants also return the value x was set to by this 

instruction (useful if another CPU immediately changes the 
value)

• Compare and swap 
– if (x == y) x = z;
– Used for many lock-free data structures
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Atomic instructions + locks
• Most lock implementations have some sort of 

counter
• Say initialized to 1
• To acquire the lock, use an atomic decrement
– If you set the value to 0, you win!  Go ahead
– If you get < 0, you lose.  Wait L
– Atomic decrement ensures that only one CPU will 

decrement the value to zero
• To release, set the value back to 1
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Waiting strategies
• Spinning: Just poll the atomic counter in a busy loop; 

when it becomes 1, try the atomic decrement again
• Blocking: Create a kernel wait queue and go to sleep, 

yielding the CPU to more useful work
– Winner is responsible to wake up losers (in addition to 

setting lock variable to 1)
– Create a kernel wait queue – the same thing used to wait 

on I/O
• Note: Moving to a wait queue takes you out of the scheduler’s run 

queue
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Which strategy to use?
• Main consideration: Expected time waiting for the 

lock vs. time to do 2 context switches
– If the lock will be held a long time (like while waiting for 

disk I/O), blocking makes sense
– If the lock is only held momentarily, spinning makes sense

• Other, subtle considerations we will discuss later
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Linux lock types
• Blocking: mutex, semaphore
• Non-blocking: spinlocks, seqlocks, completions

23

23

COMP 790: OS Implementation

Linux spinlock (simplified)

1: lock; decb slp->slock
jns 3f 

2: pause 

cmpb $0,slp->slock
jle 2b 
jmp 1b 

3: 

// Locked decrement of lock var

// Jump if not set (result is zero) to 3

// Low power instruction, wakes on 
// coherence event

// Read the lock value, compare to zero 

// If less than or equal (to zero), goto 2

// Else jump to 1 and try again

// We win the lock
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Rough C equivalent
while (0 != atomic_dec(&lock->counter)) {

do {
// Pause the CPU until some coherence 
// traffic (a prerequisite for the counter 
//  changing) saving power

} while (lock->counter <= 0);
}
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Why 2 loops?
• Functionally, the outer loop is sufficient
• Problem: Attempts to write this variable invalidate it 

in all other caches
– If many CPUs are waiting on this lock, the cache line will 

bounce between CPUs that are polling its value
• This is VERY expensive and slows down EVERYTHING on the system

– The inner loop read-shares this cache line, allowing all 
polling in parallel

• This pattern called a Test&Test&Set lock (vs. 
Test&Set)
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Test & Set Lock
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Test & Test & Set Lock
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Why 2 loops?
• Functionally, the outer loop is sufficient
• Problem: Attempts to write this variable invalidate it 

in all other caches
– If many CPUs are waiting on this lock, the cache line will 

bounce between CPUs that are polling its value
• This is VERY expensive and slows down EVERYTHING on the system

– The inner loop read-shares this cache line, allowing all 
polling in parallel

• This pattern called a Test&Test&Set lock (vs. 
Test&Set)
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Reader/writer locks
• Simple optimization: If I am just reading, we can let 

other readers access the data at the same time
– Just no writers

• Writers require mutual exclusion
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Linux RW-Spinlocks
• Low 24 bits count active readers
– Unlocked: 0x01000000
– To read lock: atomic_dec_unless(count, 0)  

• 1 reader: 0x:00ffffff

• 2 readers: 0x00fffffe
• Etc. 
• Readers limited to 2^24.  That is a lot of CPUs!

• 25th bit for writer
– Write lock – CAS 0x01000000 -> 0

• Readers will fail to acquire the lock until we add 0x1000000
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Subtle issue
• What if we have a constant stream of readers and a 

waiting writer?
– The writer will starve

• We may want to prioritize writers over readers
– For instance, when readers are polling for the write
– How to do this?
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Seqlocks
• Explicitly favor writers, potentially starve readers
• Idea: 
– An explicit write lock (one writer at a time)
– Plus a version number – each writer increments at 

beginning and end of critical section
• Readers: Check version number, read data, check 

again
– If version changed, try again in a loop
– If version hasn’t changed and is even, neither has data
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Seqlock Example

70

% Time for 
CSE 506

30

% Time for 
All Else

0 Version
Lock

Invariant:
Must add up to 

100%
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Version
Lock

Seqlock Example

70

% Time for 
CSE 506

30

% Time for 
All Else

0

Reader:
do {

v = version;
a = cse506;
b = other;

} while (v % 2 == 1  || 
v != version);

Writer:
lock();
version++;
other = 20;
cse506 = 80;
version++;
unlock();

1280 20

What if reader 
executed now?
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Seqlocks
• Explicitly favor writers, potentially starve readers
• Idea: 
– An explicit write lock (one writer at a time)
– Plus a version number – each writer increments at 

beginning and end of critical section
• Readers: Check version number, read data, check 

again
– If version changed, try again in a loop
– If version hasn’t changed and is even, neither has data
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Composing locks
• Suppose I need to touch two data structures (A and 

B) in the kernel, protected by two locks.
• What could go wrong?
– Deadlock!
– Thread 0: lock(a); lock(b)
– Thread 1: lock(b); lock(a)

• How to solve?
– Lock ordering
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Lock Ordering
• A program code convention
• Developers get together, have lunch, plan the order 

of locks
• In general, nothing at compile time or run-time 

prevents you from violating this convention
– Research topics on making this better:

• Finding locking bugs
• Automatically locking things properly
• Transactional memory
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How to order?
• What if I lock each entry in a linked list.  What is a 

sensible ordering?
– Lock each item in list order
– What if the list changes order?
– Uh-oh!  This is a hard problem

• Lock-ordering usually reflects static assumptions 
about the structure of the data
– When you can’t make these assumptions, ordering gets 

hard

39

39

COMP 790: OS Implementation

Linux solution
• In general, locks for dynamic data structures are 

ordered by kernel virtual address
– I.e., grab locks in increasing virtual address order

• A few places where traversal path is used instead
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Lock ordering in practice
From Linux: fs/dcache.c

void d_prune_aliases(struct inode *inode) {

struct dentry *dentry;

struct hlist_node *p;

restart:

spin_lock(&inode->i_lock);

hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {

spin_lock(&dentry->d_lock);

if (!dentry->d_count) {

__dget_dlock(dentry);

__d_drop(dentry);

spin_unlock(&dentry->d_lock);

spin_unlock(&inode->i_lock);

dput(dentry);

goto restart;

}

spin_unlock(&dentry->d_lock);

}

spin_unlock(&inode->i_lock);

}

Care taken to lock inode
before each alias

Inode lock protects list;
Must restart loop after 

modification
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mm/filemap.c lock ordering/* 
* Lock ordering:
*  ->i_mmap_lock (vmtruncate)
*    ->private_lock (__free_pte->__set_page_dirty_buffers)
*      ->swap_lock (exclusive_swap_page, others)
*        ->mapping->tree_lock
*  ->i_mutex
*    ->i_mmap_lock (truncate->unmap_mapping_range)
*  ->mmap_sem
*    ->i_mmap_lock
*      ->page_table_lock or pte_lock (various, mainly in memory.c)
*        ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*  ->mmap_sem
*    ->lock_page (access_process_vm)
*  ->mmap_sem
*    ->i_mutex (msync)
*  ->i_mutex
*    ->i_alloc_sem (various)
*  ->inode_lock
*    ->sb_lock (fs/fs-writeback.c)
*    ->mapping->tree_lock (__sync_single_inode)
*  ->i_mmap_lock
*    ->anon_vma.lock (vma_adjust)
*  ->anon_vma.lock
*    ->page_table_lock or pte_lock (anon_vma_prepare and various)
*  ->page_table_lock or pte_lock
*    ->swap_lock (try_to_unmap_one)
*    ->private_lock (try_to_unmap_one)
*    ->tree_lock (try_to_unmap_one)
*    ->zone.lru_lock (follow_page->mark_page_accessed)
*    ->zone.lru_lock (check_pte_range->isolate_lru_page)
*    ->private_lock (page_remove_rmap->set_page_dirty)
*    ->tree_lock (page_remove_rmap->set_page_dirty)
*    ->inode_lock (page_remove_rmap->set_page_dirty)
*    ->inode_lock (zap_pte_range->set_page_dirty)
*    ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*  ->task->proc_lock
*    ->dcache_lock (proc_pid_lookup)
*/
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Semaphore
• A counter of allowed concurrent processes
– A mutex is the special case of 1 at a time

• Plus a wait queue
• Implemented similarly to a spinlock, except spin loop 

replaced with placing oneself on a wait queue
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Ordering blocking and spin locks
• If you are mixing blocking locks with spinlocks, be 

sure to acquire all blocking locks first and release 
blocking locks last
– Releasing a semaphore/mutex schedules the next waiter

• On the same CPU!

– If we hold a spinlock, the waiter may also try to grab this 
lock

– The waiter may block trying to get our spinlock and never 
yield the CPU

– We never get scheduled again, we never release the lock
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Summary
• Understand how to implement a 

spinlock/semaphore/rw-spinlock
• Understand trade-offs between:
– Spinlocks vs. blocking lock
– Fine vs. coarse locking
– Favoring readers vs. writers

• Lock ordering issues
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